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Equation of state for β-stable hot nuclear matter
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We provide an equation of state for hot nuclear matter in β equilibrium by applying a momentum-dependent
effective interaction. We focus on the study of the equation of state of high-density and high-temperature nuclear
matter, containing leptons (electrons and muons) under the chemical equilibrium condition in which neutrinos
have left the system. The conditions of charge neutrality and equilibrium under the β-decay process lead first
to the evaluation of proton and lepton fractions and then to the evaluation of internal energy, free energy, and
pressure, and in total to the equation of state of hot nuclear matter. Thermal effects on the properties and equation
of state of nuclear matter are assessed and analyzed in the framework of the proposed effective interaction model.
Special attention is given to the study of the contribution of the components of β-stable nuclear matter to the
entropy per particle, a quantity of great interest in the study of structure and collapse of supernova.
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I. INTRODUCTION

The equation of state (EOS) of hot nuclear matter de-
termines the structure inside a supernova [1] and a hot
neutron star [2–4] and affects the state of matter, such as its
chemical composition. In addition, the equation of state plays
an important role in the study of the supernova explosion,
as well as in determining the evolution of a neutron star at
the birth stage. The profiles of a neutron star as the density,
temperature, and proton fraction during the cooling, which
affect the reaction rate of neutrino process inside the star, are
determined through the equation of state.

There exist many calculations for hot nuclear matter
with applications to the properties of hot neutron stars and
supernova [1–40]. Baym et al. provided an EOS of neutron
matter [5] and Bethe et al. [6] an EOS for the gravitational
collapse of stars. Friedman and Pandharipande [7] performed
variational calculations of the EOS of hot and cold nuclear and
neutron matter. Lattimer and Swesty carried out calculations
of the EOS for stellar collapse, using the compressible liquid-
drop model for nuclei [8]. M. Prakash et al. [2] investigated
the structure of neutron stars shortly after their birth, by
applying various nuclear models. Takatsuka et al. [9,10] have
performed detailed calculations for supernova matter, within
the framework of the finite-temperature Hartree-Fock ap-
proach, with effective nucleon-nucleon interaction. Recently,
Das et al. [11] calculated the EOS of dense supernova matter
within the finite-temperature Brueckner-Goldstone approach
with effective two-body Sussex interaction.

The present work is based on the previous work of Prakash
et al. [2]. More specifically, to study the properties and EOS of
hot nuclear matter, we apply a momentum-dependent effective
interaction model (MDIM), which is able to reproduce the
results of more microscopic calculations of dense matter at
zero temperature and can be extended to finite temperature
[2,39,40].

The aim of this work is to apply a momentum-dependent
interaction model for the study of the hot nuclear matter EOS
under β equilibrium. The present model has the additional
property, compared to the previous ones, that the temperature

not only affects the kinetic part of the energy density but
also influences the interaction part of the energy density.
In that way, we are able to simultaneously study thermal
effects not only on the kinetic part of the symmetry energy
and symmetry free energy but also on the interaction part
of the above quantities. This is important in the sense that
the density-dependent behaviors of the symmetry energy and
symmetry free energy influence strongly the values of the
proton fraction and, as a consequence, the composition of the
hot β-stable nuclear matter under consideration.

Using this method, we will show that the thermal energy
(and also the related quantities) depends sensitively on the
momentum dependence of the nuclear interaction. We con-
centrate our study on the properties of hot nuclear matter
in the density range n0 < n < 6n0 (where n0 = 0.16 fm−3

is the saturation density) and temperature range 0 < T <

30 MeV, taking into account that nuclear matter consists of
neutrons, protons, electrons, and muons with their relative
concentrations determined from the conditions of charge
neutrality and equilibrium under the β-decay process in the
absence of neutrino trapping.

The article is organized as follows. In Sec. II, the model
and relative formulas are discussed and analyzed. Results are
reported and discussed in Sec. III, whereas the summary of the
work is given in Sec. IV.

II. THE MODEL

We start by outlining the momentum-dependent interaction
model, then we define the thermodynamic quantities of nuclear
matter, and finally we analyze the β-equilibrium conditions,
the contribution of leptons to pressure and energy, and the total
equation of state of nuclear matter.

A. Momentum-dependent interaction model

The schematic potential model, employed here, is designed
to reproduce the results of the microscopic calculations of both
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nuclear and neutron-rich matter at zero temperature and can
be extended to finite temperature [2]. The energy density of
the asymmetric nuclear matter (ANM) is given by the relation

ε(nn, np, T ) = εn
kin(nn, T ) + ε

p

kin(np, T ) + Vint(nn, np, T ),

(1)

where nn (np) is the neutron (proton) density and the total
baryon density is n = nn + np. The contributions of the kinetic
parts are

εn
kin(nn, T ) + ε

p

kin(np, T )

= 2
∫

d3k

(2π )3

h̄2k2

2m
(fn(nn, k, T ) + fp(np, k, T )), (2)

where fτ (for τ = n, p) is the Fermi-Dirac distribution
function with the form

fτ (nτ , k, T ) =
[

1 + exp

(
eτ (nτ , k, T ) − µτ (nτ , T )

T

)]−1

.

(3)

The nucleon density nτ is evaluated from the following integral

nτ = 2
∫

d3k

(2π )3
fτ (nτ , k, T )

= 2
∫

d3k

(2π )3

[
1 + exp

(
eτ (nτ , k, T ) − µτ (nτ , T )

T

)]−1

.

(4)

In Eq. (3), eτ (nτ , k, T ) is the single-particle energy (SPE) and
µτ (nτ , T ) stands for the chemical potential of each species.
The SPE has the form

eτ (nτ , k, T ) = h̄2k2

2m
+ Uτ (nτ , k, T ), (5)

where the single-particle potential Uτ (nτ , k, T ) is obtained by
the functional derivative of the interaction part of the energy
density with respect to the distribution function fτ . Including
the effect of finite-range forces between nucleons, to avoid
acausal behavior at high densities, the potential contribution is

parametrized as follows [2]:

Vint(nn, np, T ) = 1

3
An0

[
3

2
−

(
1

2
+ x0

)
I 2

]
u2

+
2
3Bn0

[
3
2 − (

1
2 + x3

)
I 2

]
uσ+1

1 + 2
3B ′[ 3

2 − (
1
2 + x3

)
I 2

]
uσ−1

+u
∑
i=1,2

[
Ci(Jn + Jp)

+ (Ci − 8Zi)

5
I (Jn − Jp)

]
, (6)

where

Jτ = 2
∫

d3k

(2π )3
g(k,�i)fτ (nτ , k, T ). (7)

In Eq. (6), I is the asymmetry parameter [I = (nn − np)/n]
and u = n/n0, with n0 denoting the equilibrium symmetric
nuclear matter density, n0 = 0.16 fm−3. The asymmetry
parameter I is related to the proton fraction Yp by the equa-
tion I = (1 − 2Yp). The parameters A,B, σ,C1, C2, and B ′,
which appear in the description of symmetric nuclear matter,
are determined so that E(n = n0) − mc2 = −16 MeV, n0 =
0.16 fm−3, and the incompressibility K = 240 MeV. The
additional parameters x0, x3, Z1, and Z2, which are used to
determine the properties of asymmetric nuclear matter, are
treated as parameters constrained by empirical knowledge [2].
The parametrizations used in the present model have only a
modest microscopic foundation. Nonetheless, they have the
merit of being able to closely approximate more physically
motivated calculations as presented in Fig. 1. More precisely,
in Fig. 1, we compare the energy per baryon [for symmetric
nuclear matter, Fig. 1(a), and pure neutron matter, Fig. 1(b)]
calculated by the present schematic model (MDIM) with those
of existing state-of-the-art calculations by Wiringa et al. [41]
and Pandharipande et al. [42].

The first two terms of the right-hand side of Eq. (6)
arise from the local contact nuclear interaction and lead
to power density contributions, as in the standard Skyrme
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FIG. 1. Energy per baryon of symmetric (a) and pure neutron matter (b) of the present model (MDIM) in comparison with those originated
from realistic calculations. More details for the models UV14+TNI, UV14+UVII and AV14+UVII in Ref. [41] and for the models A18+UIX
and A18+du+UIX∗ in Ref. [42].
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FIG. 2. (a) Contribution of the various terms VA, VB, VC and the total potential energy density Vint as a function of the baryon density. (b)
Momentum-dependent term VC as a function of the baryon density at temperature T = 0, T = 10, and T = 30 MeV.

equation of state. The first one concerns attractive interaction,
while the second one is repulsive, and both are assumed to
be temperature independent. The third term describes the
effects of finite-range interactions according to the chosen
function g(k,�i), and is the temperature-dependent part of
the interaction. This interaction is attractive and important at
low momentum, but it weakens and disappears at very high
momentum. The function g(k,�i), suitably chosen to simulate
finite-range effects, has the form [2]

g(k,�) =
[

1 +
(

k

�i

)2
]−1

, (8)

where the finite-range parameters are �1 = 1.5k0
F and �2 =

3k0
F , and k0

F is the Fermi momentum at the saturation point n0.
The main origin of the momentum dependence in

Brueckner theory is the nonlocality of the exchange interac-
tion. Following the discussion of Bertsch et al. [43], a single-
particle potential U (n) which depends only on the baryon
density is oversimplified. Furthermore, it is well known that
nuclear interaction has strong exchange effects that give rise
to a momentum dependence in the single-particle potential,
and, as a consequence, it has an effect on the energy density
functional. The question here is how best to parametrize
momentum dependence in modeling the potential U (n, k). A
promising approach might be to adopt the relativistic mean
field model, where U (n, k) = Uνn + Usn√

1+k2/m2
. This potential

exhibits a strong momentum dependence for small k which
diminishes to zero at high momentum. To perform extensive
studies in heavy ion collision studies, Gale et al. [44] have
proposed the following parametrization for the momentum
part of the single particle:

U (n, k) ∼ C
n

n0

1

1 + (k − 〈k′〉)2/�2
.

This has a proper falloff at high k and Galilean invariance
is ensured by measuring k with respect to the average of the
particles in the neighborhood, 〈k′〉. For static nuclear matter,
we have 〈k′〉 = 0.

The present model, which is a generalization of that
proposed by Gale et al. [44], has been successfully applied
in heavy ion collisions and astrophysical studies over the
years [2–4,27,28,33,45,46].

To clarify the relative contribution of the three terms of the
potential energy density mentioned above, we plot them as a
function of the baryon density in Fig. 2(a). In this figure, we
have that

VA = 1

3
An0

[
3

2
−

(
1

2
+ x0

)
I 2

]
u2,

VB =
2
3Bn0

[
3
2 − (

1
2 + x3

)
I 2

]
uσ+1

1 + 2
3B ′ [ 3

2 − (
1
2 + x3

)
I 2

]
uσ−1

, (9)

VC = u
∑
i=1,2

[
Ci

(
J i

n + J i
p

) + (Ci − 8Zi)

5
I

(
J i

n − J i
p

)]
.

As mentioned above, VA corresponds to an attractive in-
teraction, whereas VB corresponds to repulsive interaction
and dominates for high values of n(n > 0.6 fm−3). Both of
these terms are temperature independent. The third term, VC

(plotted for T = 0), contains the momentum-dependent part
of the interaction and corresponds to attractive interaction; its
main contribution is to compete with the repulsive interaction
of VB for high values of n and as a consequence avoid
acausal behavior of the EOS at high densities. VC consists
of two finite-range terms, one corresponding to a long-range
attraction and the other to a short-range repulsion.

Thermal effects on the momentum-dependent term VC are
displayed in Fig. 2(b). The contribution of VC is plotted for
various values of T . It is therefore concluded that thermal
effects are more pronounced for high values of T (T >

10 MeV), leading to a less attractive contribution. More
precisely, we find that for small values of n (i.e., n =
0.15 fm−3)VC increases (compared to the cold case T = 0)
by 3–20% for T = 10–30. For higher values of n, the increase
is even less.

An additional test for the present model is to compare the
single-particle potential Uτ (nτ , k, T ) [or Uτ (n, I, k, T )] orig-
inated from the present version of the momentum-dependent

045806-3



CH. C. MOUSTAKIDIS AND C. P. PANOS PHYSICAL REVIEW C 79, 045806 (2009)

interaction with other calculations. The single-particle poten-
tial Uτ (n, I, k, T ) (protons or neutrons), obtained from the
functional derivative of the interaction part of the energy
density [Eq. (6)] with respect to the distribution function fτ ,
has the general form [40]

Uτ (n, I, k, T ) = UA
τ (n, I ) + UB

τ (n, I ) + UMD
τ (n, I, k, T ).

(10)

It is of interest to see that the single-particle potentials are
separated into two parts. The first one, UA

τ (n, I ) + UB
τ (n, I ) is

a function only of the baryon density n and the isospin asym-
metry parameter I . The second one, UMD

τ (n, I, k, T ) has an
additional dependence on T and k. Actually, UMD

τ (n, I, k, T )
is mainly responsible for the trend of the effective mass and
also the effective mass splitting. Additionally, it is connected
with the effect of the temperature on the interacting part of the
energy density [40].

The single-particle potential in symmetric nuclear matter
has been calculated microscopically for several Hamiltonians
by Wiringa [47]. These Hamiltonians include nucleon-nucleon
potentials fit to scattering data and three-nucleon potentials
fit to binding energies of few-body nuclei and saturation
properties of nuclear matter. The potential was parametrized
using the ansatz

U (n, k) = α(n) + β(n)

1 + (
k

�(n)

)2 , (11)

where the density-dependent parameters α(n), β(n), and �(n),
for three types of Hamiltonian, are listed in Table I of Ref. [47].

Furthermore, the single-particle potential has been derived
by Li et al. [48]. The derivation is based upon the Bonn meson-
exchange model for the nucleon-nucleon interaction and the
Dirac-Brueckner approach for nuclear matter. The potential,
named DBHF, has been parametrized as

U (n, k) = αn + βnγ + δ ln2[ε(h̄ck)2 + 1]nσ . (12)

The parameters α, β, γ, δ, ε, and σ are listed in Table I of
Ref. [48].

A comparison with the results of UV14+TNI, UV14+
UVII, AV14+UVII, and DBHF interactions (see Fig. 3)
show that U (n, k) (for T = 0) obtained from the present
model is very reasonable for at least up to k = 3 fm−1. The
agreement is not as good for high values of k, especially

compared with the DBHF interaction; but as has been pointed
out by Li et al. [48], the parametrization in Eq. (12) is bad
for large k, since it continues to grow with increasing k,
whereas the exact potential becomes independent of k for
large momenta. In conclusion, the present results show that
the momentum-dependent interaction model, which has been
applied in the present work, provides a reliable representation
of U (n, k) for a wide range of density and momentum.

The energy density of asymmetric nuclear matter at density
n and temperature T , in a good approximation, is expressed as

ε(n, T , I ) = ε(n, T , I = 0) + εsym(n, T , I ), (13)

where

εsym(n, T , I ) = nI 2Etot
sym(n, T )

= nI 2
(
Ekin

sym(n, T ) + Eint
sym(n, T )

)
. (14)

In Eq. (14), the nuclear symmetry energy Etot
sym(n, T ) is

separated in two parts corresponding to the kinetic contribution
Ekin

sym(n, T ) and the interaction one Eint
sym(n, T ).

From Eqs. (13) and (14) and setting I = 1, we find that the
nuclear symmetry energy Etot

sym(n, T ) is given by

Etot
sym(n, T ) = 1

n
[ε(n, T , I = 1) − ε(n, T , I = 0)]. (15)

Thus, from Eq. (15) and by a suitable choice of the parameters
x0, x3, Z1, and Z2, we can obtain various forms for the density
dependence of the symmetry energy Etot

sym(n, T ).
It is well known that the need to explore different forms for

Etot
sym(n, T ) stems from the uncertain behavior at high density

[2]. The high-density behavior of symmetry energy is the least
known property of dense matter [49–51], with different nuclear
models giving contradictory predictions. Thus, in relativistic
mean field (RMF) models, the symmetry energy increases
strongly with the density of nuclear matter [52], whereas
in many realistic potential models of nuclear matter in the
variational approach [7,53], the symmetry energy saturates
and then bends over at higher densities.

Recently, the density dependence of the symmetry energy in
the EOS of isospin asymmetric nuclear matter has been studied
using isoscaling of the fragment yields and the antisym-
metrized molecular dynamic calculation [54]. It was observed
that the experimental data at low densities are consistent with
the form of symmetry energy, Esym(u) ≈ 31.6u0.69, in close
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FIG. 3. Comparison of the single-particle potential of symmetric nuclear matter from the present model (MDIM) with the microscopic
calculations of Wirigna [47] and Li et al. [48], for densities n = 0.1, n = 0.3, and n = 0.5 fm−3.
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agreement with those predicted by the results of variational
many-body calculations. In Ref. [54] it was suggested also
that the heavy ion studies favor a dependence of the form
Esym(u) ≈ 31.6uγ , where γ = 0.6–1.05. This constrains the
form of the density dependence of the symmetry energy at
higher densities, ruling out an extremely “stiff" and “soft"
dependence [54].

Additionally, Chen et al. [55] also showed, using the
isospin-dependent Boltzmann-Uehling-Uhlenback transport
model calculations, that a stiff density dependence of the
symmetry energy parametrized as Esym(u) ≈ 31.6u1.05 ex-
plains well the isospin diffusion data [56] from NSCL-MSU
(National Superconducting Cyclotron Laboratory at Michigan
State University).

In this paper, since we are interested mainly in the study
of thermal effects on the nuclear symmetry energy, we choose
a specific form for it, enabling us to reproduce accurately
the results of many other theoretical studies [57,58]. In
Ref. [57], the authors carried out a systematic analysis of the
nuclear symmetry energy in the formalism of the relativistic
Dirac-Brueckner-Hartree-Fock approach, using the Bonn one-
boson-exchange potential. In a very recent work [58], the
authors applied a similar method as in Ref. [57] for the
microscopic predictions of the equation of state in asymmetric
nuclear matter. In that case, Esym(u) was obtained employing
the simple parametrization Esym(u) = Cuγ with γ = 0.7–1.0
and C ≈ 32 MeV. The authors concluded that a value of γ

close to 0.8 gives a reasonable description of their predictions,
although the use of different functions in different density
regions may be best for an optimal fit [58]. The results of
Refs. [57,58] are well reproduced by parametrizing the nuclear
symmetry energy according to the formula

Etot
sym(n, T = 0) = 13u2/3︸ ︷︷ ︸

Kinetic

+ 17F (u)︸ ︷︷ ︸
Interaction

. (16)

For the function F (u), which parametrizes the interaction part
of the symmetry energy, we apply the form

F (u) = u. (17)

The parameters x0, x3, Z1, and Z2 are chosen so that Eq. (15),
for T = 0, reproduces the results of Eq. (16) for the function
F (u) = u.

In one of our previous papers [59], the potential part of
the symmetry energy are parametrized in the generalized form
F (u) = uc, and the obtained nuclear equations of state are
applied to the systematic study of the global properties of a
neutron star (masses, radii, and compositions). We obtained a
linear relation between the parameter c and the radius and
the maximum mass of the neutron star [59]. Additionally,
we found that a linear relation between the radius and the
derivative of the symmetry energy near the saturation density
n0 holds [59].

It is worthwhile to point out that the above parametrization
of the interacting part of the nuclear symmetry energy is used
extensively for the study of neutron star properties [2,60], as
well as for the study of the collisions of neutron-rich heavy ions
at intermediate energies [61,62]. For a very recent review of the
applications of the proposed momentum-dependent effective

interaction model and its specific parametrizations, see Ref. [4]
(and references therein).

B. Thermodynamic description of hot nuclear matter

To study the properties of nuclear matter at finite tempera-
ture, we need to introduce the Helmholtz free energy F . The
differential of the total free energy Ftot (the total free energy
of baryons contained in volume V ) and total internal energy
Etot (the total internal energy of baryons contained in volume
V ) are given by [63,64]

dFtot = −StotdT − PdV +
∑

i

µidNi, (18)

dEtot = T dStot − PdV +
∑

i

µidNi, (19)

where Stot is the total entropy of the baryons, while µi and Ni

are the chemical potential and the number of particles of each
species, respectively.

It is easy to prove that the free energy per particle F is
written as [63,64]

F (n, T , I ) = E(n, T , I ) − T S(n, I, T ). (20)

In Eq. (20), E is the internal energy per particle, E = ε/n, and
S is the entropy per particle, S = s/n. From Eq. (20) is also
concluded that for T = 0, the free energy F and the internal
energy E coincide.

The entropy density s has the same functional form as that
of a noninteracting gas system, given by the equation

sτ (n, I, T ) = −2
∫

d3k

(2π )3
[fτ ln fτ + (1 − fτ ) ln(1 − fτ )].

(21)

The total internal energy Etot is useful for studying isentropic
processes. In that description of a thermodynamic system, the
pressure and the chemical potential are defined as [63,64]

P = −
(

∂Etot

∂V

)
S,Ni

= n2

(
∂ε/n

∂n

)
S,Ni

,

(22)

µi =
(

∂Etot

∂Ni

)
S,V,Nj �=i

=
(

∂ε

∂ni

)
S,V,nj �=i

.

Now we are going to study the properties and the EOS of
nuclear matter by considering an isothermal process. In that,
the pressure and the chemical potential are connected with the
derivative of the total free energy Ftot. More specifically, they
are defined as

P = −
(

∂Ftot

∂V

)
T ,Ni

= n2

(
∂f/n

∂n

)
T ,Ni

,

(23)

µi =
(

∂Ftot

∂Ni

)
T ,V,Nj �=i

=
(

∂f

∂ni

)
T ,V,nj �=i

,

where f is the free energy density.
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The pressure P can be calculated also from the equations
[63,64]

V P = T Stot − Etot +
∑

i

µiNi, or

(24)
P = T s − ε +

∑
i

µini .

It is also possible to calculate the entropy per particle S(n, T )
by differentiating the free energy density f with respect to the
temperature

S(n, T ) = −
(

∂f/n

∂T

)
V,Ni

. (25)

The comparison of the two entropies, from Eqs. (21) and (25),
provides a test of the approximation used in the present work.

It is easy to show by applying Eq. (23) that (for a proof, see
Refs. [32,60])

µn = F + u

(
∂F

∂u

)
Yp,T

− Yp

(
∂F

∂Yp

)
n,T

,

µp = µn +
(

∂F

∂Yp

)
n,T

, (26)

µ̂ = µn − µp = −
(

∂F

∂Yp

)
n,T

.

We can define the symmetry free energy per particle Fsym(n, T )
by the following parabolic approximation (see also Refs. [32,
33]):

F (n, T , I ) = F (n, T , I = 0) + I 2Fsym(n, T )

= F (n, T , I = 0) + (1 − 2Yp)2Fsym(n, T ), (27)

where

Fsym(n, T ) = F (n, T , I = 1) − F (n, T , I = 0). (28)

It is worthwhile to notice that the above approximation is not
valid from the beginning, but one needs to check the validity
of the parabolic law in the present model before using it. As
we see later, that law is well satisfied as well as the parabolic
law holding for the energy.

Now, by applying Eq. (27) to Eq. (26), we obtain the key
relation

µ̂ = µn − µp = 4(1 − 2Yp)Fsym(n, T ). (29)

This equation is similar to that obtained for cold nuclear matter
by replacing Esym(n) with Fsym(n, T ).

C. β equilibrium, lepton contribution, and equation of state

Stable high-density nuclear matter must be in chemical
equilibrium for all types of reactions, including the weak
interactions, while β decay and electron capture take place
simultaneously

n −→ p + e− + ν̄e, p + e− −→ n + νe. (30)

Both types of reactions change the electron per nucleon
fraction Ye and thus affect the equation of state. Here, we
assume that neutrinos generated in those reactions have left

the system. The absence of neutrino trapping has a dramatic
effect on the EOS and mainly induces a significant change on
the values of the proton fraction Yp [9,10]. The absence of
neutrinos implies that

µ̂ = µn − µp = µe. (31)

When the energy of electrons is large enough (i.e., greater than
the muon mass), it is energetically favorable for the electrons
to convert to muons:

e− −→ µ− + ν̄µ + νe. (32)

Denoting the muon chemical potential by µµ, the chemical
equilibrium established by the above process and its inverse is
given by

µe = µµ.

Taking into account that the threshold for muons occurs for
µµ = mµc2 
 105.7 MeV, one may expect muons to appear
roughly at nuclear density n = 0.16 fm−3.

Thus, in total, we consider that nuclear matter contains
neutrons, protons, electrons, and muons. They are in a β

equilibrium, where the following relations hold:

µn = µp + µe, µe = µµ. (33)

Furthermore, they obey the charge neutrality condition, i.e.,

np = ne + nµ. (34)

The lepton (electrons and muons) density is given by the
expression

nl = 2

(2π )3

∫
dk

1 + exp

[√
h̄2k2c2+m2

l c
4−µl

T

] . (35)

One can solve self-consistently Eqs. (29) and (33)–(35) to
calculate the proton fraction Yp, the lepton fractions Ye and
Yµ, as well as the electron chemical potential µe as a function
of the baryon density n, for various values of temperature T .

The next step is to calculate the energy and pressure of
leptons given by the formulas

εl(nl, T ) = 2

(2π )3

∫ √
h̄2k2c2 + m2

l c
4dk

1 + exp

[√
h̄2k2c2+m2

l c
4−µl

T

] , (36)

Pl(nl, T ) = 1

3

2(h̄c)2

(2π )3

∫
1√

h̄2k2c2 + m2
l c

4

× k2dk

1 + exp

[√
h̄2k2c2+m2

l c
4−µl

T

] . (37)

The chemical potentials of electrons and muons are equal, and
according to Eqs. (29) and (33) they are

µe = µµ = µp − µn = 4(1 − 2Yp(n, T ))Fsym(n, T )

= 4I (n, T )Fsym(n, T ). (38)

The EOS of hot nuclear matter in β equilibrium (considering
that it consists of neutrons, protons, electrons, and muons) can
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FIG. 4. Difference F (n, T , Yp) − F (n, T , Yp = 1/2) as a function of (1 − 2Yp)2 at temperatures (a) T = 10 and (b) T = 30 MeV, for three
baryon densities.

be obtained by calculating the total energy density εtot as well
as the total pressure Ptot. The total energy density is given by

εtot(n, T , I ) = εb(n, T , I ) +
∑
l=e,µ

εl(n, T , I ), (39)

where εb(n, T , I ) and εl(n, T , I ) are the contributions of
baryons and leptons, respectively. The total pressure is

Ptot(n, T , I ) = Pb(n, T , I ) +
∑
l=e,µ

Pl(n, T , I ), (40)

where Pb(n, T , I ) is the contribution of the baryons [see
Eq. (24)], i.e.,

Pb(n, T , I ) = T
∑

τ=p,n

sτ (n, T , I )

+
∑

τ=n,p

nτµτ (n, T , I ) − εb(n, T , I ), (41)

while Pl(n, T , I ) is the contribution of the leptons [see
Eq. (37)]. From Eqs. (39) and (40) we can construct the
isothermal curves for energy and pressure and finally derive
the isothermal behavior of the EOS of hot nuclear matter under
β equilibrium.

III. RESULTS AND DISCUSSION

The schematic potential model, which has been applied
in the present work, has been designed to reproduce the
results of the more microscopic calculations of both nuclear
and neutron-rich matter up to high values of baryon density
(see Fig. 1). The behavior of the high-density EOS is of
great significance to the determination of the structure of hot
protoneutron stars and cold neutron stars. The model has the
additional advantage that with the appropriate parametrization,
it is able to reproduce different forms of the density dependence
of the nuclear symmetry energy.

In view of the above discussion, we calculate the EOS
of hot asymmetric nuclear matter by applying a momentum-
dependent effective interaction model describing the baryons

interaction. We consider that nuclear matter contains neutrons,
protons, electrons, and muons under β equilibrium and charge
neutrality. The key quantities in our calculations are the proton
fraction Yp and the asymmetry free energy defined in Eq. (28).

To check the validity of the parabolic approximation (27),
we plot in Fig. 4 the difference F (n, T , I = 1) − F (n, T , I =
0) as a function of (1 − 2Yp)2 at temperatures T = 10 and
30 MeV for three baryon densities, i.e., n = 0.2, 0.3, and
0.4 fm−3. It is seen that in a good approximation an almost
linear relation holds between F (n, T , I = 1) − F (n, T , I =
0) and (1 − 2Yp)2. A similar behavior of Fsym(n, T ) is found by
Xu et al. [33], applying an isospin and momentum-dependent
interaction model.

It is worth presenting the calculation recipe of our work.
The outline of our approach is the following. For a fixed baryon
density n, temperature T , and asymmetry parameter I , Eq. (4)
may be solved iteratively to calculate the quantity

ητ (nτ , T ) = µτ (nτ , T ) − Ũτ (nτ , T )

T
, (42)

where

Ũτ (nτ , T ) = Uτ (nτ , k, T ) − Ũτ (nτ , k). (43)

Knowledge of ητ (n, T ) allows the evaluation of Ũτ (nτ , T ),
which then may be employed to infer the chemical potential
from

µτ (nτ , T ) = T ητ (nτ , T ) + Ũ (nτ , T ), (44)

required as an input for the calculation of the Fermi-Dirac dis-
tribution function fτ (nτ , k, T ). The knowledge of fτ (nτ , k, T )
permits the calculation of the bulk quantities of asymmetric
nuclear matter.

Fsym(n, T ), for various values of temperature T , was
derived with a least-squares fit to the numerical values
according to Eq. (28) and has the form

Fsym(u; T = 0) = 13u2/3 + 17u,

Fsym(u; T = 5) = 3.653 + 28.018u − 1.512u2

+ 0.185u3 − 0.001u4,
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FIG. 5. Helmholtz free energy F (n, T , I ) of β-stable matter vs
the baryon density n, for various values of T (in MeV).

Fsym(u; T = 10) = 5.995 + 26.157u − 0.827u2

+ 0.068u3 − 0.002u4,

Fsym(u; T = 20) = 13.200 + 21.267u + 0.800u2

− 0.193u3 + 0.014u4,

Fsym(u; T = 30) = 21.087 + 17.626u + 1.645u2

− 0.289u3 + 0.018u4, (45)

where the case with T = 0 is included as well. In that case,
Fsym coincides with Esym.

In Fig. 5, we present the behavior of the free energy,
corresponding to hot β-stable nuclear matter, as a function
of the baryon density n, for various values of the temperature
T . It is obvious that the thermal effects are more pronounced
for low values of the density n.

In Fig. 6, we plot the calculated free energy for symmetric
nuclear matter and pure neutron matter of the proposed
momentum-dependent interaction model in comparison with
the values of the free energy calculated by Friedman and
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FIG. 7. Internal energy E(n, T ) of β-stable matter as a function
of the baryon density n for various values of T .

Pandharipande (FP model) [7]. In the FP model, the EOS
of hot and cold nuclear and neutron matter has been calculated
in the framework of a variational calculation, where a realistic
nuclear interaction containing two- and three-nucleon body
nucleon-nucleon interactions has been used. In the case of
symmetric nuclear matter, the results of the two models are
very similar up to values n = 0.4–0.5 fm−3 depending on the
values of T . This agreement is expected in the sense that some
of the parameters of the model applied in the present work
are determined from constraints provided by the empirical
properties of symmetric nuclear matter at the equilibrium
density n0 = 0.16 fm−3.

However, there is an obvious disagreement in the case
of pure nuclear matter: in the two models, the free energy
exhibits a different trend, especially for higher values of n.
This disagreement will be explained below.

In Fig. 7, we display the internal energy per particle
E(n, T ) = ε(n, T )/n given by Eq. (1) for various values
of temperature. Thermal effects, as expected, are more pro-
nounced for low values of the baryon density n and less
important for high values of n.
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FIG. 6. Free energy of (a) symmetric nuclear matter (for T = 5 and T = 20 MeV) and (b) pure neutron matter (for T = 3 and T =
20 MeV) of the proposed model (MDIM) in comparison with the free energy calculated by the Friedman and Pandharipande model (FP) [7].
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matter (SNM) and pure neutron matter (PNM) calculated with the
MDIM in comparison with the FP model.

Figure 8 displays the internal energy of symmetric nuclear
matter and pure neutron matter, for T = 0, calculated by the
MDIM and FP models. In accordance with the case of the
free energy, there is a very good agreement in symmetric
nuclear matter, but an obvious disagreement is exhibited in
pure neutron matter. The explanation of the agreement in the
first case is the same as in the case of the free energy. The
disagreement is due to the completely different behavior of
the two models of the nuclear symmetry energy, presented in
Fig. 9. In our model, the parameters x0, x3, Z1, and Z2 chosen
so that Eq. (15), for T = 0, reproduces the results of Eq. (16)
for the function F (u) = u. Consequently, Esym(n) shows an
increasing trend as shown in Fig. 9. In contrast, in the FP
model, Esym(n) is a slightly increasing function of n for low n

and then a decreasing function of n for n > 0.5 fm−3.
In addition, we plot the nuclear symmetry energy extracted

from experimental results and presented in Ref. [54], where
Esym(u) is parametrized according to the relation Esym(u) ≈
31.6u0.69 as well as experimental results extracted from
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FIG. 9. Nuclear symmetry energy calculated with the MDIM in
comparison with the FP model as well as the results of Refs. [54,58]
and [55].
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FIG. 10. Thermal energy Ethermal(n, T ) = E(n, T ) − E(n, T =
0) of β-stable matter vs the baryon density n, for various values
of T .

Ref. [55], where Esym(u) is given by Esym(u) ≈ 31.6u1.05. The
important point to be noted is that both cases clearly favor
a stiff density dependence of the symmetry energy at higher
densities, ruling out the very stiff and very soft predictions.
These results can thus be employed to constrain the form of
the density dependence of the symmetry energy at supranormal
densities relevant for neutron star studies [54]. In the same
figure, the theoretical predictions of Ref. [58] are presented,
where Esym(u) is parametrized by Esym(u) ≈ 32u0.8.

The results of Ref. [54] are in a good agrement with
the present model up to n = 0.3 fm−3, while the theoretical
predictions of Ref. [58] are very close to the present model up
to very high values of the baryon density n.

However, our motivation here is not to perform a systematic
comparison of various models but to just present the simi-
larities and deviations existing among them. The deviations,
concerning the symmetry energy behavior of the two models
(MDIM and FP) are well reflected in the behavior of the free
energy and internal energy of pure neutron matter as shown in
Figs. 6 and 8.

In Fig. 10, we plot the thermal energy per particle

Ethermal(n, T ) = E(n, T ) − E(n, T = 0)

of β-stable matter as a function of the baryon density n for
various values of temperature T . The most striking feature
of Ethermal(n, T ) is that for small values of T , the thermal
contribution to the internal energy is almost independent of the
density n. For high values of T the situation is different, and
Ethermal(n, T ), for fixed values of T , is a decreasing function
of n.

Ethermal(n, T ) can be decomposed to separate contributions
of the kinetic and potential energies as follows:

Ethermal(n, T ) = Ekin
thermal(n, T ) + E

pot
thermal(n, T ).

We find that for small values of the baryon density (i.e.,
n = 0.2 fm−3) the contribution to Ethermal(n, T ) of the potential
energy E

pot
thermal(n, T ) is 20–10% for T = 5–30 MeV. For

medium values of n (0.4 fm−3), it is 43–20%, and for higher
values (0.6 fm−3), it is 70–30% for T = 5–30 MeV. Hence, it
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FIG. 11. Pressure P of asymmetric nuclear matter for Yp = 0.1 and 0.3 at (a) T = 10 and (b) 30 MeV. The full lines give the results
calculated from Eq. (24), while the squares represent results obtained by differentiating F (n, T ) (Eq. (23)).

is concluded that the potential part of the energy (as a result
of the momentum dependence of the interaction) contributes
significantly to the thermal energy, mainly for small values of
T (for fixed values of n) and for large values of n (for fixed
values of T ).

At this point, it is worthwhile to compare the results
for the pressure obtained by applying Eqs. (24) and (23).
Thus, in Fig. 11 we plot P of asymmetric nuclear matter for
Yp = 0.1 and 0.3 at T = 10 and 30 MeV. The full lines give
the results calculated from Eq. (24), while the squares give
results obtained by differentiating F (n, T ) [Eq. (23)]. The two
calculations for the pressure are in excellent agreement. This
agreement provides a test of the calculations performed in the
present model.

It is of interest also to study the effect of temperature on the
baryon pressure defined by Eq. (24). A related quantity is the
thermal pressure Pthermal(n, T ) defined as

Pthermal(n, T ) = P (n, T ) − P (n, T = 0).

Pthermal(n, T ) as a function of n, for various values of T is seen
in Fig. 12.Pthermal(n, T ), in all cases, is an increasing function
of the baryon density.

The proton fraction affects the reaction rate of neutrino
processes inside that star. If a neutron star has a large proton
fraction, the cooling rate may drastically change through the
high neutrino emissivity due to the direct URCA process. This
process can occur if the proton fraction in the matter of a
cold neutron star exceeds the critical value of 0.11–0.15 and
would lead to the rapid cooling of the neutron star. Thus, it
is important to calculate the proton fraction as a function of
the baryon density and investigate the temperature effects on
that.

Figure 13 displays the fractions of protons, electrons, and
muons as functions of the density, for various values of T . The
proton fraction is an increasing function of T , and this effect
is more pronounced for T > 10 MeV. The proton fraction
Yp was derived also with a least-squares fit to the numerical
results obtained from our calculations, leading to the following

relations (for n > 0.15 fm−3):

Yp(n; T = 0) = −0.050 + 0.633n − 0.521n2 + 0.184n3,

Yp(n; T = 5) = −0.046 + 0.625n − 0.514n2 + 0.179n3,

Yp(n; T = 10) = −0.032 + 0.570n − 0.436n2 + 0.139n3,

Yp(n; T = 20) = 0.021 + 0.378n − 0.163n2 + 0.004n3,

Yp(n; T = 30) = 0.109 − 0.062n + 0.908n2

− 1.270n3 + 0.580n4. (46)

In Fig. 14, we plot the Fermi distribution function fp,n(n, T )
for both neutrons and protons for various values of T . We
observe that the diffuseness of fp(n, T ) is larger than that of
fn(n, T ). We give an explanation (see also Ref. [9]): the ratio
of T to the Fermi kinetic energy εFi is a measure of the thermal
effect. Thus by comparing the two ratios, we have (see also
the Appendix)
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FIG. 12. Thermal pressure Pthermal(n, T ) = P (n, T ) − P (n, T =
0) of β-stable matter vs the baryon density n, for various values of T .
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FIG. 13. Fractions of protons Yp electrons Ye and muons Yµ of
β-stable matter as functions of the baryon density n, for various values
of T .

But, because Yn > Yp, we conclude that we expect the
diffuseness to be larger for the proton distribution than for
the neutron one, depending of course on the specific value of
the ratio Yp/Yn. As we will see later, this fact influences the

values of the contributions of protons and neutrons to the
total entropy per particle. The entropy, according to relation
(21), is an increasing function of the diffuseness. Thus, the
contribution of each species to the total value of the entropy
depends strongly on the diffuseness of the corresponding
Fermi distribution function.

We can provide a second test, concerning the accuracy
of the present calculations, by comparing the entropy per
baryon calculated by applying Eqs. (21) and (25). Thus,
in Fig. 15, we plot S of asymmetric nuclear matter with
Yp = 0.2 at T = 10, 20, and 30 MeV. The full lines give
the entropy calculated from Eq. (21), while the squares give
results obtained by differentiating F (n, T ) with respect to T

[Eq. (25)]. It is obvious that there is again very good agreement
of the results, especially for low values of T and high values
of n.

In Fig. 16, we plot the contribution of the proton Sp,
the neutron Sn, and the total entropy per baryon S. It is
obvious that there is a strong effect of T on the values of the
entropies mainly for low density values. The main part of the
contribution comes from neutrons, whereas the contribution
of protons is three times less. It is worthwhile to notice that
in spite of Yp ∼ (1/20 − 3/10)Yn, the approximate relation
Sp ∼ (1/4 − 3/7)Sn holds. This feature is understood by the
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FIG. 14. Fermi-Dirac distribution function fτ (n, T ) for protons and neutrons (τ = p, n respectively), for n = 0.2 fm−3, n = 0.4 fm−3 and
n = 0.6 fm−3 and various values of T .
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FIG. 15. Entropy per particle S of asymmetric nuclear matter
with Yp = 0.2 at T = 10, 20, 30 MeV. The full lines give the entropy
calculated from Eq. (21), while the squares give results obtained by
differentiating F (n, T ) (Eq. (25)).

previous discussion that fp(n, T ) is diffused more broadly than
fn(n, T ), so the larger the diffuseness, the larger is the entropy
contribution (see also Ref. [9]).

In Fig. 17, we plot the contributions of the electronic Se,
muonic Sµ, and total (leptonic) Sl to the entropy per baryon.
The contribution to the entropy of Se depends slightly on the
density for fixed values of T . Our present results are very
close to those found by Onsi et al. [19], where they employed
the analytical approximate formula for the electron entropy
density se

se = 1

3

µ2
e

(h̄c)3
T , µe = h̄c(3π2Yen)1/3. (47)

According to this formula, the contribution of electrons to the
entropy per baryon has the form

Se = se/n ∼
(

Y 2
e

n

)1/3

T . (48)
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FIG. 16. Contributions to the total entropy per particle of protons
(Sp) (up triangles) neutrons (Sn) (upside down triangles) and the total
entropy (Sb) (squares).
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FIG. 17. Contributions to the total entropy per particle of elec-
trons (Se) (up triangles) and muons (Sµ) (upside down triangles), and
the total Sl (squares).

The quantity ( Y 2
e

n
)1/3 is a function slightly dependent on the

density n, so that for a fixed value of T the contribution
Se is almost constant. The muonic contribution to the en-
tropy, for fixed T , increases slightly as a function of the
density.

In Fig. 18, we present the EOS of the β-stable hot nuclear
matter by taking into account and analyzing the contribution
to the total pressure of each component. The main contribution
to the total pressure originates from the baryons, whereas the
contribution of the leptons is about a few percent compared
to Pb. It is worthwhile to notice that thermal effects are not
important for the calculation of Pe, but only for Pµ, especially
for small values of n (n < 0.4 fm−3). We found that thermal
effects produce a slightly stiffer EOS for cold nuclear matter.
The above EOS can be applied to the evaluation of the bulk
properties of hot neutron stars (mass and radius).

The study of hot nuclear matter in the absence of neutrino
trapping is the first step in studying the properties of hot
neutron stars and supernova matter. Next, one can study
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FIG. 18. Pressures of baryons Pb leptons Pl (electrons+muons)
and the total pressure P vs the baryon density, n for various values
of T .
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the more realistic case of neutrino-trapped matter in β

equilibrium. In this case, the β-equilibrium conditions in
matter are altered from the case in which neutrinos have left
the system, and thus the composition of matter is affected.
The proton fraction increases dramatically and influences
significantly the properties of nuclear matter. Such a work is in
progress.

IV. SUMMARY

The evaluation of the EOS of hot nuclear matter is an
important problem in nuclear physics and astrophysics. EOS
is the basic ingredient in the study of supernova explosions
as well as in determining the properties of hot neutron stars.
The motivation of the present work is to apply a momentum-
dependent interaction model for the study of the hot nuclear
matter EOS under β equilibrium in order to be able to study
simultaneously thermal effects, not only on the kinetic part of
the symmetry energy and symmetry free energy, but also on
the interaction part of the above quantities. We calculate the
proton fraction, as well as the lepton fractions, by applying
the constraints for chemical equilibrium and charge neutrality.
The free energy, the internal energy, and the pressure are
calculated as functions of baryon density and for various
values of temperature. We also concentrate on the evaluation
of thermal effects on the internal energy and baryon pressure.
Special attention is dedicated to the study of the contribution of
the components of β-stable nuclear matter on the entropy per
particle, a quantity of great interest in the study of structure and
collapse of supernova. We present and analyze the contribution
of each component. Finally, we present the EOS of β-stable
hot nuclear matter, by taking into account and analyzing
the contributions to the total pressure of each component.
This EOS can be applied to the evaluation of the gross
properties of hot neutron stars, i.e., mass and radius (work in
progress).
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APPENDIX

The energy density of baryons [Eq. (1)], at T = 0, is given
by

ε(n, I, T = 0) = 3

10
E0

F n0u
5/3[(1 + I )5/3 + (1 − I )5/3]

+ 1

3
An0

[
3

2
−

(
1

2
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I 2
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⎛
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k0
F

⎞
⎠ .

(A1)

The pressure of the baryons, at T = 0, defined as

P = n2 d(ε/n)

dn
,

is given by

P (n, I, T = 0) = 1

5
n0E

0
F u5/3[(1 + I )5/3 + (1 − I )5/3] + 1

3
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In Eq. (A2), E0
F is the Fermi energy of symmetric nuclear

matter corresponding to equilibrium density n0 and is given
by

E0
F =

(
h̄k0

F

)2

2m
, k0

F =
(

3π2 n0

2

)1/3
. (A3)

The Fermi momenta of protons and neutrons are

k
p

F = (
3π2xn

)1/3 =
(

3π2 1 − I

2
n

)1/3

,

kn
F = (

3π2(1 − x)n
)1/3 =

(
3π2 1 + I

2
n

)1/3

.

The chemical potentials of protons and neutrons, at T = 0, are
given by

µn = E + u

(
∂E

∂u

)
Yp

− Yp

(
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∂Yp

)
n

,
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, (A4)

µ̂ = µn − µp = −
(

∂E

∂Yp

)
n

,
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[14] W. A. Küpper, G. Wegmann, and E. R. Hilf, Ann. Phys. (NY)
88, 454 (1974).

[15] J. M. Lattimer and D. G. Ravenhall, Astrophys. J. 223, 314
(1978).

[16] M. F. El Eid and W. Hillebrandt, Astron. Astrophys. Suppl. Ser.
42, 215 (1980).

[17] P. Lamb, Mon. Not. R. Astron. Soc. 188, 565 (1979).
[18] H. M. Antia, B. Banerjee, and S. M. Chitre, Astrophys. Space

Sci. 69, 471 (1980).
[19] M. Onsi, H. Przysiezniak, and J. M. Pearson, Phys. Rev. C 50,

460 (1994).
[20] K. Sumiyoshi and H. Toki, Astrophys. J. 422, 700 (1994).
[21] J. M. Lattimer, C. J. Pethick, D. G. Ravenhall, and D. Q. Lamb,

Nucl. Phys. A432, 646 (1985).
[22] H. Kanzawa, K. Oyamatsu, K. Sumiyoshi, and M. Takano, Nucl.

Phys. A791, 232 (2007).
[23] M. Modarres, J. Phys. G: Nucl. Part. Phys. 23, 923 (1997); 21,

351 (1995); 19, 1349 (1993).
[24] R. Manka, I. Bednarek, and G. Przybyla, Phys. Rev. C 62,

015802 (2000).
[25] W. Zuo, Z. H. Li, A. Li, and G. C. Lu, Phys. Rev. C 69, 064001

(2004).
[26] L. W. Chen, F. S. Zhang, Z. H. Lu, W. F. Li, Z. Y. Zhu,

and H. R. Ma, J. Phys. G: Nucl. Part. Phys. 27, 1799
(2001).

[27] V. K. Mishra, G. Fai, L. P. Csernai, and E. Osnes, Phys. Rev. C
47, 1519 (1993).

[28] L. P. Csernai, G. Fai, C. Gale, and E. Osnes, Phys. Rev. C 46,
736 (1992).

[29] S. J. Lee and A. Z. Mekjian, Phys. Rev. C 63, 044605 (2001);
A. Z. Mekjian, S. J. Lee, and L. Zamick, ibid. 72, 044305 (2005);
A. Z. Mekjian, S. J. Lee, and L. Zamick, Phys. Lett. B621, 239
(2005); S. J. Lee and A. Z. Mekjian, Phys. Rev. C 77, 054612
(2008).

[30] H. Müller and B. D. Serot, Phys. Rev. C 52, 2072 (1995).
[31] M. Baldo and L. S. Ferreira, Phys. Rev. C 59, 682 (1999).
[32] G. F. Burgio, M. Baldo, O. E. Nicotra, and H. J. Schulze,

Astrophys. Space Sci. 308, 387 (2007); O. E. Nicotra, M. Baldo,
G. F. Burgio, and H. J. Schulze, Astron. Astrophys. 451, 213
(2006).

[33] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev. C 75,
014607 (2007).

[34] P. Wang, Phys. Rev. C 61, 054904 (2000).
[35] P. K. Jena and L. P. Singh, Phys. Rev. C 70, 045803

(2004).
[36] J. N. De, N. Rudra, S. Pal, and S. K. Samaddar, Phys. Rev. C 53,

780 (1996); T. Sil, B. K. Agrawal, J. N. De, and S. K. Samaddar,
ibid. 63, 054604 (2001); S. K. Samaddar, J. N. De, X. Viñas,
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