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In the present work we include the isovector-scalar δ meson in the quark-meson coupling (QMC) model and
study the properties of asymmetric nuclear within QMC without and with the δ meson. Recent constraints set
by isospin diffusion on the slope parameter of the nuclear symmetry energy at saturation density are used to
adjust the model parameters. The thermodynamical spinodal surfaces are obtained and the instability region at
subsaturation densities within QMC and QMCδ models are compared with mean-field relativistic models. The
distillation effect in the QMC model is discussed.
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I. INTRODUCTION

The instabilities presented by a system are directly related
with the possible phase transitions it can undertake. At subsat-
uration densities a liquid-gas phase transition in nuclear matter
is predicted and it is normally tested in nuclear reactions. The
formation of highly excited composed nuclei in equilibrium
with a gas of evaporated particles can be interpreted in the
framework of hydrodynamics as two coexisting phases of
nuclear matter, a liquid and a gas phase. During these reactions,
phase transitions may occur depending on the temperature and
densities involved. The liquid-gas phase transition also plays
an important role in the description of the crust of compact star
matter at densities between 0.03 fm−3 and saturation density
(∼0.15 fm−3). It essentially consists of neutron-rich nuclei
immersed in a gas of neutrons. It has been shown that this
phase transition leads to an isospin distillation phenomenon:
the isospin content of each phase is different, most of the gas
being composed of neutrons and the liquid being closer to
symmetric matter [1].

In the present article, we employ the quark-meson cou-
pling (QMC) model [2,3] to investigate the thermodynamical
instabilities of asymmetric nuclear matter (ANM). In the
QMC model, nuclear matter is described as a system of
nonoverlapping MIT bags that interact through the exchange
of scalar and vector mean fields. An earlier study of ANM
within this model has been focused on the effect of isospin
asymmetry and temperature on the equation of state and on
the coexistence surface [4]. We here consider an extension of
the model that includes the scalar isovector virtual δ[a0(980)]
field [5]. Its presence introduces in the isovector channel the
structure of relativistic interactions, where a balance between a
scalar (attractive) and a vector (repulsive) potential exists. The
δ and ρ mesons give rise to the corresponding attractive and
repulsive potentials in the isovector channel. The introduction
of the δ meson will affect the behavior of the system at both low
and high densities. In the last case due to Lorentz contraction,
its contribution is reduced, leading to a harder equation of state

(EOS) at densities larger than ∼1.5ρ0 [6]. At low densities a
reduction of the symmetry energy will occur that will allow
for more asymmetric matter.

In Refs. [7,8] the instabilities in ANM have been investi-
gated within relativistic mean-field hadron models, both with
constant and density-dependent couplings at zero and finite
temperatures. It was shown that the main differences occur at
large isospin asymmetry and at finite temperature. In particular
it has been shown that the predicted density at the inner
edge of the crust of a compact star, from the crossing of the
β-equilibrium EOS, is model dependent [9].

In the present work we investigate thermodynamical insta-
bilities within the QMC model with and without the isovector-
scalar δ meson. Although in this model the isoscalar vector
channel described by the ρ meson is included in a similar way
to the nonlinear Walecka model (NLWM), the nonlinearities
in the σ and δ fields arise from the minimization of the bag
energy. In particular, the NLWM used in Ref. [5] does not
include nonlinearities in the δ meson. We may therefore expect
a different behavior of asymmetric matter.

The article is organized as follows: in Sec. II an extension
of the QMC model to include the δ meson is discussed, in
Sec. III we make a short review of the calculation of the
spinodal surface, in Sec. IV results are presented and discussed,
and some conclusions are drawn in the last section.

II. THE QUARK-MESON COUPLING MODEL

In what follows we present a review of the QMC model and
its generalization to include the isovector-scalar δ meson.

In the QMC model, the nucleon in nuclear medium is
assumed to be a static spherical MIT bag in which quarks
interact with the scalar (σ, δ) and vector (ω, ρ) fields, and those
are treated as classical fields in the mean-field approximation
(MFA) [2,3]. The quark field, ψqi

, inside the bag then satisfies
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the equation of motion:[
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q is the current quark mass and g

q
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q
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denote the quark-meson coupling constants. The normalized
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Ri is the bag radius of nucleon i and χq is the quark spinor.
The bag eigenvalue for nucleon i, xqi

, is determined by the
boundary condition at the bag surface

j0i
(xqi

) = βqi
j1i

(xqi
). (5)

The energy of a static bag describing nucleon i consisting of
three quarks in ground state is expressed as

E
bag
i =

∑
q

nq


qi

Ri

− Zi

Ri

+ 4

3
πR3

i BN, (6)

where Zi is a parameter that accounts for zero-point motion
of nucleon i and BN is the bag constant. The set of parameters
used in the present work is given in Ref. [10]. The effective
mass of a nucleon bag at rest is taken to be M∗

i = E
bag
i . The

equilibrium condition for the bag is obtained by minimizing
the effective mass, M∗

i , with respect to the bag radius

dM∗
i

dR∗
i

= 0, i = p, n. (7)

The total energy density of the nuclear matter reads

ε = 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ
2
03 + 1

2
m2

δδ
2
3

+
∑
N

1

π2

∫ kN

0
k2dk

[
k2 + M∗2

N (σ, δ)
]1/2

(8)

and the free energy density is given by

F = ε − µpρp − µnρn,

where the chemical potentials are given by

µp =
√

k2
p + M∗

p
2 + gωρ + gρ

2
ρ03,

µn =
√

k2
p + M∗

n
2 + gωρ − gρ

2
ρ03.

The vector mean field ω0 and ρ03 are determined through

ω0 = gω(ρp + ρn)

m2
ω

, ρ03 = gρ(ρp − ρn)

m2
ρ

, (9)

where gω = 3g
q
ω and gρ = g

q
ρ . Finally, the mean fields σ0 and

δ3 are fixed by

∂ε

∂σ
= 0,

∂ε

∂δ3
= 0. (10)

To set the model parameters, we start by fixing the free
space bag properties. They are obtained by fitting the nucleon
mass and enforcing the stability condition for the bag in free
space. We consider two sets of free space parameters, taking
an equal proton and neutron mass value in a first moment and
then proceeding by considering different proton and neutron
masses after.

In the first case, we consider the bare nucleon mass
M = 939 MeV and the bag radius, Rp = Rn = 0.6 fm. The
unknowns Zp = Zn = 3.986991 and B

1/4
N = 211.30305 MeV

are then obtained by setting the nucleon bag energies to that
(single) bare nucleon mass value.

In the next step, we take the physical nucleon mass
values as Mp = 938.272 MeV and Mn = 939.56533 MeV and
the bag radius for protons as Rp = 0.6 fm. The unknowns
Zp = 3.98865, Zn = 3.98471, B

1/4
N = 211.26209 MeV, and

the neutron radius Rn = 0.6002 are then obtained. Note that
for fixed proton bag radius Rp = 0.6 we observe a decrease
on Zn and on the bag parameter B

1/4
N for the nucleons. Next,

we fit the quark-meson coupling constants g
q
σ , g

q

δ , gω = 3g
q
ω

and gρ = g
q
ρ for the nucleons to obtain the correct saturation

properties of nuclear matter, EN ≡ ε/ρ − M = −15.7 MeV
at ρ = ρ0 = 0.15 fm−3, asym = 33.7 MeV. For the couplings,
we have g

q
σ = 5.981, gω = 8.954. In our first case (when

no effective mass difference between p, n is considered),
gρ = 8.615.

The properties of asymmetric nuclear matter have recently
been related to both terrestrial data and star properties from
Vela pulsar glitches, which sets the symmetry energy slope
value to L = 88 ± 25 MeV [11,12]. We then consider the δ

meson and determine the values of the couplings so as to
have L = 102.077 MeV, which sets gρN = 12.599 and g

q

δ =
12.6. In this case, the (p, n) mass splitting manifests in the
different values for the effective masses: M∗

p = 727.718 MeV
and M∗

n = 729.007 MeV, at saturation.
We take the standard values for the meson masses, namely

mσ = 550 MeV, mω = 783 MeV, and mρ = 770 MeV.

III. STABILITY CONDITIONS

The stability conditions for asymmetric nuclear matter,
keeping constant volume and temperature are obtained from
the free energy density F , imposing that this function is a
convex function of the densities ρp and ρn, i.e., the symmetric
matrix with elements

Fij =
(

∂2F
∂ρi∂ρj

)
T

, (11)
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is positive [13–15]. This is equivalent to imposing

∂µp

∂ρp

> 0,
∂(µp,µn)

∂(ρp, ρn)
> 0, (12)

where we have used µi = ∂F
∂ρi

∣∣∣
T ,ρj �=i

.

The two eigenvalues of the stability matrix are given by [15]

λ± = 1

2
[Tr(F) ±

√
Tr(F)2 − 4Det(F)], (13)

and the eigenvectors δρ± by

δρ±
i

δρ±
j

= λ± − Fjj

Fji

, i, j = p, n.

The largest eigenvalue is always positive, whereas the other
can take on negative values. We are interested in the latter,
as it defines the spinodal surface, which is determined by the
values of T , ρ, and yp for which the smallest eigenvalue of
Fij becomes negative. The associated eigenvector defines the
instability direction of the system, in isospin space.

It has recently been argued [14] that in ANM the spinodal
instabilities cannot be separately classified as mechanical or
chemical instabilities. In fact, the two conditions that give
rise to the instability of the system are coupled so that the
instability appears as an admixture of nucleon density and
concentration fluctuations. In the following we study the
direction of instability and the spinodal for the different models
considered.

IV. RESULTS AND DISCUSSIONS

In the present section we compare the model properties of
QMC and QMCδ, respectively, with and without the δ meson,
the nonlinear Walecka model (NLWM) NL3 [16], with and
without the δ meson, and the density-dependent relativistic
hadron model TW [17]. We will also refer to the nuclear matter
properties obtained within a microscopic Brueckner-Hartree-
Fock (BHF) approximation using the realistic Argonne V18
nucleon-nucleon potential plus a three-body force of Urbana
type [18].
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FIG. 1. (Color online) Effective mass for QMC (brown, dot-
dashed), NL3 (green, dashed), and TW (red) in symmetric matter.

A. Model properties

We will first compare the equilibrium properties of nuclear
matter described by the different models considered. The
parameters of these models have been fitted to similar binding
energy and saturation density values as seen in Table I. At
saturation, the effective mass in QMC is much larger than
the corresponding mass in the other models, which is a
characteristic of the model [3]. In Fig. 1, it is seen that
the QMC mass decreases much slower with density. Even
the hadronic models we study show quite different behavior
among themselves. NL3 has an almost linear decrease on the
mass whereas TW has much faster drop at low densities, and
shows a less dramatic fall as density increases, crossing the
curve for NL3 at ρ ∼ 0.18 fm−3. Incompressibility is one of
the bulk properties that distinguishes the different models, but
it is on the isovector channel that lies the largest distinctions
among the different models we use. Although having identical
(or barely different) values for their bulk isoscalar properties,
similar models differ considerably on the isovector parameters
we discuss next.

We now compare the symmetry energy and its slope
and compressibility for all models in this work (Fig. 2 and
Table I). The symmetry energy in our relativistic mean-field

TABLE I. Nuclear matter properties of the models used in the present work. All quantities are taken at saturation,
except the density ρs for which the pressure has a minimum and the incompressibility is zero. In the relativistic models
the effective mass should be identified with the Dirac mass while for BHF it is the Landau mass.

Model B/A ρ0 K M∗/M Esym L Ksym Kasy ρs

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (fm−3)

NL3 [16] 16.3 0.148 269 0.60 37.4 118.3 101 −608.8 0.096
NL3δ 16.3 0.148 270 0.60 37.4 153.1 427.1 −491.5 0.096
TW [17] 16.3 0.153 240 0.56 32.0 55.3 −125 −456.8 0.096
QMC 15.7 0.150 291 0.77 33.7 93.5 −10 −570.8 0.098
QMCδ 15.7 0.150 291 0.77 34.2 102.1 34.8 −577.6 0.098
BHF [18] 14.7 0.182 176.5 0.79 33.2 63.4 6.04 −374.3 0.119
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FIG. 2. (Color online) Symmetry energy (a) and its slope param-
eter L = 3ρ0E ′

sym (b) and Ksym (c) in the QMCδ (blue, dotted), QMC
(brown, dot-dot-dashed), NL3 (dark green, dashed), NL3δ (light
green, dot-dashed), and TW (red) models for symmetric matter.

models is given by

Esym = kF
2

6εF
2

+ ρ

2

[
g2

ρ

4m2
ρ

− g2
δ

m2
δ

(
M∗

0

εF

)2
]

, (14)

where εF =
√
P 2

F + M∗2
0 is the Fermi energy of the nucleons

and M∗
0 is their effective mass in symmetric matter. The NL3

models have the largest value at saturation of the models
considered, 37.4 MeV.

The symmetry energy slope L(ρ) is defined by L =
3ρ0∂Esym/∂ρ. The curvature parameter of the symmetry
energy Ksym = 9ρ2

0∂2Esym/∂ρ2 [Fig. 2(c)] is also of interest
because it distinguishes between different parametrizations.
In particular, the quantity Kasy = Ksym − 6L can be directly
extracted from measurements of the isotopic dependence of the
giant monopole resonance (GMR) [19]. Recent measurements
of the GMR on even-A Sn isotopes give a quite stringent
value of Kasy = −550 ± 100 MeV. According to this value, the
hadronic and QMC models we use here (see Table I) satisfy the
above constraint, whereas the BHF results lie slightly below.

The symmetry energy within QMC and QMCδ shows
an extremely linear behavior with density [Fig. 2(a)], in
comparison with all hadron models shown. This is quite
visible from the symmetry energy curves but undoubtedly clear
from the slope parameter L [Fig. 2(b)]. At larger densities
the symmetry energy in QMC is essentially defined by the
second term of Eq. (14), proportional to the density, due to
the small variation of the nucleon effective mass with density.
Although still quite hard above saturation density, the QMC
symmetry energy is softer than NL3 but harder than TW. At
subsaturation densities and considering only models without
the δ meson, the QMC symmetry energy takes the smallest
values. The introduction of the δ has the expected effect: at
subsaturation densities the symmetry energy is softer but above
saturation values it becomes harder due to the saturation of
the δ-meson field [5]. In Fig. 2 we show both the NL3δ and
QMCδ symmetry energies. The effect of the δ meson on the
QMC at subsaturation densities is quite small, much smaller
than the effect seen in NL3. It is above the saturation density
that the δ meson has a larger effect in QMC. From the slope
of the symmetry energy it is seen that although for QMC the
slope decreases slightly with density, for the QMCδ model
it increases slightly, with a value close to 100 MeV. In the
bottom figure we also plot Ksym. The δ has a very strong
effect in the NL3 model. The QMC model is less affected but
in both cases the presence of the δ increases the symmetry
incompressibility Ksym, becoming slightly positive for QMCδ

while it was slightly negative for QMC. The model TW is
presenting the smallest values.

Figure 3 shows the proton and neutron radii for proton
fractions yp = 0.5 and 0.0. For symmetric matter, the neutron
bag is larger in this model due to the mass proton-neutron
difference. This result has also been reported in Ref. [3].
Decreasing the proton fraction increases the proton radius and
the neutron and proton radii cross at a certain value of the
density, isospin dependent: density: ∼0.175 fm−3 for yp =
0.3,∼ 0.11 fm−3 for yp = 0.1, and ∼0.1 fm−3 for neutron
matter. The bag radius is sensitive to isospin content by a small
amount. It is, however, quite clear from the neutron matter
results (yp = 0.0) that the isospin contents of the nucleons
leads to higher radii differences at higher densities. Moreover,
proton bags become larger than neutrons in medium, as matter
goes denser. The neutron radius does not change much with
isospin and for symmetric matter and neutron matter QMC
and QMCδ neutron radii almost overlap.
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have taken R = 0.6 fm−3.
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FIG. 4. (Color online) Effective mass differences Mp − Mn, for
QMCδ (blue, dotted) and NL3δ (light green, dot-dashed), for different
proton fractions: yp = 0.1 (a) and yp = 0.3 (b). Note that the values
for NL3δ have been scaled by a 0.1 factor.

In Fig. 4 we show the effective mass difference M∗
p − M∗

n

for both QMCδ and NL3δ, for yp = 0.3 and 0.1. For NL3,
we show the mass difference multiplied by a factor of 0.1 to
compare with QMCδ. The most striking result is the factor
of 10 difference between the p, n mass splitting in NL3
and QMC. In both models, this effect increases with baryon
density, but it is worth remarking that the effective mass is
larger for neutrons than for protons at lower densities, which is
represented by the negative values in the figures. As referred to
before, this occurs because the proton and neutron masses were
considered different at zero density. In addition, for the same
proton fraction, the crossing of the p, n effective mass curves
(equal effective p, n masses) does not occur for the same
densities as the proton and neutron radius, Rp and Rn (Fig. 3)

The effect of the δ meson is to increase the M∗
p − M∗

n

difference as it occurs in NL3δ and other relativistic mean-
field (RMF) models. In Ref. [20] the authors give a thorough
discussion of the effect of the δ meson on the effective mass,
identified as a Dirac mass. When a comparison is made with
nonrelativistic models it is important that the same definition
of effective masses is used, namely, instead of the Dirac mass,
the Schrödinger mass should be evoked. In Ref. [21] it was
shown that for RMF models, the Schrödinger mass of neutrons
is smaller than the corresponding proton mass for neutron-
rich matter, in contrast with the Dirac-Brueckner-Hartree-Fock
results or the Brueckner-Hartree-Fock calculations [22,23] that
predict a larger neutron effective mass, understood as a Landau
mass in the nonrelativistic approach.

We have computed the Schrödinger effective masses (see
Eq. 6.35 of Ref. [20]) for QMC and verified that in neutron-rich
matter the neutron mass is smaller than the proton one just like
the Dirac mass and in other relativistic mean-field models.

B. Instabilities

In the present subsection we discuss the results for the
instability region at subsaturation densities with QMC, QMCδ,
and the hadron models we have considered. In Fig. 5 we plot
the spinodal curves for np matter. As referred to before, they
are defined by the points, for a given temperature, density, and
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FIG. 5. (Color online) Spinodal (thermodynamical instability
border) for QMC, QMCδ, NL3, NL3δ and TW.
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isospin asymmetry, that make the curvature matrix of the free
energy vanish.

Both QMC and QMCδ present larger instability regions
than NL3, NL3δ, and TW on the isoscalar direction, ρp = ρn.
This is possibly due to the σ contribution in the Lagrangian
for QMC (both with and without δ): the fields here attain
magnitudes to minimize the bag energy, whereas in hadron
models their mean-field values are determined by solving the
relevant set of equations where nonlinearities show explicitly
or through density-dependent couplings. The extension of the
spinodal for ρp = ρn defines the density ρs , corresponding to
the density value for which the pressure of symmetric nuclear
matter has a minimum and the incompressibility is zero [24].
We have included the values of this density for the different
models in Table I. Recently [18] it was shown that within
a Brueckner-Hartree-Fock calculation the isoscalar extension
of the spinodal was much larger than NLWM and Skyrme
interaction predictions.

For large isospin asymmetries the presence of δ reduces the
instability region both in QMC and NL3. NL3 has a higher
symmetry energy than NL3δ for densities ranging from 0 up
to ∼ρ0, and the same occurs for QMC although the differences
are smaller. This means that highly asymmetric matter is less
bound in NL3 and QMC than in NL3δ and QMCδ. A mere
inspection of the symmetry energy is not enough to account
for the differences in the instability region if different models
are considered [24]. With the introduction of the δ meson the
scalar channel is not affected, and therefore we are essentially
changing the isovector channel. We also notice that at ρp = ρn

the curvature of the QMC spinodal is intermediate between
NL3 and TW. As shown in Ref. [24] this curvature is defined
by the symmetry energy and its first and second derivatives.

The nuclear liquid-gas coexistence phase is characterized
by different isospin contents for each phase, i.e., the clusterized
regions are more isospin symmetric than the surrounding
nuclear gas, the so-called isospin distillation [11,25]. The
extension of the distillation effect is model dependent and it
has been shown that NL3 and other NLWM parametrizations
lead to larger distillation effects than the density-dependent
hadron models [6,8,24]. However, the distillation effect was
also studied within a BHF calculation [18] and a smaller
distillation effect was generally obtained.

In Fig. 6 we show the ratio of the proton versus the neutron
density fluctuations corresponding to the unstable mode. This
ratio defines the direction of instability of the system. We show
the results for different proton fractions (including rather small
values), for the sake of studying the effectiveness of the models
in restoring the symmetry in the liquid phase.

We first compare the three models not including the δ

meson: QMC, NL3, and TW. We see that QMC has a behavior
which is intermediate between NL3 and TW. The distillation
effect for densities above 0.02 fm−3 is larger than the prediction
of TW, but for the larger densities it also shows a tendency to
decrease, contrary to NL3. The presence of δ meson makes the
distillation effect more efficient.

In Fig. 7 we plot the proton-neutron density fluctuation
ratio as a function of the isospin asymmetry for a fixed nuclear
density, ρ = 0.06 fm−3. We compare all models under study,
NL3, NL3δ, TW, QMC, and QMCδ, and include also the
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FIG. 6. (Color online) Direction of instability (eigenvector for
negative eigenvalue λ−) for yp = 0.05 (a), 0.1 (b), and 0.3 (c).

results derived from the BHF approach [18] referred above.
All the relativistic models predict larger fluctuation ratios than
the corresponding value of ρp/ρn, dotted line. The behavior
gives rise to a distillation effect, which, as referred before, is
larger for NL3 and smaller for TW, with QMC presenting
intermediate values. The δ meson stresses the distillation
effect, clearly seen both in QMCδ and NL3δ.

However, except for the very asymmetric matter (yp <

0.02), both QMC and the other relativistic models predict
fluctuations with larger proton fractions than BHF. The
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FIG. 7. (Color online) Proton-neutron density fluctuation ratio
versus the isospin asymmetry for a fixed nuclear density, ρ =
0.06 fm−3. The BHF results were obtained by Vidaña and Polls
[18].

instability properties within the BFH calculation of Ref. [18]
show also differences for the spinodal surface: the unstable
region is larger, extending to larger densities both in the
isoscalar an isovector directions and the curvature of the
spinodal at ρp = ρn is much larger than the one of all
the relativistic models considered. A larger extension of the
unstable region is justified because the saturation density is
larger, 0.182 fm−3. The shape of the spinodal itself depends
on the density dependence of the symmetry energy and
its derivatives. It would be important to identify the properties
that define the shape of the spinodal for the more asymmetric
matter.

We have studied subsaturation nuclear instabilities for both
symmetric and asymmetric matter within the QMC model,
with and without the inclusion of the δ meson. In this model the
nucleons are described as nonoverlapping bags. We propose
a parametrization for QMCδ with a the symmetry energy
slope value L = 102 MeV within the interval L = 88 ±

25 MeV proposed in Refs. [11,12] and that was determined
from nuclear laboratory data. It was interesting to notice that
for QMC and QMCδ the quantity Kasy defined in Ref. [11],
and which can be directly extracted from measurements of
the isotopic dependence of the giant monopole resonances,
falls inside the interval predicted by experiments. The BHF
calculation predicts a value of Kasy that is not very far, though
lower than the interval obtained from GMR, Kasy = 550 ±
100 MeV.

A comparison was done with the results obtained from
a NLWM parametrization (NL3), one density-dependent
relativistic model (TW), along with BHF with the Argonne
V18 potential calculation. It was shown that the restoration of
isospin symmetry, obtained by a distillation effect, was more
efficient in QMC with respect to TW but less efficient when
compared with NL3. The spinodal surface within QMC is
closer to TW although with a larger curvature at ρp = ρn and
a slightly smaller instability extension at larger asymmetries,
while the inclusion of the δ meson (QMCδ) shrinks the
asymmetric parts of the instability envelope. The BHF results
of Ref. [18], although with similar general properties, differ in
the extension and shape of the spinodal and in the amount of
distillation predicted.

A study of the QMC instability properties at finite temper-
atures is now under preparation, as well as a more detailed
study of the isospin dependence of Schrödinger effective mass
in our approach. It is also important to identify how the density
dependence of the symmetry energy determines the shape of
the spinodal for large isospin asymmetries.
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