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A chiral quark-model approach is extended to the study of the K̄N scattering at low energies. The process
K−p → �0π 0 at PK <∼ 800 MeV/c (i.e., the center-of-mass energy W <∼ 1.7 GeV) is investigated. This approach
successfully describes the differential cross sections and total cross section with the roles of the low-lying �

resonances in n = 1 shells clarified. The �(1405)S01 dominates the reactions over the energy region considered
here. Around PK � 400 MeV/c, the �(1520)D03 is responsible for a strong resonant peak in the cross section.
The �(1670)S01 has obvious contributions around PK = 750 MeV/c, while the contribution of �(1690)D03 is
less important in this energy region. The nonresonant background contributions, i.e., u channel and t channel,
also play important roles in the explanation of the angular distributions due to amplitude interferences. The u

channel turns out to have significant destructive interferences with the �(1405)S01 at the forward angles. In
contrast, the t-channel K∗ exchange has a constructive interference at the forward angles, whereas it suppresses
the cross sections slightly at the backward angles. In the t channel, the K∗ exchange is more dominant than
the κ exchange. Our analysis suggests that configuration mixing exists within the �(1405)S01 and �(1670)S01

and results in admixtures of the [70,2 1, 1/2] and [70,2 8, 1/2] configurations. The �(1405)S01 is dominated
by [70,2 1, 1/2], and �(1670)S01 by [70,2 8, 1/2]. The mixing angle is also determined. The �(1520)D03 and
�(1690)D03 are assigned as [70,2 1, 3/2] and [70,2 8, 3/2], respectively.

DOI: 10.1103/PhysRevC.79.045202 PACS number(s): 21.30.Fe, 25.80.Nv, 13.75.Jz, 12.39.Jh

I. INTRODUCTION

The reaction K−p → �0π0 is of particular interest in the
study of baryon resonances and the K̄N interaction, since
there are no isospin-1 baryons contributing here and it gives
us a rather clean channel to study the � resonances, such as
�(1405)S01,�(1670)S01,�(1520)D03, and �(1690)D03.

In the literature, many experimental [1–12] and theoretical
efforts [13–39] have been devoted to understanding the nature
of the low-lying � resonances. However, their properties are
still controversial. For example, in the naive quark model,
�(1405) is classified as the lowest L = 1 orbital excited qqq

state as an SU(3) flavor singlet [40–42]. Meanwhile, it is also
proposed to be a dynamically generated resonance emerging
from the interaction of K̄N and π� with a multiquark
structure [16–27]. Most of those studies are based on the
unitary chiral perturbation theory (UχPT). Such a scenario
has been developed further to propose that the �(1405) could
be a superposition of two resonances [20–22,29–32]. Similar
mechanisms are studied in various processes [35–37], such
as K−p → π0π0�0, π−p → K0π�, and pp → pK+�, as
a support of the dynamically generated states. How to clarify
these issues and make a contact with experimental observables
are still open questions [10,11,43–45].

On the other hand, it is of great importance to understand
the excitation of those low-lying � states in a quark model
framework. A quark model somehow provides guidance for
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the underlying effective degrees of freedom within hadrons. To
probe exotic configurations such as multiquarks and hybrids,
one should also have a good understanding of where the
nonrelativistic constituent quark model (NRCQM) breaks
down. Particularly in the sector of hyperon states, there
are still a lot of ambiguities to be clarified. Apart from
the �(1405), the �(1520) and �(1670) are also suggested
to be quasibound states of a meson and a baryon, which
are dynamically generated resonances based on the UχPT
[14,27,33]. Whereas in the quark model, these two states
are classified as the lowest L = 1 orbital excited states with
JP = 3/2− and JP = 1/2−, respectively. To clarify the nature
of those low-lying � resonances and their internal effective
quark degrees of freedom, more theoretical and experimental
studies are needed.

Recently, the higher precision data of the reaction K−p →
�0π0 at eight momentum beams between 514 and 750 MeV/c
were reported [1], which provides us a good opportunity to
study the properties of these low-lying � resonances. In this
work, we investigate the K−p → �0π0 reaction in a chiral
quark model. In this model, an effective chiral Lagrangian
is introduced to account for the quark-pseudoscalar-meson
coupling. Since the quark-meson coupling is invariant under
the chiral transformation, some of the low-energy properties
of QCD are retained. The chiral quark model has been well
developed and widely applied to meson photoproduction
reactions [46–54]. Its recent extension to describing the
process of πN scattering [55] and investigating the strong
decays of charmed hadrons [56,57] has also been successful
and inspiring.
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In the literature, K̄N scattering has been studied using
different approaches, such as the K-matrix methods [58],
dispersion relations [59,60], meson-exchange models [61–63],
coupled-channel approaches [13,19,20,23–25,30], and quark
models [64]. Compared with these models, our model has
several obvious features. One is that only a limited number
of parameters will appear in the formalism. In particular, only
one parameter is need for the resonances to be coupled to
the pseudoscalar meson. This distinguishes it from hadronic
models where each resonance requires one additional coupling
constant as a free parameter. The second is that all the
resonances can be treated consistently at the quark level.
Thus, it has predictive powers when exposed to experimental
data, and information about the resonance structures and form
factors can be extracted.

In the K−p → �0π0 reaction, for the s channel, the
K− and π0 mesons cannot couple to the same quark in a
baryon, which leads to a strong suppression in the s-channel
amplitudes. As shown later in Fig. 4, the amplitude Ms

2 is
suppressed relative to Ms

3 by a factor of (−1/2)n with n the
main quantum number of the NRCQM harmonic oscillator
potential [46–55]. In contrast, it is allowed for the u channel
that the kaon and pion are coupled to the same quark. Thus,
the u channel gives a large background in the cross section
and has significant destructive interferences with �(1405)S01

at the forward angles. The t channel, dominated by the K∗
exchange, also plays an important role in the reactions. It
suppresses the cross section obviously at the backward angles,
while enhancing it at the forward angles. We also consider
the t-channel scalar meson exchange, i.e., κ , but find its
contributions are negligibly small.

The �(1405) governs the reaction in the whole energy
region near threshold which is similar to the S11(1535)
dominance in π−p → ηn [55]. Around PK = 400 MeV/c,
the �(1520) is responsible for the sharp resonant peak in the
total cross section. The contributions of �(1670) turn out to
be important at PK � 750 MeV/c.

The paper is organized as follows. In the Sec. II, the
amplitudes of s and u channels are obtained. Then, amplitudes
of the t channel are given in Sec. III. The resonance contri-
butions are separated in Sec. IV. We present our calculations
and discussions in Sec. V. Finally, a summary is given in
Sec. VI.

II. AMPLITUDES OF THE s- AND u-CHANNEL
TRANSITIONS

A. The interactions

The effective quark-pseudoscalar-meson coupling in the
chiral quark model has been discussed in detail in Refs. [53–
55]. Here, we only outline the main formulas to keep the
self-consistence of this work.

The low-energy quark-meson interactions are described by
the effective Lagrangian [53,54]

L = ψ̄[γµ(i∂µ + V µ + γ5A
µ) − m]ψ + · · · , (1)

where V µ and Aµ correspond to vector and axial currents,
respectively. They are given by

V µ = 1

2
(ξ∂µξ † + ξ †∂µξ ),

(2)

Aµ = 1

2i
(ξ∂µξ † − ξ †∂µξ ),

under the chiral transformation ξ = exp (iφm/fm), where
fm is the meson decay constant. For the SU(3) case, the
pseudoscalar-meson octet φm can be expressed as

φm =

⎛
⎜⎜⎝

1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 −
√

2
3η

⎞
⎟⎟⎠ , (3)

and the quark field ψ is given by

ψ =

⎛
⎜⎝

ψ(u)

ψ(d)

ψ(s)

⎞
⎟⎠ . (4)

At the leading order of the Lagrangian [Eq. (1)], the quark-
meson pseudovector coupling is

Hm =
∑

j

1

fm

ψ̄jγ
j
µγ

j

5 ψj �τ · ∂µ �φm, (5)

where ψj represents the j th quark field in a hadron.
The nonrelativistic form of Eq. (5) can be written as [53–55]

H nr
m =

∑
j

{
ωm

Ef + Mf

σ j · Pf + ωm

Ei + Mi

σ j · Pi − σ j · q

+ ωm

2 µq

σ j · p′
j

}
Ijϕm, (6)

where σ j corresponds to the Pauli spin vector of the j th
quark in a hadron, and µq is a reduced mass given by
1/µq = 1/mj + 1/m′

j , where mj and m′
j stand for the masses

of the j th quark in the initial and final hadrons, respectively.
For emitting a meson, we have ϕm = exp(−iq · rj ), and for
absorbing a meson we have ϕm = exp(iq · rj ). In the above
nonrelativistic expansions, p′

j (= pj − mj

M
Pc.m.) is the internal

momentum for the j th quark in the initial meson rest frame.
ωm and q are the energy and three-vector momentum of the
light meson, respectively. The isospin operator Ij in Eq. (6) is
expressed as

Ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
†
j (u)aj (s) for K+,

a
†
j (s)aj (u) for K−,

a
†
j (d)aj (s) for K0,

a
†
j (s)aj (d) for K̄0,

a
†
j (u)aj (d) for π+,

a
†
j (d)aj (u) for π−,

1√
2
[a†

j (u)aj (u) − a
†
j (d)aj (d)] for π0,

(7)

where a
†
j (u, d, s) and aj (u, d, s) are the creation and annihi-

lation operators for the u, d, and s quarks.
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FIG. 1. Transition channels labeled by the Mandelstem variables,
i.e., s, u, and t channels. Ms

3 and Mu
3 (Ms

2 , M
u
2 ) correspond to the

amplitudes of the s and u channels with the incoming meson and
outgoing meson absorbed and emitted by the same quark (different
quarks), respectively. Note that in the reaction K−p → �0π 0, the
amplitude Ms

3 vanishes.

B. The s-channel amplitudes

The s-channel transition amplitudes as shown in Fig. 1 can
be expressed as

Ms =
∑

j

〈Nf |Hπ |Nj 〉〈Nj | 1

Ei + ωK − Ej

HK |Ni〉, (8)

where ωK is the energy of the incoming K− meson. HK

and Hπ are the standard quark-meson couplings at tree level
described by Eq. (5). |Ni〉, |Nj 〉, and |Nf 〉 stand for the
initial, intermediate, and final states, respectively, and their
corresponding energies are Ei,Ej , and Ef , which are the
eigenvalues of the NRCQM Hamiltonian Ĥ [40,65]. Following
the procedures developed in Refs. [52–55], one can then
express the s-channel amplitudes by operator expansions:

Ms =
∑

j

〈Nf |Hπ |Nj 〉〈Nj |
∑

n

1

ωn+1
K

(Ĥ − Ei)
nHK |Ni〉,

(9)

where n is the principal harmonic oscillator quantum number.
Note that for any operator Ô, one has

(Ĥ − Ei)Ô|Ni〉 = [Ĥ , Ô]|Ni〉, (10)

and a systematic expansion of the commutator between the
NRCQM Hamiltonian Ĥ and the vertex coupling HK and
Hπ can thus be carried out. Details of this treatment can be
found in Refs. [52–54], but we note that in this study only
the spin-independent potential in Ĥ is considered as a feasible
leading-order calculation.

Finally, we can obtain the s-channel amplitude in the
harmonic oscillator basis, which is expressed as [55]

Ms =
∑

n

(
Ms

3 + Ms
2

)
e−(k2+q2)/6α2

, (11)

where α is the oscillator strength, and e−(k2+q2)/6α2
is a form

factor in the harmonic oscillator basis. Ms
3(Ms

2) corresponds
to the amplitudes for the outgoing meson and incoming meson
absorbed and emitted by the same quark (different quarks) (see
Fig. 1). Because of the isospin selection rule, the π and K−
cannot couple to the same quark. Thus, the contribution of Ms

3

vanishes, and only Ms
2 contributes to the s channel, i.e.,

Ms
2 = 〈Nf |6I1

{
σ 1 · Aoutσ 3 · Ain

∑
n=0

Fs(n)

n!

X n

(−2)n

+
[
−σ 1 · Aout

ωK

6 µq

σ 3 · q − ωπ

3mq

σ 1 · kσ 3 · Ain

+ ωπ

mq

ωK

2 µq

α2

3
σ 1 · σ 3

]
×

∑
n=1

Fs(n)

(n − 1)!

X n−1

(−2)n

+ ωπ

3mq

ωK

6 µq

σ 1 · qσ 3 · k
∑
n=2

Fs(n)

(n − 2)!

X n−2

(−2)n

}
|Ni〉,

(12)

with

Ain = −
(

1 + ωKKi − ωK

6 µq

)
k, (13)

Aout = −
(

1 + ωπKf − ωπ

3mq

)
q, (14)

where Ki = 1/(Ei + Mi),Kf = 1/(Ef + Mf ), and mq is the
light quark mass. In Eq. (12), the subscriptions of the spin
operator σ denote that it either operates on quark 3 or quark 1.
The X is defined as X ≡ k·q

3α2 , and the factor Fs(n) is given by
expanding the energy propagator in Eq. (8), which leads to

Fs(n) = Mn

Pi · k − nMnωh

, (15)

where Mn denotes the mass of the excited state in the nth shell,
while ωh is the typical energy of the harmonic oscillator; Pi

and k are the four-momenta of the initial state nucleon and
incoming K− meson in the c.m. system. The Fs(n) has clear
physical meaning that recovers the hadronic level propagators.
We will come back to this in the next section.

The above transition amplitude can be written coherently
in terms of a number of g factors, which will allow us to relate
the quark-level amplitudes to those at hadronic level

Ms =
{

gs2Aout · Ain

∑
n=0

(−2)−n Fs(n)

n!
X n

+ gs2

(
− ωK

6 µq

Aout · q − ωπ

3mq

Ain · k + ωπ

mq

ωK

2 µq

α2

3

)

×
∑
n=1

(−2)−n Fs(n)

(n − 1)!
X n−1

+ gs2
ωπωK

18mq µq

k · q
∑
n=2

Fs(n)

(n − 2)!
(−2)−nX n−2

+ gv2iσ · (Aout × Ain)
∑
n=0

(−2)−n Fs(n)

n!
X n

+ gv2
ωπωK

18mq µq

iσ · (q × k)

×
∑
n=2

(−2)−n Fs(n)

(n − 2)!
X n−2

}
e−(k2+q2)/6α2

, (16)
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where the g factors, gs2 and gv2, in the s channel are defined
as

gs2 ≡ 〈Nf |
∑
i �=j

I π
i IK

j σ i · σ j |Ni〉/3, (17)

gv2 ≡ 〈Nf |
∑
i �=j

I π
i IK

j (σ i × σ j )z|Ni〉/2, (18)

which can be derived from the quark model in the SU(6)⊗O(3)
limit.

C. The u-channel amplitudes

The u-channel transition amplitudes (see Fig. 1) are given
by

Mu =
∑

j

〈Nf |HK

1

Ei − ωπ − Ej

|Nj 〉〈Nj |Hπ |Ni〉. (19)

Following the same procedure as in Sec. II B, when the
outgoing and incoming mesons couple to the same quark, we
obtain the amplitude

Mu
3 = −〈Nf |3IK

3 Iπ
3

{
σ 3 · Binσ 3 · Bout

∑
n=0

Fu(n)
1

n!
X n

+
[
−σ 3 · Bin

ωπ

3mq

σ 3 · k − ωK

6 µq

σ 3 · qσ 3 · Bout

+ ωπ

mq

ωK

2 µq

α2

3

] ∑
n=1

Fu(n)
X n−1

(n − 1)!

+ ωπ

3mq

ωK

6 µq

σ 3 · kσ 3 · q
∑
n=2

Fu(n)
X n−2

(n − 2)!

}
|Ni〉.

(20)

While the outgoing and incoming mesons couple to two
different quarks, the transition amplitude is given by

Mu
2 = −〈Nf |6IK

1 Iπ
3

{
σ 1 · Binσ 3 · Bout

∑
n=0

Fu(n)

n!

X n

(−2)n

+
[

− σ 1 · Bin
ωπ

3mq

σ 3 · k − ωK

6 µq

σ 1 · qσ 3 · Bout

+ ωπ

mq

ωK

2 µq

α2

3
σ 1 · σ 3

] ∑
n=1

Fu(n)

(n − 1)!

X n−1

(−2)n

+ ωπ

3mq

ωK

6 µq

σ 1 · kσ 3 · q
∑
n=2

Fu(n)

(n − 2)!

X n−2

(−2)n

}
|Ni〉.

(21)

In these equations, we have defined

Bin ≡ −ωK

(
Kf + Kj − 1

6 µq

)
q − (1 + ωKKj )k, (22)

Bout ≡ −ωπ

(
Ki + Kj − 1

3mq

)
k − (1 + ωπKj )q, (23)

where Kj = 1/(Ej + Mj ).

In Eqs. (20) and (21), the factor Fu(n) is written as

Fu(n) = Mn

Pi · q + nMnωh

, (24)

where q is the four-momentum of the outgoing π meson in the
c.m. system.

The total amplitude for the u channel is expressed as

Mu = −
{

Bin · Bout

∑
n=0

[
gu

s1 + (−2)−ngu
s2

]Fu(n)

n!
X n

+
(

− ωπ

3mq

Bin · k − ωK

3mq

Bout · q + ωK

2 µq

ωπ

mq

α2

3

)

×
∑
n=1

[
gu

s1 + (−2)−ngu
s2

] Fu(n)

(n − 1)!
X n−1

+ ωπωK

18mq µq

k · q
∑
n=2

Fu(n)

(n − 2)!

[
gu

s1 + (−2)−ngu
s2

]
X n−2

+ iσ · (Bin × Bout)
∑
n=0

[
gu

v1 + (−2)−ngu
v2

]Fu(n)

n!
X n

− ωπωK

18mq µq

iσ · (q × k)
∑
n=2

[
gu

v1 + (−2)−ngu
v2

]

× Fu(n)

(n − 2)!
X n−2 + iσ ·

[
− ωπ

3mq

(Bin × k)

− ωK

6 µq

(q × Bout)

]∑
n=1

[
gu

v1 + (−2)−ngu
v2

]

×X n−1 Fu(n)

(n − 1)!

}
e−(k2+q2)/6α2

, (25)

where the g factors in the u channel are determined by

gu
s1 ≡ 〈Nf |

∑
j

IK
j Iπ

j |Ni〉, (26)

gu
s2 ≡ 〈Nf |

∑
i �=j

IK
i I π

j σ i · σ j |Ni〉/3, (27)

gu
v1 ≡ 〈Nf |

∑
j

IK
j Iπ

j σ z
j |Ni〉, (28)

gu
v2 ≡ 〈Nf |

∑
i �=j

IK
i I π

j (σ i × σ j )z|Ni〉/2. (29)

The numerical values of these factors can be derived in the
SU(6)⊗O(3) symmetry limit.

The first term in Eqs. (12), (20), and (21) comes from
the correlation between the c.m. motion of the K−-meson
transition operator and the c.m. motion of π -meson transition
operator; the second and the third terms are the correlation
among the internal and the c.m. motions of the K− and π

transition operators, and their contributions begin with the
n � 1 exited states in the harmonic oscillator basis. The last two
terms in these equations correspond to the correlation of the
internal motions between the K− and π transition operators,
and their contributions begin with either n � 1 or n � 2 exited
states.
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III. AMPLITUDES OF THE t-CHANNEL TRANSITIONS

A. The interactions

The light meson exchange in the t channel at low energies
will generally have larger contributions than the heavy ones.
In K−p → �0π0, we consider the t-channel vector meson
K∗(892) and scalar meson κ(800) exchanges, which are found
dominantly coupled to Kπ [66].

For the K∗Kπ and κKπ couplings, we introduce the
effective interactions

HK∗Kπ = iGv{[(∂µK̄)K∗ − K̄∗(∂µK)]�τ · �π
− [K̄K∗ − K̄∗K]�τ · (∂µ �π)}, (30)

HκKπ = gκKπ

2mπ

∂µK∂µπκ, (31)

where Gv and gκKπ are the coupling constants to be determined
by experimental data [66].

Similar to the quark-pseudoscalar-meson coupling, we
introduce the K∗NN and κNN couplings at quark level by
effective K∗qq and κqq Lagrangians:

HK∗qq = ψ̄j

(
aγ ν + ibσ νλqλ

2mq

)
K∗

ν ψj , (32)

Hκqq = gκqqψ̄jψjκ, (33)

where the constants a, b, and gκqq are the vector, tensor, and
scalar coupling constants, which are treated as free parameters
in this work.

B. The amplitudes

For the vector meson K∗ exchange, the amplitude of t

channel can be written as

MV
t = Gv(qµ + kµ)Gµν

∑
j

ψ̄j

(
aγ ν + ibσ νλqλ

2mq

)
φm

ν ψj ,

(34)

where qµ, kµ are the four-momenta of the π0 and K− mesons,
respectively. In Eq. (34), the propagator Gµν is defined by

Gµν =
(

−gµν + QµQν

t

) /(
t − M2

K∗
)
, (35)

where t ≡ Q2. The Feynman diagram is shown in Fig. 1.
The t-channel amplitude in the quark model is given by

MV
t = Ot

V

1

t − M2
K∗

e−(q−k)2/6α2
, (36)

where e−(q−k)2/6α2
is a quark model form factor, MK∗ is the

mass vector meson K∗, and the amplitude Ot
V is given by

Ot
V = Gva

[
gs

t (H0 + H1q · k) + gv
t H2iσ · (q × k)

]
+ tensor term. (37)

In Eq. (37), we have defined

H0 ≡ E0 −
[
E0Kis +

(
Ki + 1

6 µq

)
(1 + D)

]
k2

+
[
E0Kf q −

(
Kf − 1

6 µq

)
(1 − T )

]
q2, (38)

H1 ≡ E0[KiKf − (Kf q − Kis)] − (Ki + Kf )

− (Ki − Kf )T − 1

3 µq

T , (39)

H2 ≡ E0[KfKi − (Kf q − Kis)] − (Ki + Kf ) − (Ki

−Kf )T + 1

3

(
1

mq

− 1

ms

)
T , (40)

with

Kf q = 1

6mq

Kf , Kis = 1

6ms

Ki , (41)

T = m2
π − m2

K

t
, (42)

E0 = −(ωK + ωπ ) + (ωπ − ωK )T . (43)

The K∗ exchange couplings, i.e., vector and tensor, can
in principle be determined by K∗ meson photoproduction.
However, it shows that the present experimental results from
the Thomas Jefferson National Accelerator Facility (JLab) and
the European Laboratory for Structural Assessment (ELSA)
favor quite differently the tensor coupling values. In K−p →
�0π0, the K∗ exchange is not a predominant transition
mechanism. We hence only consider the t-channel vector
exchange but neglect the tensor term for simplicity.

In Eq. (36), we defined gs
t ≡ 〈Nf | ∑3

j=1 IK−
j |Ni〉, and gv

t ≡
〈Nf | ∑3

j=1 σ j I
K−
j |Ni〉, which can be deduced from the quark

model. Their values are listed in Table I.
Similarly, for the scalar meson κ exchange, the t-channel

amplitude in the quark model is written as

MS
t = Ot

S

1

t − m2
κ

e−(q−k)2/6α2
, (44)

where mκ is the κ-meson mass, and Ot
S is given by

Ot
S � gκKπgκqq

2mπ

(ωKωπ − q · k)
[
gs

t (A0 + A1q · k)

+ gv
t A1iσ · (q × k)

]
, (45)

with

A0 ≡ 1 + 1

2mq

Kf q2 − 1

2ms

Kik2, (46)

A1 ≡ KiKf − 1

2mq

Kf + 1

2ms

Ki . (47)

In Eq. (45), we have neglected the higher order terms.

TABLE I. Various g and gR factors defined in this work
and extracted in the symmetric quark model.

Factor Value Factor Value

gu
s1 1/2 gs

t

√
2/2

gu
s2 2/3 gv

t −√
2/6

gu
v1 −1/6 gS01(1405) 3/2

gu
v2 −1 gS01(1670) −1/2

gs2 2/3 gD03(1520) 3/2

gv2 1 gD03(1690) −1/2
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IV. SEPARATION OF THE SINGLE RESONANCE
CONTRIBUTIONS

Note that, so far, we have separated out the amplitudes in
terms of the harmonic oscillator principal quantum number
n, which are the sum of a set of SU(6) multiplets with the
same n. To see the contributions of individual resonances, we
need to further separate out the single-resonance-excitation
amplitudes within each n in the s channel. Since the resonances
in the u channel contribute virtually and are generally
suppressed by the kinematics, we treat them as degenerate
to n.

Function Fs(n) in Eq. (15) can be related to the s-channel
propagator in the infinitely narrow-width limit:

Fs(n) = 2Mn

s − (
M2

i + M2
K + 2nMiωh

) ≡ 2Mn

s − M2
n

, (48)

where it is assumed that M2
n ≡ M2

i + M2
K + 2nMiωh, which

is not a bad assumption for the masses of an excited n-shell
state. Mi denotes the initial baryon mass.

Taking into account the width effects of the resonances,
the resonance transition amplitudes of the s channel can be
generally expressed as [54,55]

Ms
R = 2MR

s − M2
R + iMR�R

ORe−(k2+q2)/6α2
, (49)

and the u channel as

Mu
n = − 2Mn

u − M2
n

One
−(k2+q2)/6α2

. (50)

In Eqs. (49) and (50), OR is the separated operators for
individual resonances in the s channel, whileOn is the operator
for a set of degenerate states with the same n. In the s channel
of K−p → �0π0, only the � resonances are involved. Our
effort in the following subsections is to extract OR for each
s-channel resonance with n < 2.

A. n = 0 shell resonances

With n = 0, the � hyperon is the only state contributing to
the s channel, and the amplitude can be written as

Ms
� = O�

2M�

s − M2
�

e−(k2+q2)/6α2
, (51)

with

O� = gs2Aout · Ain + gv2iσ · (Aout × Ain), (52)

where M� is the �-hyperon mass.

B. n = 1 shell resonances

Both S- and D-wave resonances contribute to the s-
channel amplitude with n = 1. Note that the spin-independent
amplitude for D waves is proportional to the Legendre function
P 0

2 (cos θ ), and the spin-dependent amplitude is in proportion to
∂
∂θ

P 0
2 (cos θ ). Moreover, the S-wave amplitude is independent

of the scattering angle. Thus, the S- and D-wave amplitudes

can be separated out easily as follows:

OS = −1

2
gs2

(
|Aout| · |Ain| |k||q|

9α2
− ωK

6 µq

Aout · q

− ωπ

3mq

Ain · k + ωπωK

2mq µq

α2

3

)
, (53)

OD = −1

2
gs2|Aout| · |Ain|(3 cos2 θ − 1)

|k||q|
9α2

− 1

2
gv2iσ · (Aout × Ain)

k · q
3α2

. (54)

In the NRCQM, the n = 1 shell contains three different
representations, i.e., [70,2 1], [70,2 8], and [70,4 8]. The two
low-lying � resonances, �(1405)S01 and �(1520)D03, are
classified to be flavor singlet states of [70,2 1], and they have
no counterparts in the nucleon spectrum. The �(1670)S01

and �(1690)D03 are interpreted as multiplets of [70,2 8],
which are octet partners of the nucleon resonances S11(1535)
and D13(1520). Usually the �(1800)S01 and �(1830)D05 are
classified as multiplets of [70,4 8], among which the D03 state
has not yet been found in experiment. In the SU(6)⊗O(3)
quark model, the contributions of [70,4 8] are forbidden in
K−p → �0π0 due to the so-called �-selection rule [67–69].
Thus, for the S wave, only the resonances �(1405)S01 and
�(1670)S01 contribute to the reactions; and for the D waves,
�(1520)D03 and �(1690)D03.

The separated amplitudes for the S and D waves can thus
be rewritten as

OS = [gS01(1405) + gS01(1670)]OS, (55)

OD = [gD03(1520) + gD03(1690)]OD, (56)

where the factor gR[R = S01(1405), etc.] represents the
resonance transition strengths in the spin-flavor space and is
determined by the matrix element 〈Nf |Hπ |Nj 〉〈Nj |HK |Ni〉.
Their relative strengths can be explicitly determined by the
relations

gS01(1405)

gS01(1670)
= 〈Nf |Iπ

3 σ 3|S01(1405)〉〈S01(1405)|IK
3 σ 3|Ni〉

〈Nf |Iπσ 3|S01(1670)〉〈S01(1670)|IK
3 σ 3|Ni〉

,

(57)

gD03(1520)

gD03(1690)
= 〈Nf |Iπ

3 σ 3|D03(1520)〉〈D03(1520)|IK
3 σ 3|Ni〉

〈Nf |Iπσ 3|D03(1690)〉〈D03(1690)|IK
3 σ 3|Ni〉

.

(58)

On the condition of no configuration mixing among these
states, we have gS01(1405)/gS01(1670) = gD03(1520)/gD03(1690) =
−3. However, the admixtures of different configurations
usually occur in physical states with the same quantum
number because of spin-dependent forces [40,42]. We will
see in Sec. V that configuration mixing may exist between
the S-wave S01(1405) and S01(1670) in this reaction. By
allowing the data to constrain the relative partial strengths,
i.e., gS01(1405)/gS01(1670), we can extract the mixing angle as a
leading-order result.

With the same method, we can separate the amplitudes in
the n = 2 shell as well; details can be found in our previous
work [55]. In this work, the higher resonances (i.e., n � 2) are
treated as degenerate, since they are less important in the beam
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momentum region PK <∼ 800 MeV/c where high-precision
data are available.

V. CALCULATION AND ANALYSIS

A. Parameters

With the transition amplitudes derived from the previous
section, the differential cross section can be calculated,

dσ

d�
= (Ei + Mi)(Ef + Mf )

64π2s

|q|
|k|

1

2

∑
λi ,λf

×
∣∣∣∣∣
[

δ2

fπfK

(Ms + Mu) + MV
t + MS

t

]
λf ,λi

∣∣∣∣∣
2

, (59)

where λi = ±1/2 and λf = ±1/2 are the helicities of the ini-
tial and final state baryons, respectively; δ is a global parameter
accounting for the flavor symmetry breaking effects arising
from the quark-meson couplings, and will be determined by
experimental data; fπ and fK are the π - and K-meson decay
constants, respectively.

To take into account the relativistic effects, we introduce
Lorentz boost factors in the spatial part of the amplitudes as
done in Refs. [52,55], i.e.,

Oi(k, q) → γkγqOi(kγk, qγq), (60)

where γk = Mi/Ei and γq = Mf /Ef .
We also introduce an energy-dependent width for the

resonances to take into account the off-mass-shell effects in
the reaction [49,52,54]:

�(q) = �R

√
s

MR

∑
i

xi

(
|qi |∣∣qR

i

∣∣
)2l+1

D(qi)

D
(
qR

i

) , (61)

where |qR
i | = [(M2

R − M2
b + m2

i )/4M2
R − m2

i ]1/2, and |qi | =
[(s − M2

b + m2
i )/4s − m2

i ]1/2; xi is the branching ratio of the
resonance decaying into a meson with mass mi and a baryon
with mass Mb, and �R is the total decay width of the s-channel
resonance with mass MR . D(q) = e−q2/3α2

is a fission barrier
function.

In the calculation, the universal value of harmonic oscillator
parameter α = 0.4 GeV is adopted. The masses of the u, d,
and s constituent quarks are set as mu = md = 330 MeV, and
ms = 450 MeV, respectively. The decay constants for π and
K are fπ = 132 and fK = 160 MeV, respectively.

Coupling constants in the t-channel transitions, i.e.,
Gv, a, gκKπ , and gκqq , can be determined by other experi-
mental data. For instance, Gv can be determined by K∗ →
Kπ [66], while vector coupling a can be extracted from
K∗ photoproduction [48,70,71]. As shown by Refs. [70,71],
coupling a has a value of about 3, but with quite significant
uncertainties. As Gv and a appear simultaneously in the
product of Gva, we find that Gva = 38 is a reasonable value for
the K∗ exchange. Note that within the uncertainties of K∗N�

coupling, this value can be regarded as reasonable. The value
of gκKπ predicted by QCD sum rules is gκKπ � 4, which is
compatible with the value extracted from the data [72]. This

TABLE II. Breit-Wigner masses MR (MeV) and widths �R

(MeV) for the resonances in the s channel. States in the n = 2 shell
are treated as degenerate to n.

Resonance MR �R MR (PDG) �R (PDG)

S01(1405) 1420 48 1406 ± 4 50 ± 2
S01(1670) 1697 65 1670 ± 10 25 ∼ 50
D03(1520) 1520 8 1520 ± 1 16 ± 1
D03(1690) 1685 63 1690 ± 5 60 ± 10
n = 2 1850 100

implies that the κqq coupling constant is gκqq � 5, which also
turns to be reasonable.

Parameters in the s and u channel will be determined by
fitting the cross section data. So far, there are 63 data points of
differential cross section at seven momentum beams between
514 and 687 MeV/c available [1]. By fitting this data set,
we find δ � 1.55 accounting for flavor symmetry breaking
effects, and resonance parameters are also determined and
listed in the Table II. From the table, we see that all the
resonance parameters roughly agree with the Particle Data
Group (PDG) values. The preferred Breit-Wigner mass of
the �(1405)S01 is 1420 MeV, which is about 10 MeV larger
than the upper limit of the PDG suggestion [66]. To fit the
total cross section, we find that �(1520)D03 should have a
narrower width, � � 8 MeV, which is only half the PDG value.
The fitted mass and width for �(1670)S01 are M = 1697 and
� = 65 MeV, respectively, which are also slightly larger than
the PDG suggestions. For the n = 2 shell, we take a degenerate
mass and width as M = 1850 and � = 100 MeV, since in the
low-energy region contributions from the n = 2 shell are not
significant.

In the u channel, the intermediate states are the nucleon
and its resonances. We find that contributions from the n � 1
shell are negligibly small and insensitive to the degenerate
masses and widths for these shells. In this work, we take M1 =
1650 (M2 = 1750) MeV, �1 = 230 (�2 = 300) MeV for the
degenerate mass and width of n = 1 (n = 2) shell nucleon
resonances, respectively.

The last parameter we consider is the relative strength
gS01(1405)/gS01(1670). The data favor a much larger value for
gS01(1405) relative to gS01(1670). In other words, a much stronger
S-wave contribution is needed in the explanation of the
experimental data. We thus empirically adjust the relative
strength between S01(1405) and S01(1670) by a mixing angle
(see Sec. V B). This could be evidence that the single quark
interaction picture fails in the description of the dominant
S-wave amplitude.

B. Configuration mixing

In the calculations, we find that the relative strength
gS01(1405)/gS01(1670) is crucial for reproducing the angular distri-
butions in the differential cross sections. With no configuration
mixing, i.e., gS01(1405)/gS01(1670) = −3, the data cannot be well
explained, as shown by the dashed curves in Fig. 2.

045202-7



XIAN-HUI ZHONG AND QIANG ZHAO PHYSICAL REVIEW C 79, 045202 (2009)

FIG. 2. (Color online) Comparisons of the differential cross
sections with configuration mixing (solid curves) and without it
(dashed curves) for �(1405) and �(1670).

As we know, the configuration mixing will bring uncertain-
ties to this value, thus we determine it by fitting the data. When
we take gS01(1405)/gS01(1670) � −9, the data can be reasonably
reproduced (see the solid curves in Fig. 2), which indicates
that the configuration mixing in S01(1405) and S01(1670) is
needed. If we take the gD03(1520)/gD03(1690) as a free parameter,
the fitted value does not change obviously compared with the
value of no configuration mixing. Thus, in the calculations,
we do not consider the configuration mixing in D03(1520) and
D03(1690).

We empirically introduce a mixing angle between [70,2 1]
and [70,2 8] within the physical states S01(1405) and
S01(1670), i.e.,

|S01(1405)〉 = cos(θ )|70,2 1〉 − sin(θ )|70,2 8〉, (62)

|S01(1670)〉 = sin(θ )|70,2 1〉 + cos(θ )|70,2 8〉. (63)

Inserting these wave functions into Eq. (57), we have

gS01(1405)

gS01(1670)
= [3 cos(θ ) − sin(θ )][cos(θ ) + sin(θ )]

[3 sin(θ ) + cos(θ )][sin(θ ) − cos(θ )]
, (64)

which is a function of the mixing angle θ .
To study the relation between the relative coupling strength

gS01(1405)/gS01(1670) and mixing angle θ , we define a function of
θ as

f (θ ) = [3 cos(θ ) − sin(θ )][cos(θ ) + sin(θ )]

− gS01(1405)

gS01(1670)
[3 sin(θ ) + cos(θ )][sin(θ ) − cos(θ )]. (65)

For a given ratio gS01(1405)/gS01(1670), the mixing angle θ can be
determined at f (θ ) = 0. One can easily check that the ratio
gS01(1405)/gS01(1670) = −3 leads to θ = 0◦, i.e., no configuration
mixing between [70,2 1] and [70,2 8].

With the fitted value gS01(1405)/gS01(1670) = −9, the f (θ ) as a
function of θ is shown in Fig. 3. The mixing angle can then be
extracted at f (θ ) = 0. From the figure, we find that two mixing
angles, θ � 41◦ and 165◦, satisfy the condition f (θ ) = 0 with
gS01(1405)/gS01(1670) = −9.

With θ = 41◦, the admixtures of flavor singlet [70,2 1]
and flavor octet [70,2 8] in the �(1405) amount to 57% and

FIG. 3. Evolution of function f (θ ) in terms of mixing angle θ .
The values of θ corresponding to f (θ ) = 0 are the mixing angles
for gS01(1405)/gS01(1670) = −9, which are found to be θ � 41◦ and θ �
165◦.

43%, respectively. With θ = 165◦, the �(1405) is dominantly
[70,2 1] with a wave function density of ∼93%, while
admixture of [70,2 1] in �(1670) is only ∼7%. The recent
relativistic quark model study suggests that for �(1405), the
admixtures of singlet [70,2 1] and octet [70,2 8] are ∼70%
and ∼30%, respectively; and for �(1670), the admixture of
[70,2 8] is ∼62% and that of [70,2 1] is ∼26% [42], which
are compatible with the results with θ = 41◦. It is interesting
to note that this feature that �(1405) and �(1670) are mixed
states dominated by the singlet and octet, respectively, is also
obtained by the coupled-channel studies based on UχPT [22].

Furthermore, Eq. (64) allows us to investigate the ratios
of the couplings to the K̄N and π� channels for the states
S01(1405) and S01(1670) with the relations

gS01(1405)K̄N

gS01(1670)K̄N

= cos(θ ) + sin(θ )

sin(θ ) − cos(θ )
, (66)

gS01(1405)π�

gS01(1670)π�

= 3 cos(θ ) − sin(θ )

3 sin(θ ) + cos(θ )
. (67)

If we take the mixing angle θ = 41◦, we have∣∣∣∣gS01(1405)K̄N

gS01(1670)K̄N

∣∣∣∣ � 14,

∣∣∣∣gS01(1405)π�

gS01(1670)π�

∣∣∣∣ � 0.6. (68)

This solution is in agreement with the UChPT model prediction
[24], which also prefers a much stronger coupling of the
S01(1405) to the K̄N channel than the S01(1670).

On the other hand, if the mixing angle is taken as θ = 165◦,
it gives ∣∣∣∣gS01(1405)K̄N

gS01(1670)K̄N

∣∣∣∣ � 0.58,

∣∣∣∣gS01(1405)π�

gS01(1670)π�

∣∣∣∣ � 17. (69)

To determine the mixing angle and the couplings for these
two S01 states, a coherent study of the photoproduction γp →
K+�(1405) and γp → K+�(1670) would be needed.
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FIG. 4. (Color online) Differential cross sec-
tions for PK = 475 ∼ 775 MeV/c (i.e., W =
1536 ∼ 1687 MeV). Data are from Refs. [1]
(squares), [4] (triangles), and [2] (circles).

C. Differential cross section

In Fig. 4, the differential cross sections are shown at
different center-of-mass energies (beam momenta) from W =
1536 (PK = 436) to W = 1687 MeV (PK = 773 MeV/c). The
experimental data [1–6] are also included for a comparison.
As shown by the solid curves, the overall agreement with
the experimental data is rather good. However, we also note
that the theoretical results seem to slightly underestimate the
differential cross sections at forward angles at W = 1536 ∼
1552 MeV, which is just around the �(1520)D03 production
threshold. Notice that the experimental data possess quite large
uncertainties, improved measurement in this energy region is
needed to clarify the discrepancies.

To the low-energy region, i.e., W = 1457 ∼ 1532 MeV
(or PK = 200 ∼ 425 MeV/c), there are no experimental
data available for the differential cross sections. This is
the region in which the low-lying �(1405)S01 dominates.
Therefore, we plot in Fig. 5 the cross sections given by our
model in association with exclusive cross sections by single
resonance excitations or transitions. We also carry out such a
decomposition for the differential cross sections in the region
of W = 1569 ∼ 1676 MeV in Fig. 6.

In Fig. 5, the solid curves are the full calculations of the
model. The thin horizontal lines denote the contributions from
the �(1405)S01. Interestingly, the �(1405)S01 appears to be

predominant and even larger than the full results. It implies that
large cancelations exist between the �(1405)S01 amplitude and
other transitions.

The dotted curves in Fig. 5 are contributions from the
u-channel transition. It presents an enhancement at forward
angles, though the u-channel propagator will generally sup-
press the forward-angle cross sections. This enhancement is
due to the cancelations that occur within the term of Bin · Bout

at backward angles. Meanwhile, the u channel will provide an
important destructive interference with the �(1405)S01, and
lower the differential cross sections at the forward direction.

The dash-dotted curves in Fig. 5 represent contributions
from the t-channel K∗ exchange, which are also forward-
angle enhanced. This contribution deceases with the energies
and provides an essentially important interference in the
amplitudes. As shown in Fig. 6(a) by the dash-dot-dotted
curves, its interferences with the rest mechanisms will enhance
the forward-angle cross sections but suppress the backward
ones. In contrast, the overall effects from the t-channel κ

exchange are rather small.
At W = 1522 MeV (i.e., PK ∼ 400 MeV/c), the contri-

butions from the on-shell D03(1520) can be seen clearly by
its interference, which significantly changes the shape of the
differential cross section. However, in the energies away from
its mass, the D-wave effects die out quickly.
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FIG. 5. (Color online) Differential cross sections at six energies in
a range of PK = 200 ∼ 425 MeV/c (i.e., W = 1457 ∼ 1532 MeV).
The bold solid curves are given by the full model calculations. The
thin lines, dashed, dash-dotted, and dash-dot-dotted curves stand for
the exclusive cross sections for the S01(1405), u channel, t-channel
K∗ exchange, and D03(1520), respectively.

Further study of the individual transitions are presented in
Fig. 6, where in the left panel, the cross sections are given by
removing one of the transition amplitudes from contributing;
while in the right panel, cross sections are given by single
transitions interfering with the S waves, i.e., �(1405)S01 and
�(1670)S01. First in the right panel, the two horizontal lines,
thin solid and dash-dotted, are exclusive cross sections for the
�(1405)S01 and �(1670)S01, respectively. In the energy region
of W = 1569 ∼ 1676 MeV, the �(1405)S01 is no longer a
dominant amplitude, though its contribution is still significant.
By adding the �(1690)D03,�(1520)D03, and the u channel to
the S waves, their effects are shown by the dashed, dash-dot-
dotted, and dotted curves, respectively. It is interesting to see
the role played by the u channel: its interference contributes
to the creation of the backward enhancement.

On the left panel, the thin lines show the effects without
the �(1405)S01, which are strongly forward peaking. Al-
ternatively, this shows how important the �(1405)S01 is in
this reaction. The other drastic effects are illustrated by the
dash-dot-dotted curves, which are generated by removing the
t-channel K∗ exchange. As discussed earlier, it contributes to
the forward enhancement and suppresses the backward cross
sections. As shown by the dashed, dotted, and dashed-dotted

FIG. 6. (Color online) Cross sections of exclusive channels
or individual resonances at three PK The bold solid curves are
for the full model calculations. In panels (a1)–(a3), the dashed,
dash-dotted, dash-dot-dotted, dotted, and thin solid curves are for
the results given by switching off the contributions from the �

pole, t-channel κ exchange, t-channel K∗ exchange, �(1670)S01,
and �(1405)S01, respectively. In panels (b1)–(b3), the dashed,
dash-dot-dotted, and dotted curves correspond to the interferences
of the �(1690)D03, �(1520)D03, and u channel with the S-wave
amplitudes, respectively. The thin solid lines and the dash-dotted
lines stand for the exclusive cross sections of the �(1405)S01 and
�(1670)S01, respectively.

curves, interfering effects from � pole, �(1670)S01, and
t-channel κ can also be identified. In particular, it shows
that the κ exchange interferes with the other amplitudes
in an opposite behavior to that with the K∗. It suppresses
the forward-angle cross sections but enhances the backward
ones.

It is interesting to compare this study with that of π−p →
ηn [55], where the cross section is also dominated by
the S wave near threshold, but the angular distribution is
mainly controlled by the S- and D-wave interferences. In
K−p → π0�0, we find that the interferences between the
S wave and the u channel are more crucial in the energy
region PK >∼ 520 MeV/c. The D-wave interferences become
restricted to a relatively narrow energy region due to the
narrow width of � states. It should also be recognized that
since only the amplitude Ms

2 can contribute, the s-channel
interferences from the � pole is not as significant as the u

channel.
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(a)

(b)

FIG. 7. (Color online) Total cross section as a function of the
beam momentum PK . The solid curves are the full model calculations.
Data are from Refs. [4] (circles), [6] (up-triangles), [2] (diamonds), [5]
(left-triangles), [3] (down-triangles), and [1] (squares). (a) Exclusive
cross sections for �(1405)S01, �(1670)S01, �(1520)D03, t channel,
and u channel are indicated by different lines. (b) Dotted and dashed
curves correspond to the exclusive cross sections for the t-channel κ

and K∗ exchange, respectively.

D. Total cross section

The total cross section as a function of the beam momentum
is plotted in Fig. 7 to compare with experimental data
[1–6]. To see the contributions of exclusive transitions, their
cross sections are also plotted. It shows that our theoretical
calculations agree well with the experimental data up to
PK < 800 MeV.

Toward the low-energy limit, the total cross section exhibits
a steep enhancement which is due to the dominant �(1405)S01.
The dashed curve shows the exclusive cross section of the
�(1405)S01, which is larger than the total cross section of
the full calculations. The u channel also turns out to be
a major contributor to the cross sections and is a main
background in the whole momentum region. It becomes
even larger than the other transitions above PK > 500 MeV,
and its interference with the S-wave amplitudes governs the
momentum-dependent behavior of the cross section except for
the resonance excitations by the �(1520)D03, which produces
a sharp peak in the total cross section. The importance of
the u-channel contributions are also stressed in the UχPT
calculations [15,32]. It is found there that by switching off the
I = 1 resonances, the results change quite significantly near
threshold.

To reproduce this peak, it requires that the �(1520)D03 has
a narrow width � � 8 MeV, which is about a factor of 2 smaller
than the PDG value. The contributions of the �(1670)S01 are
also visible around PK = 0.8 ± 1 GeV/c. When the beam
momentum PK >∼ 800 MeV, the model predictions start to
become worse, which indicates that the treatment of the

resonances of the n = 2 shell as degenerate is no longer
applied, and a more realistic approach should be introduced.
Because of the lack of accurate data in this momentum region,
we do not discuss the higher resonances in the n � 2 shells in
this work.

The t-channel K∗ and κ exchanges are also shown, and
they both decrease with the increase of the beam momentum.
Furthermore, the K∗ exchange is much larger than the κ

exchange.

VI. SUMMARY AND DISCUSSION

In this work, we have studied the reaction K−p → �0π0

at low energies within a chiral quark model. With a limited
number of parameters, we can describe the differential cross
sections and cross sections which are in a good agreement with
the data. In the low-energy region, i.e., PK < 800 MeV/c,
the n = 1 shell resonances �(1405)S01,�(1520)D03, and
�(1670)S01 are found to play important roles in the reactions,
and the n � 2 shell resonance contributions are negligibly
small.

The �(1405)S01 is very crucial in the reactions. It is the
major contributor of the S-wave amplitude in the low-energy
region. In particular, in the region of PK <∼ 300 MeV/c,
�(1405)S01 dominates the amplitudes, and contributions of the
other resonances are nearly invisible in the total cross section.
Around PK = 400 MeV/c, the �(1520)D03 is responsible for
the strong resonant peak in the total cross section. Around
PK = 800 MeV/c, the differential cross sections are sensitive
to �(1670)S01. In this energy region, the role of �(1690)D03

is visible but less important than that of �(1670)S01.
The nonresonant backgrounds, u and t channel, also play

important roles in the reaction. In the t channel, the K∗
exchange has larger cross sections than the κ . It enhances
the cross section obviously at the forward angles and has some
destructive interferences at the backward angles. There can
be seen a small contribution of the s-channel � pole, which
slightly enhances the cross section.

The u channel significantly suppresses the differential cross
section at the forward angles and produces the characteristic
backward enhancement. The significant contributions of the
u channel agree with the results of UχPT [15,32]. In the
quark model framework, the u channel allows transitions
that the initial and final state mesons can be coupled to the
same quark or different quarks, while the s channel can only
occur via transitions that the initial and final state mesons are
coupled to different quarks. This explains the importance of
the u-channel contributions. In comparison with the UχPT, the
agreement implies some similarity of the coupling structure
at leading order. For instance, the meson-quark couplings in
our model can be related to the meson-baryon couplings via
current conservation such as the recognition of the Goldberger-
Treiman relation [73].

Our analysis suggests that configuration mixing exists
within the �(1405)S01 and �(1670)S01 and results in ad-
mixtures of the [70,2 1, 1/2] and [70,2 8, 1/2] configura-
tions. The �(1405)S01 is dominated by [70,2 1, 1/2] (93%
or 57%), and �(1670)S01 by [70,2 8, 1/2] (93% or 57%),
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which is in agreement with the UχPT results [22]. The
�(1520)D03 and �(1690)D03 are assigned as the [70,2 1, 3/2]
and [70,2 8, 3/2], respectively. This prescription indicates
that �(1405)S01,�(1520)D03, and �(1670)S01 still possess
features of the traditional three-quark states, though they may
also have some exotic properties that are not sensitive to the
measurement of the cross sections. Experimental measurement
of polarization observables may be more selective for exposing
their natures, especially for the �(1405)S01. Nevertheless,
more accurate differential cross sections in the low beam
momentum region, e.g., PK = 200 ∼ 500 MeV/c, should also
be useful.

For higher resonances, we expect more accurate data in the
region of PK = 750 ∼ 900 MeV/c can be useful for clarifying
their contributions and properties. With such data available, we
can then further study the roles of �(1670)S01,�(1690)D03,

and the other higher P - and F -wave resonances in the
n = 2 shell. The Japan Proton Accelerator Research Complex
(J-PARC) facilities, which have started to run recently, will
provide great opportunities for the study of the hyperon
spectrum in theory.

By comparing with approaches at the hadronic level, so
far we have not yet included the coupled-channel dynamics.
It would be interesting and extremely useful to develop a
coupled-channel calculation in our framework for baryon
resonance excitations in meson-nucleon scattering and meson
photoproduction. This would be a natural way of restoring
unitarity of the theory and provide a microscopic description
for meson-baryon couplings. Nevertheless, with the coupled-
channel effects, one should be able to compare the quark model
form factors with those extracted from the hadronic models.
We wish to report the progress in the near future.
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