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Rapid hydrodynamic expansion in relativistic heavy-ion collisions
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1The H. Niewodniczański Institute of Nuclear Physics, PL-31342 Kraków, Poland

2Institute of Physics, Rzeszów University, PL-35959 Rzeszów, Poland
(Received 24 February 2009; revised manuscript received 9 April 2009; published 30 April 2009)

Hydrodynamic expansion of the hot fireball created in relativistic Au-Au collisions at
√

s = 200 GeV in
3 + 1-dimensions is studied. We obtain a simultaneous, satisfactory description of the transverse momentum
spectra, elliptic flow, and pion correlation radii for different collision centralities and different rapidities. Early
initial time of the evolution is required to reproduce the interferometry data, which provide a strong indication of
the early onset of collectivity. We can also constrain the shape of the initial energy density in the beam direction,
with a relatively high initial energy density at the center of the fireball.
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I. INTRODUCTION

A multitude of experimental data from the Relativistic
Heavy Ion Collider (RHIC) indicate that dense, collectively
expanding matter is created in ultrarelativistic nuclear col-
lisions [1–4]. Ratios of multiplicities of different particles
produced in central collisions can be described assuming
chemical equilibration of particle abundances [5–10]. Trans-
verse momentum spectra of particles produced at central
rapidities are thermal up to transverse momenta of about
2 GeV/c. Particle spectra result from a collective, transverse
expansion of the matter coupled with subsequent thermal
emission [11,12]. Possible rescattering and resonance decays
have been modelled and the conclusion, that at some stage of
the expansion a dense locally equilibrated fireball is formed, re-
mains unchanged [13,14]. Another measured quantity directly
resulting from the collective expansion is the elliptic flow.
For non-zero impact parameters the fireball is azimuthally
asymmetric in the transverse plane, and its expansion imprints
the momentum distribution of final hadrons with measurable
azimuthal asymmetry [15–18]. The existence of the dense
matter is demonstrated in yet another way by the observation
of the attenuation of the production of high energy hadrons
in nuclear collisions. This effect is due to the energy loss of
energetic partons while traversing the dense fireball [19–24].

Relativistic hydrodynamics is very well suited for the
description of the collective phase of the fireball expansion
[14,16,25–37]. Assuming local thermal equilibration, perfect
fluid hydrodynamics can be used. Starting from an initial
energy density profile, the fluid expands and cools down.
In the process, gradients of the pressure cause the acceleration
of the fluid elements and collective flow velocity is formed. In
the longitudinal (beam) direction Bjorken flow with velocity
vz = z/t is usually assumed in the initial conditions. On the
other hand, the appearance of a substantial transverse flow
can be considered as a robust signature of the formation of
strongly interacting matter in the overlap region of heavy-ion
collisions. Most of the hydrodynamic calculations modeling
nuclear collisions at RHIC energies assume boost-invariance
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[38] in the beam direction. Such approaches are effectively
2 + 1-dimensional (2 + 1D) and are restricted to central
rapidities. Existing experimental data outside of the central
rapidity region on particle multiplicity and elliptic flow show
that at RHIC energies the Bjorken boost-invariance is not
realized. Calculations exist for the general 3 + 1D geometry
of the collision [14,27,28,31,36]. They show that relativistic
hydrodynamics can be applied for a broad range of rapidities
in central and semiperipheral collisions. These studies can
describe transverse momentum spectra and the elliptic flow of
produced particles. On the other hand, Hanbury Brown–Twiss
(HBT) correlations between identical particles cannot be
accounted for [27,39–41]. In the present paper we investigate
3 + 1D hydrodynamic expansion of the fireball and show that
a simultaneous and satisfactory description of the particle
spectra and elliptic flow (for a broad range of rapidities) as
well as of the HBT radii for central rapidities can be achieved.
The key ingredients of the model leading to this success are
the use of a realistic equation of state without a first order
phase transition and a relatively early start up time for the
collective expansion. This hard equation of state and the small
initial time indicate that the initial state is a highly compressed
matter with energy density of up to 100 GeV/fm3 in central
collisions. In this work we use perfect fluid hydrodynamics.
Shear viscosity or hadronic dissipative effects are known to
modify final observables [33,34,42–47], especially the elliptic
flow. The influence of viscosity effects on particle spectra or
HBT radii is more difficult to be explicitly demonstrated, since
such effects can be compensated by a change in the unknown
initial time or energy density profile.

II. HYDRODYNAMIC EQUATIONS AND INITIAL
CONDITIONS

In a perfect fluid each element is locally in thermal
equilibrium. At each point the fluid is characterized by its
four velocity uµ, the energy density ε, and the pressure p. The
energy momentum tensor is

T µν = (ε + p)uµuν − gµνp. (2.1)
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FIG. 1. (Color online) Temperature dependence of the velocity of
sound squared [48]. The solid line corresponds to the default equation
of state used, whereas the dashed line represents an equation with a
soft point around Tc = 170 MeV.

Hydrodynamic equations

∂µT µν = 0 (2.2)

in the full 3+1D geometry represent four independent
equations, and together with the equation of state allow to
calculate the evolution of the densities and velocities of the
fluid starting from some initial conditions. We use a realistic
equation of state interpolating between lattice data at high
temperature (above the critical temperature Tc = 170 MeV)
and an equation of state of a noninteracting gas of massive
hadrons at lower temperatures [48]. This equation of state
presents only a very moderate softening around the critical
point (solid line in Fig. 1). The use of this realistic equation
of state is the key to the success of 2 + 1D hydrodynamic
description of RHIC data on transverse momentum spectra,
elliptic flow and HBT radii [26,49]. In the Appendix, results
obtained with an equation of state giving a reduction of
the sound velocity around Tc (dashed line in Fig. 1) are
shown for comparison. In the description of the dynamics
of matter at very forward and backward rapidities the effects
of significant, rapidity dependent baryon chemical potential
may become important. Estimates from statistical model fits
[50,51] show that at nonzero rapidities the baryon content
in the fluid is growing. To describe it in a fluid dynamics
framework an additional equation for the baryon current
should appear, and an equation of state depending on the
baryon density must be used. In the present work we use a
lattice QCD inspired equation of state [48], for which only
data a zero baryon density exists. Therefore we calculate a
baron-free hydrodynamic evolution, with the caution that at
large rapidities the description becomes less reliable.

For the modeling of the expansion of the fireball created in
ultrarelativistic collisions it is useful to define the proper time
and space-time rapidity variables

τ =
√

t2 − z2, η = 1

2
log

(
t + z

t − z

)
, (2.3)

with z the beam axis coordinate. The four velocity is
parametrized using the two components of the transverse
velocity ux and uy and the longitudinal fluid rapidity Y

uµ = (γ cosh Y, ux, uy, γ sinh Y ), (2.4)

where γ =
√

1 + u2
x + u2

y . Hydrodynamic equations relate four
unknown functions: the velocity fields Y, ux , and uy and either
the energy or the pressure. In practice the numerical solution
is more stable if instead of the energy density (pressure) the
logarithm of the temperature is used

F = log(T/TL), (2.5)

with TL a constant temperature. The velocities and F are
function of τ, η, x, y and the hydrodynamic equations can be
written in the following form:

DF = −c2
s

[
γ

(
sinh(Y − η)∂τ + cosh(Y − η)

τ
∂η

)
Y

×
(

cosh(Y − η)∂τ + sinh(Y − η)

τ
∂η

)
γ

+ ∂xux + ∂yuy

]
,

Dux = −(
1 + u2

x

)
∂xF − uxuy∂yF

−uxγ

(
cosh(Y − η)∂τ+ sinh(Y − η)

τ
∂η

)
F ,

Duy = −(
1 + u2

y

)
∂yF − uxuy∂xF

−uyγ

(
cosh(Y − η)∂τ

+ sinh(Y − η)

τ
∂η

)
F ,

D(γ sinh Y ) = −cosh Y

[
sinh(Y − η)∂τ + cosh(Y − η)

τ
∂η

+ (
u2

x + u2
y

)(
cosh(Y − η)∂τ

+ sinh(Y − η)

τ
∂η

)]
F

− γ sinh Y
(
ux∂x + uy∂y

)
F , (2.6)

where cs is the sound velocity and

D = uµ∂µ = ux∂x + uy∂y

+ γ

(
cosh(Y − η)∂τ + sinh(Y − η)

τ
∂η

)
. (2.7)

The first of Eqs. (2.6) is the entropy conservation equation
∂µ(uµs) = 0.

The differential equations (2.6) are solved as an evolution in
proper time starting from some initial conditions at τ = τ0. At
the initial time there is no transverse flow (ux = 0 and uy = 0),
the initial longitudinal rapidity follows the Bjorken scaling
flow Y (τ0, η, x, y) = η. Early initial time of the hydrodynamic
evolution τ0 = 0.25 fm/c implies a high energy density in
the initial state. The system evolves for a longer time, which
leads to a stronger transverse as well as longitudinal flow.
Experimental observation of a strong rapidity dependence
of the elliptic flow [52] and of the particle densities [53]
indicates that the Bjorken scaling scenario is not realized at
RHIC energies. It means that a Bjorken scaling plateau in
the initial energy density distribution in space-time rapidity
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cannot extend over a large interval. To illustrate this effect,
we present in the Appendix A results obtained with initial
conditions having a broader distribution in space-time rapidity,
leading to an incorrect shape of the pseudorapidity dependence
of the elliptic flow. In the transverse plane the energy density
is assumed to be proportional to a combination of Glauber
model densities of wounded nucleons and binary collisions.
The initial energy density distribution at impact parameter
b is

ε(τ0) = kf (η − ηsh) [(NA(x, y) + NB(x, y)) (1 − α)

+ 2αNbin(x, y)] . (2.8)

NA and NB are the densities of wounded nucleons from the
right and left moving nuclei, respectively, Nbin is the density
of binary collisions

NA(x, y) = T (x − b/2, y) (1 − exp(−σT (x+b/2, y)/A)) ,

NB(x, y) = T (x + b/2, y) (1 − exp(−σT (x−b/2, y)/A)) ,

Nbin(x, y) = σT (x − b/2, y)T (x + b/2, y), (2.9)

and

T (x, y) =
∫

dzρ(x, y, z) (2.10)

is the thickness function calculated from the Woods-Saxon
density of colliding nuclei

ρ(x, y, z) = ρ0

1 + exp((
√

x2 + y2 + z2 − RA)/a)
. (2.11)

For Au nuclei (A = 197) we take ρ0 = 0.17 fm−3, RA =
6.38 fm, and a = 0.535 fm; the inelastic cross section is
σ = 42 mb. The density of wounded nucleons NA + NB is
used to calculate the total number of participants at each impact
parameter, these numbers are used to fix the impact parameters
corresponding to centrality bins used in the analysis of the
experimental data. The profile in the longitudinal direction is

f (η) = exp

(
− (η − η0)2

2σ 2
η

θ (|η| − η0)

)
(2.12)

with a plateau of width 2η0 = 2.0 units in space-time rapidity,
and Gaussian tails with half-width ση = 1.3. At each point in
the transverse plane the distribution in space-time rapidity is
shifted by the center of mass rapidity of the local fluid [27]

ηsh = 1

2
log

(
NA + NB + vN (NA − NB)

NA + NB − vN (NA − NB)

)
, (2.13)

where vN is the velocity of the projectile in the center
of mass frame. The coefficient of k in Eq. (2.8) is taken
so that the energy density at the center of the fireball at
zero impact parameter is 107 GeV/fm3 at τ0 = 0.25 fm/c.
It corresponds to a temperature of 510 MeV, well above
the critical temperature. The initial distributions for other
impact parameters are obtained from geometrical scaling (2.8)
only, with a contribution of binary collisions α = 0.145 [54].
This provides a satisfactory description of charged particle
multiplicities for centralities 0–40%.

III. EVOLUTION OF THE HOT MATTER

The numerical solution of Eqs. (2.6) is obtained as an
evolution in proper time from initial densities (2.8). The total
entropy (s is the entropy density)

S =
∫

γ cosh(Y − η)s dxdxdη (3.1)

is conserved to the accuracy of less than 0.5%. At the very
beginning of the evolution a very rapid longitudinal expansion
occurs (Fig. 2). The matter at the edges of the plateau
of the energy density distribution is subject to longitudinal
acceleration and eventually the distribution becomes approxi-
mately a Gaussian, that grows wider in time. The longitudinal
acceleration is known to depend on the equation of state
[55] and on possible viscosity effects [56]. For the perfect fluid
and a hard equation of state the longitudinal expansion and
acceleration is significant [55]. An effect not taken into account
in the present calculation, that could modify the longitudinal
acceleration at large rapidities, is the increase of the baryon
chemical potential [50,51] resulting in a change of the equation
of state.

For comparison we calculate a hydrodynamic evolution of
the system assuming a 2 + 1D boost invariant expansion, with
the energy density profile in the transverse plane given by
Eq. (2.8), but without η dependence. The temperature at the
center of the fireball (T = 485 MeV for b = 0) that reproduces
the observed spectra is slightly lower than in the 3 + 1D case.
This is the effect of the additional cooling in the non-boost
invariant geometry due to the longitudinal acceleration. In
3 + 1D the longitudinal fluid rapidity is larger than in the
Bjorken scaling solution (Fig. 3). At the center of the fireball
the temperature drops down following the Bjorken formula
T ∝ τ−c2

s (Fig. 4) up to τ = 2–3 fm/c. Later cooling from
the transverse expansion and in the case of 3 + 1D additional
longitudinal cooling set in. As a result the life-time of the
2 + 1D and 3 + 1D systems is very similar, in spite of the fact
that in the later case the initial energy density is a factor 1.25
higher.

The hydrodynamic evolution is followed until freeze-out,
that is assumed to happen at fixed temperature, with particles
emitted from the freeze-out hypersurface without further
rescattering. In the following, we present results for two
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FIG. 2. (Color online) Energy density as function of space-time
rapidity for different proper times τ = 0.25, 2, 4, 6 fm/c (dashed-
doted, solid, dotted, and dashed lines, respectively).
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FIG. 3. (Color online) Deviation of the longitudinal fluid rapidity
from the Bjorken flow Y (τ, η, x, y) − η for different proper times
τ = 2, 4, 6 fm/c (solid, dotted, and dashed lines, respectively).

different freeze-out temperatures Tf = 150 and 165 MeV.
The freeze-out hypersurface is a three-dimensional surface
in τ, η, x, y coordinates. Its shape can be deformed due
to a strong collective flow and is deformed in the η − x

direction due to the shift in the space-time rapidity in the
initial conditions (2.13). In Figs. 5 and 6 is shown a cut
(τ − x) through the freeze-out hypersurface at the freeze-out
temperature Tf = 150 MeV. At the central space-time rapidity
η = 0 the freeze-out hypersurfaces in the 3 + 1D and 2 + 1D
calculations are very similar. For central collisions the dense
system exists for 10 fm/c. This short life-time of the fireball
results in values of extracted HBT radii compatible with the
experiment. For large space-time rapidities the transverse size
and the life-time of the fireball is smaller. The asymmetric
shape of the freeze-out hypersurface for η �= 0 is the result of
the tilt in the initial flow of the matter [Eq. (2.13)].

Most general freeze-out hypersurfaces realized in the
hydrodynamic expansion can be parametrize using three
angles:

τHS = d(θ, ζ, φ) sin ζ sin θ + τ0,

ηHS = d(θ, ζ, φ)


cos θ,

xHS = d(θ, ζ, φ) cos ζ sin θ cos φ,

yHS = d(θ, ζ, φ) cos ζ sin θ sin φ;
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FIG. 4. (Color online) Temperature at the center of the fireball as
function of the proper time from the 3 + 1D (dashed-dotted line) and
from the 2 + 1D (solid line) evolutions (b = 2.1 fm).
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FIG. 5. (Color online) Freeze-out hypersurface Tf = 150 MeV,
for the impact parameter b = 2.1 fm in the plane (t − x), y = 0, for
η = 0 (dashed line) and η = 3 (dotted line). The solid line represents
the freeze-out hypersurface for the 2 + 1D evolution.

0 � θ � π,

0 � ζ � π/2,

0 � φ < 2π, (3.2)

 is a constant length.
Following the Cooper-Frye prescription [57], particle spec-

tra are given by

E
d3N

dp3
=

∫
d�µpµf (pµuµ). (3.3)

d�µ = εµναβ∂θx
ν∂ζ x

α∂φxβdθdζdφ is the integration element
on the freeze-out hypersurface and f is the equilibrium Bose
or Fermi momentum distribution. The four-momentum of the
emitted particle is

pµ = (m⊥y, p⊥ cos φp, p⊥ sin φp,m⊥y), (3.4)

and

pµuµ = m⊥γ cosh(Y − y) − p⊥(ux cos φp + uy sin φp),

(3.5)

d�µpµ = 1


d2 sin θ (cos ζd2 sin ζ (p⊥ cos ζ cos(φ − φp)

+m⊥ cosh(y − ηHS) sin ζ ) sin3 θ

− cos ζ sin θ (p⊥τ0 cos ζ cos θ cos(φ − φp)
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FIG. 6. (Color online) Same as Fig. 5 but for b = 7.1 fm.
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+m⊥(τ0 cos θ cosh(y − ηHS) sin ζ

− sin θ sinh(y − ηHS)))∂θd

+ τ0(cos ζ (−m⊥ cos ζ cosh(y − ηHS)

+p⊥ cos(φ − φp) sin ζ )∂ζ d + p⊥ sin(φ − φp)∂φd)

+ d sin θ (cos ζ (p⊥τ0 cos ζ cos(φ − φp) sin θ

+m⊥(τ0 cosh(y − ηHS) sin ζ sin θ

+ cos θ sinh(y − ηHS)))

+ sin ζ (− cos ζ cos θ (p⊥ cos ζ cos(φ − φp)

+m⊥ cosh(y − ηHS) sin ζ ) sin θ∂θd

+ cos ζ (−m⊥ cos ζ cosh(y − ηHS)

+p⊥ cos(φ − φp) sin ζ )∂ζ d

+p⊥ sin(φ − φp)∂φd)))dθdζdφ. (3.6)

After the hydrodynamic evolution, the three-dimensional
hypersurface parametrized by the variables θ, ζ, φ is ex-
ported to the statistical emission and resonance decay code
THERMINATOR [58]. The density (3.3) [with Eqs. (3.5) and
(3.6)] is implemented in the code. THERMINATOR generates
events in two steps. First 380 different kind of particles
and resonances emitted from the hypersurface are generated
according to the density (3.3), then resonances are allowed to
decay.

IV. PARTICLE SPECTRA, FLOW, CORRELATION RADII

Charged particle distributions in pseudorapidity ηPS =
1
2 log(p+pz

p−pz
) have been measured for different centralities.

The 3 + 1D hydrodynamic model can reproduce the data
for centralities 0–40% (Fig. 7). We show results for two
freeze-out temperatures Tf = 165 and 150 MeV. The first one
is close to the estimate of the chemical freeze-out temperature
in Au-Au collisions [5,7,8]. When decreasing the freeze-out
temperature particle multiplicity goes down, but the effect

PS
η

-6 -4 -2 0 2 4 60
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800 PHOBOS c=0-6%,...,45-55%
BRAHMS c=0-5%

=150MeVfT
=165MeVfT

P
S

η
d

N
/d

FIG. 7. (Color online) Pseudorapidity distribution of charged
particles for centrality classes 0–6%, 6–15%, 15–25%, 25–35%,
35–45%, and 45–55% calculated for the freeze-out temperatures
Tf = 165 and 150 MeV (solid and dashed lines, respectively)
compared to PHOBOS Collaboration data (dots) [59]. The squares
represent the BRAHMS Collaboration data for centrality 0–5% [60].

is small. It gives confidence to our model, that assumes
a chemically equilibrated fluid down to Tf = 150 MeV.
For lower freeze-out temperatures the difference between
a chemically equilibrated and a partially equilibrated fluid
becomes significant [27]. The centrality dependence that we
predict comes solely from the geometrical scaling of the
fireball density according to Eq. (2.8), other parameters (in
particular the freeze-out temperature) remain unchanged. On
general grounds, one expects the hydrodynamic model to break
down for very peripheral collisions. The interaction region
in peripheral collisions is not dense enough to equilibrate
completely. Experimental data on the centrality dependence
of strangeness production and of particle spectra suggest that
at impact parameters b > 9 fm [61–63] less than 70% of the
interaction region can be treated as a thermally equilibrated
fireball.

For central collisions c = 0–5% we calculate the transverse
momentum spectra of pions and kaons at different rapidities.
In the whole rapidity range where identified particle spectra
are available [53], we find an excellent agreement between the
results of the hydrodynamic evolution coupled with statistical
emission and the BRAHMS Collaboration data (Figs. 8 and 9).
The best agreement is achieved for a freeze-out temperature
of 150 MeV. This very good agreement between the data and
the hydrodynamic model indicates that the matter created in
central collisions behaves as a thermally equilibrated (in the
rapidity range −3.5 < y < 3.5) although not boost-invariant
fireball.

A different way of testing thermalization in Au-Au colli-
sions is to compare predictions and experimental data for trans-
verse momentum spectra at different centralities. In Fig. 10
are shown π+ spectra for p⊥ up to 3 GeV/c and centralities
in the range 0–50%. We find that hydrodynamic calculations
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FIG. 8. (Color online) Transverse momentum spectra of π+ for
different rapidity windows ranging from −0.1 < y < 0 to 3.4 < y <

3.66 for centrality 0–5% (results for different rapidity bins are scaled
down by powers of 1/10). The dots represent the data of the BRAHMS
Collaboration [53].
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FIG. 9. (Color online) Transverse momentum spectra of K+ for
different rapidity windows ranging from −0.1 < y < 0 to 3.2 < y <

3.4 for centrality 0–5% (results for different rapidity bins are scaled
down by powers of 1/10). The dots represent the data of the BRAHMS
Collaboration [53].

with Tf = 150 MeV are in very good agreement with the
experiment for all centralities and transverse momenta p⊥ <

2 GeV/c. Pions with higher transverse momenta originate
mostly from hard processes and cannot be described as emitted
thermally from a collectively expanding fluid. The agreement
between the experimental spectra and the results of the
calculation for K+ (Fig. 11) is limited to centralities 0–30%.
For centrality bins 30–40% and 40–50% the calculation

 [GeV/c]
T

p
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]
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 d
y)

 [
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FIG. 10. (Color online) Transverse momentum spectra of π+

for different centrality classes 0–5%, 5–10%, 10–15%, 15–20%,
20–30%, 30–40%, and 40–50% (results for different centralities
are scaled down by powers of 1/10) calculated for the freeze-out
temperatures Tf = 165 and 150 MeV (solid and dashed lines,
respectively) compared to PHENIX Collaboration data (dots) [64].
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FIG. 11. (Color online) Same as Fig. 10 but for K+.

overpredicts the kaon multiplicity, even though the slope of
the spectra is similar in the model and in the data. The reduced
strangeness production in peripheral collisions can be an
effect of energy and momentum conservation [65], canonical
suppression [66], or reduced size of the thermally equilibrated
fireball [61,63]. In Figs. 10 and 11 are also shown the results
of a 2 + 1D hydrodynamic calculation for two centralities
0–5% and 20–30% (dotted lines, indistinguishable from the
3 + 1D results). The resulting spectra for central rapidities are
very similar to the ones from the 3 + 1D calculations, but are
obtained after the expansion of the matter with smaller initial
energy density.

The elliptic flow represents a very sensitive probe of the
collective behavior of the dense matter [18]. The azimuthal
asymmetry with respect to the reaction plane is described by
the elliptic flow coefficient v2

dN

p⊥dp⊥dφp

= dN

p⊥dp⊥
(1 + 2v2(p⊥) cos(2φp) + · · ·). (4.1)
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FIG. 12. (Color online) Pseudorapidity dependence of the elliptic
flow coefficient for charged particles for centralities 15–25% for
freeze-out temperatures Tf = 150 and 165 MeV (dashed and solid
lines, respectively), data for the PHOBOS Collaboration are denoted
by dots [52].
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FIG. 13. (Color online) Transverse momentum dependence of the
elliptic flow coefficient for protons (dotted line and dots) and for π+

and K+ (solid line and triangles). Calculations are performed for
Tf = 150 MeV, data are from the PHENIX Collaboration [67].

The elliptic flow coefficient for charged particles has been
measured for a broad range of pseudorapidities [52], showing
a strong pseudorapidity dependence. There is no sign of a
Bjorken plateau for central rapidities. To reproduce the shape
of the v2 pseudorapidity dependence, initial conditions in
energy density with a relatively narrow plateau in space-time
rapidity must be chosen [Eq. (2.12) [14,33]. Such initial
conditions, combined with a hard equation of state and an early
initial time of the evolution result in a complete disappearance
of the Bjorken plateau in the final hadron distributions. It must
be stressed however, that it does not mean that for noncentral
rapidities the evolution is not described by hydrodynamics and
statistical emission. The model model works very well and
describes the observed spectra for −3.5 < y < 3.5 (Figs. 8
and 9). The longitudinal expansion and the smaller size of
the system at non-zero space-time rapidities reduce the final
elliptic flow. The elliptic flow as function of p⊥ for identified
particles is shown in Fig. 13. Hydrodynamic calculations
describe the elliptic flow for mesons with p⊥ < 1.5 GeV/c,
but to reproduce the saturation of v2 for large p⊥ dissipative or
viscosity effects must be invoked. The elliptic flow for baryons
is overpredicted for the freeze-out temperatures chosen.

Pairs of identical particles emitted from the thermal source
can be used to extract the size of the fireball from the
interferometry measurement [69–72]. The statistical emission
code THERMINATOR [58] provides the space-time points of
particle creation. For a set of generated events the correlation
function is constructed from same-event and mixed-event
pairs [73]. Such a general procedure allows for an easy imple-
mentation of experimental cuts, final interaction or Coulomb
corrections [74,75] and can be also applied to non-identical
particle correlations [76]. The extracted multidimensional
correlation functions are parametrized by the Bertsch-Pratt
formula [77,78]

C(k⊥, qout, qside, qlong) = 1 + λ exp(−R2
sideq

2
side

−R2
outq

2
out − R2

longq
2
long). (4.2)
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FIG. 14. (Color online) HBT radii for Au-Au collisions at
centrality 0–5%. 3 + 1D calculations with Tf = 165 MeV (solid
line) and Tf = 150 MeV (dashed line), 2 + 1D calculation with Tf =
150 MeV (dotted line) and STAR Collaboration data [68] (squares)
are shown.

The fit parameters R (HBT radii) are extracted for fixed bins
of pair total transverse momenta k⊥. The experimental radii
Rout, Rside, and Rlong are well described by the hydrodynamic
calculations with Tf = 150 MeV (Fig. 14). We notice that
the 3 + 1D and 2 + 1D calculations that both describe the
transverse momentum spectra, give also very similar HBT
radii. Similarity in the spectra means that the transverse
collective flow is the same; together with the similarity in the
freeze-out hypersurfaces (Fig. 5) it explains why the HBT radii
from the 3 + 1D and 2 + 1D evolutions come out so close. The
discrepancies between the calculations and the data are smaller
than 10%. The ratio Rout/Rside from the model comes out
close to the data as well. This remarkable property of modern
hydrodynamic calculations, which solves the so-called RHIC
HBT puzzle, has been noticed in Ref. [26] based on 2 + 1D
simulations. The present study is the first 3 + 1D calculation
using the same equation of state and an early initial time.

V. CONCLUSIONS

We present an extensive study of the 3 + 1D hydrodynamic
model of the evolution of the fireball. Compared to other
similar calculations we use a different equation of state [48]
and an early initial time to start up the expansion. As a
result we find a very good agreement between the calculated
transverse momentum spectra for pions and kaons for different
centralities and a broad range of rapidities. The fireball formed
in Au-Au collisions at

√
s = 200 GeV is thermalized for

centralities 0–40%. The result is remarkable, since we use
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an energy density profile for different impact parameters
predicted from the Glauber model geometrical scaling, with
an overall normalization fixed for most central collisions. It is
not surprising that for peripheral collisions this scaling breaks
down [62], and we overpredict the size of the thermalized
fireball. The thermal description of the production of strange
particles is subject to even more restrictions. As a result the
spectra of kaons are well reproduced for centralities 0–30%.
For more peripheral collisions the number of observed kaons
is smaller than predicted in the model, signaling an incomplete
chemical equilibration of the interaction region.

The calculation reproduces the observed spectra up to
transverse momenta of 2 GeV/c, in a wider range than
most of the previous calculations. This indicates that a long
hydrodynamical evolution generates the correct amount of
collective flow. For central collisions we obtain an excellent
description of pion and kaon spectra for noncentral rapidities.
This demonstrates that the fireball is thermalized and that
particle production is statistical for all rapidities in the range
±3.5 units. This confirms in a dynamical calculation the
applicability of the thermal fits from Refs. [50,51]. However,
the rapidity dependence of the baryon chemical potential found
in these fits cannot be described in our hydrodynamic model
without explicit baryon current. The elliptic flow shows a
strong pseudorapidity dependence, that can be reproduced
assuming a collective thermal evolution but with reduced initial
energy density at nonzero space-time rapidities.

Another important result is the satisfactory description
of pion interferometry radii. Assuming a rapid expansion
of the system, the right amount of transverse flow and a
reasonable life-time of the fireball are obtained. This gives
HBT radii Rout, Rside, and Rlong similar as in the experiment.
The ratios Rout/Rside come out to within less than 10% of the
measured values. We also show that very similar HBT radii
can be obtained from a 2 + 1D hydrodynamic calculation with
correctly chosen initial conditions. It must be stressed however,
that the initial energy density that reproduces the experimental
spectra and HBT radii is 86 GeV/fm3 at the maximum in
2 + 1D, whereas it is 107 GeV/fm3 in 3 + 1D. As mentioned,
our 3 + 1D calculation describes particle emission at nonzero
rapidities as well.
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APPENDIX: DEPENDENCE ON THE INITIAL TIME AND
THE EQUATION OF STATE

In this section results obtained by modifying the parameters
of the initial state in the hydrodynamic evolution are presented.
The quality of our description of the experimental data relies
on the chosen early initial time of the evolution τ0 = 0.25 fm/c
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FIG. 15. (Color online) Pseudorapidity dependence of the elliptic
flow coefficient for charged particles for centralities 15–25% for τ0 =
0.25 fm/c and a soft equation of state (solid line), for τ0 = 1 fm/c
and the default equation of state (dashed-dotted line) compared to
the default choice of parameters (dashed line), data for the PHOBOS
Collaboration are denoted by dots [52].

and the relatively hard equation of state. To check the
dependence of the results on these choices we perform two
additional calculations: the first one with a larger initial
time τ0 = 1 fm/c and the same velocity of sound and a
second one with τ0 = 0.25 fm/c but with a velocity of sound
corresponding to a softening of the equation of state at the
critical temperature (dashed line in Fig. 1). First the initial
densities for the hydrodynamic evolution are adjusted to
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FIG. 16. (Color online) HBT radii for Au-Au collisions at
centrality 0–5%. 3 + 1D calculations with τ0 = 0.25 fm/c and a soft
equation of state (solid line), for τ0 = 1 fm/c and the default equation
of state (dotted line) compared to the default choice of parameters
(dashed line), STAR Collaboration data [68] are shown by squares.
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reproduce the final spectra and charged particle multiplicities.
The energy density profile is taken of the same form as in the
default calculation [Eq. (2.8)], but with modified parameters.
When the starting time is increased to 1 fm/c the initial
temperature must be reduced, the parameter ε0 corresponds
in this case to a temperature of 330 MeV, also the longitudinal
profile should have a broader plateau with η0 = 1.4, the
freeze-out temperature is Tf = 140 MeV. Following the same
methodology, in the evolution using the equation of state with
a softening around Tc we find the maximal temperature
425 MeV, the plateau half-width η0 = 1.2 and the freeze-out
temperature 140 MeV. With these choices the distribution
dN/dη of charged particles and the transverse momentum
spectra of pions and kaons are reproduced.

With the initial conditions fixed by the multiplicity and
transverse momentum spectra, predictions of the hydrody-
namic model for the elliptic flow and the HBT radii can be
made. In Fig. 15 are shown the results for the pseudorapidity
dependence of the elliptic flow coefficient for charged parti-
cles. The reduced evolution time for the case with τ0 = 1 fm/c

and the reduced longitudinal acceleration for the case of the
soft point equation of state require the use of a broader initial
distribution of matter in the space-time rapidity. This leads to a
reduced dependence of v2 on pseudorapidity, with a noticeable
flattening in the central region (solid and dashed-dotted lines in
Fig. 15). The form of the pseudorapidity dependence obtained
with the default, hard equation of state and early start up time
follows closer the experimental data (Fig. 12).

The interferometry radii are sensitive to the size, flow and
life-time of the emitting source. It has been advocated that a
change in the evolution due to a first order phase transition
would lead a strong increase of the ratio Rout/Rside [79]. The
moderate softening of the equation of state considered in this
section is not a first order phase transition, but still it leads an
increase of the above mentioned ratio (solid line in Fig. 16).
Also a latter start up time of the evolution means that the
fireball has to live longer to accumulate the right amount of
collective flow an the agreement with the HBT data worsens.
Both modification of the initial conditions discussed in this
section lead an overshooting of the measured Rlong radii.
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