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Universal flow in the first stage of relativistic heavy ion collisions
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In the first moments of a relativistic heavy ion collision explosive collective flow begins to grow before the
matter has yet equilibrated. Here it is found that as long as the stress-energy tensor is traceless, the initial growth of
the flow is independent of whether the matter is composed of fields or particles, equilibrated or not, or whether the
stress-energy tensor is isotropic. By comparing several models, it appears that this equivalence extends for times
of the order of 1 fm/c. This is sufficiently long to allow one to initialize the flow in hydrodynamic calculations
independently of the early physics, and reduces the uncertainty involved in modeling the collision.
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I. INTRODUCTION AND BASIC THEORY

At ultrarelativistic energies, heavy ions collide and produce
enormous energy densities, exceeding several GeV/fm3, well
above the threshold for dissolving hadrons into partons and
melting the QCD vacuum condensates [1]. Due to partial
transparency the deposited energy is borne with a large
collective velocity gradient along the beam axis (which will
be labeled the z axis). In the limit of infinite beam energy,
the collective expansion along the z axis is boost invariant
[2], with vz = z/t , which corresponds to zero acceleration
in the z direction. Since the matter has no initial collective
velocity in the transverse direction, transverse expansion
is pressure driven, with the transverse collective velocities
growing until breakup at which time particles free-stream
toward the detector. Several clear signals of the collective
nature of the transverse expansion have been observed. First,
the average transverse energy of protons, kaons and pions are
ordered by mass [3], as expected since the collective velocity
adds more energy to a more massive particle. Secondly,
for noncentral collisions the initial transverse energy density
profile is anisotropic, which leads to anisotropic transverse
pressure gradients and thus anisotropic flow. The observable,
v2 ≡ 〈cos 2(φ − φr.p.)〉, quantifies the anisotropy, where φr.p.

is the angle of the reaction plane. Observed values of v2

reach into the tens of percent [4] and are consistent with
expectations of hydrodynamic flow [5]. Finally, two particle
correlations, which are measured as functions of the two
momenta p1 and p2, provide six-dimensional femtoscopic
pictures of outgoing phase space clouds. The six-dimensional
structure has numerous features expected from boost-invariant
flow along the z axis and from strong transverse flow [6].

Comparing data to simple models reveals solid evidence
for the existence of strong collective flow. However, detailed
comparison with full dynamic models are required to infer
quantitative information about the equation of state, viscosity,
or other bulk properties of QCD matter. Modeling relativistic
heavy ion collisions is complicated since the matter traverses
three distinct stages during the ∼15 fm/c expansion, each
of which involves different degrees of freedom. In the final
5–10 fm/c of the collision, thermal equilibrium is lost and
hydrodynamics, even viscous hydrodynamics, is inapplicable.
Collisions at this point are binary and microscopic simulations

or Boltzmann codes can be applied with some confidence [7,8].
In the intermediate stage, local equilibrium is sufficiently
maintained to justify viscous hydrodynamics [9,10]. This is
fortunate, since the quantities of interest to describe bulk
properties (temperature, pressure, and viscosity) form the basis
of the description. It is during this stage that the majority of
collective flow develops. The first stage, times <∼1 fm/c, is
the most uncertain and theoretically contentious. Descriptions
might be based on classical QCD fields [11,12], or on partons
[13]. The partons might be highly nonequilibrated with a
significant fraction of the energy tied up in high-energy
jets [14]. The initial transverse acceleration is driven by the
conservation laws of the stress-energy tensor, ∂αT αβ = 0,
and given the very different stress-energy tensors implied by
the proposed models, one might expect very different flows
to be generated during the early stage. The importance of
understanding the early phase is underscored by noting that
although the pre-hydrodynamic stage lasts only ∼1 fm/c, the
acceleration during that stage has a relatively higher impact on
the evolution of the collision. This is for the same reason that
the start plays a relatively large role in a 100-m sprint.

The purpose of this article is to explain a nonintuitive
result—that the impulse to the collective flow provided by
the initial stage (the proper time τ < 1 fm/c) is identical
for a large class of simple models, even though the pictures
yield very different evolutions of the stress energy tensor. This
equivalence only refers to the flow as defined by

Fi ≡ T0i

T00
, (1)

where T00 and T0i are the elements of the stress energy
tensor describing the energy and momentum densities. The
requirements for the universal behavior are threefold:

(i) Longitudinal flow has a boost-invariant profile, vz =
z/t .

(ii) The stress-energy tensor is traceless.
(iii) The anisotropy of the spatial components of the

stress energy tensor is independent of the transverse
coordinate and depends only on the Björken time
τ ≡ √

t2 − z2.

The first assumption is reasonable for 100A GeV collisions
at the Relativistic Heavy Ion Collider (RHIC) and very
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well justified for the very high energy heavy ion collisions
to be performed at the LHC. In a boost invariant system,
the matter does not accelerate longitudinally since there are
no pressure gradients along the beam axis. At RHIC, the
longitudinal rapidity distribution has a Gaussian spread of
≈2 units [15,16]. For this width of rapidity distribution, the
deviation from a boost-invariant flow profile (i.e., vz = z/t) is
at the <∼10% level [17]. The second assumption is well satisfied
by any description based on massless particles or weakly
interacting gauge fields, and does not depend on whether
the particles are thermalized, or whether the field directions
are randomized. For energy densities in the neighborhood
of the phase transition, ε <∼ 1 GeV/fm3, this assumption is
clearly invalid. However, during the first 1 fm/c of a collision
at RHIC, average energy densities are >∼10 GeV/fm3, and
the assumption is expected to be valid to the 10% level
[18]. At later times, when the energy densities fall into the
critical region, the flow fields are expressly nonuniversal and
nontrivial structures can develop such as shock waves. The
final assumption is more subtle: for instance, if a system
suddenly changes from longitudinal fields to thermalized
particles, then the anisotropy of the stress-energy tensor will
also change suddenly. As a measure of the anisotropy, one can
define the quantity,

κ ≡ T⊥/T00, T⊥ ≡ Txx = Tyy, (2)

and if κ varies mainly with τ , rather than with the transverse
coordinates, the final criterion for universality is satisfied. For
our purposes, we consider the earliest times, where the flow
velocities are small and the anisotropies are the same in the
matter and fluid frames. Once the criteria for universal behavior
are satisfied, the hydrodynamic stage can be initiated with
known flow fields, which should depend only on the shape
of the initial energy density profile. The simple expression
for the flow fields derived here reduces, if not eliminates, the
need for detailed modeling of the initial stage, and isolates
the final evolution from contentious issues concerning the
preequilibrium stage.

To put the aforementioned result into context and emphasize
the role of longitudinal flow, we first consider a system with
no longitudinal flow, and with translational invariance along
the z axis. The stress-energy tensor then becomes

T αβ =

⎛
⎜⎜⎜⎝

T00 Tx0 Ty0 0

Tx0 T⊥ 0 0

Ty0 0 T⊥ 0

0 0 0 Tzz

⎞
⎟⎟⎟⎠ . (3)

This expression was found by using the symmetries that Tij is
diagonal with Txx = Tyy = T⊥ at early times. If one assumes
small velocities vi, Ti0 = (Tii + T00)vi . The equations of mo-
tion for the stress-energy tensor, ∂tT0i = −∂jTij then give the
usual expressions for the acceleration,

∂vi

∂t
= − ∂iTii

T00 + Tii

. (4)

TABLE I. Elements of the stress energy tensor for simple models
at early times. A wide variety of values for the stiffness of the
transverse equation of state are represented by the models.

Model T⊥ Tzz T00

Longitudinal electric field T00 −T00 ∼constant
Free streaming massless particles,
two-dimensional relativistic gas or
fields from incoherent longitudinal
currents

T00/2 0 ∼1/t

Ideal hydrodynamics of massless gas T00/3 T00/3 ∼1/t4/3

Using the definition of flow from Eq. (1) and assuming t is
small,

Fi = −∂iTii

T00
t = −κ

∂iT00

T00
t. (5)

This immediately gives the impression that the transverse
flow is driven by the transverse stiffness κ , which differs
substantially for different pictures of the initial stage listed
in Table I.

However, the inclusion of longitudinal expansion signif-
icantly alters the expression for the radial acceleration. To
see this we consider the full expression for the stress energy
tensor including longitudinal expansion. For a boost-invariant
expansion, one needs only to boost the stress energy tensor
along the z axis by a velocity vz = z/t . For small z,

T αβ =

⎛
⎜⎜⎜⎜⎝

T00 Tx0 Ty0 (T00 + Tzz)z/t

Tx0 T⊥ 0 T0xz/t

Ty0 0 T⊥ T0yz/t

(T00 + Tzz)z/t T0xz/t T0yz/t Tzz

⎞
⎟⎟⎟⎟⎠ .

(6)

The equations of motion for z = 0 then become

∂tT0x = −∂xTxx − ∂yTxy − ∂zTxz = −∂xT⊥ − T0x

t
. (7)

Similarly, conservation of the energy current yields

∂tT00 = −∂xT0x − ∂yT0y − ∂zT0z

= −1

t
(T00 + Tzz) − (

∂xT0x + ∂yT0y

)
. (8)

Combining Eqs. (7) and (8),

∂t

(
T0i

T00

)
≈ −∂iTii

T00
+ TzzT0i

T 2
00t

. (9)

Only early times are considered so terms of order (T0i/T00)2

were discarded. Since T0i/T00 rises linearly in time, one can
solve for the effective acceleration α(x) defined by

αi(x) ≡ ∂t

(
T0i

T00

)
,

T0i

T00
= αi(x)t, for small t. (10)

Plugging Eq. (10) into Eq. (9), one can solve for α,

αi(x) = − ∂iTii

T00 − Ti

= −κ∂iT00

2T⊥
= −∂iT00

2T00
, (11)
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which is independent of κ . The principal result of this study
concerns the leading small-t growth of flow,

T0i

T00
≈ −∂iT00

2T00
t. (12)

It is surprising that the flow initially grows independently
of the anisotropy of the stress-energy tensor, i.e., it does
not depend on κ . For the case of ideal hydrodynamics,
T0x/T00 increases 50% faster than what one would expect
from Eq. (5), which would have been applied if there were
no longitudinal expansion, and in fact reproduces the result of
ideal hydrodynamic results of [19], which assumed a perfectly
two-dimensional world with no longitudinal expansion and a
speed of sound of c2

s = 1/2.
The flow T0i/T00 can determine velocity once one has made

an assumption about the equation of state and viscosity to be
applied in the hydrodynamic stage. Combining the constraint
of Eq. (12) with the Navier-Stokes equation and knowing the
initial profile for T00 is sufficient to determine all of T αβ .
However, the success of this procedure depends on whether
the universal flow persists to sufficiently late times so that the
velocity gradient, dvz/dz ∼ 1/t , has subsided to the point that
the Navier-Stokes conditions for the stress-energy tensor can
be applied. Estimates for such a condition are close to <∼1 fm/c.
The goal of the next section is to exactly calculate T0i/T00 for
several simple models, with widely different anisotropies of
Tij , and see whether the flow remains universal out to times
near 1 fm/c.

Although T0i/T00 has a universal behavior for the models
being considered here, other measures of flow will vary
between models. For example, one might use the collective
velocity, u, of the matter, i.e., the velocity for which an observer
would measure T0i = 0. A common measure of elliptic flow
[10,20] uses the spatial components of the stress-energy tensor,

εp ≡
∫

dxdy(Txx − Tyy)∫
dxdy(Txx + Tyy)

, (13)

which for free particles would be proportional to v2. All
these measures are defined through the stress-energy tensor.
The quantity representing the development of collective flow
should preferably be chosen such that it is preserved during a
rapid change of the microscopic degrees of freedom. Examples
of such a change might be the sudden decay of longitudinal
fields or the rapid isotropization of matter. During such a
transition, the local conservation of energy and momentum
should remain valid, even as any of its ten independent
components are allowed to change suddenly. One can consider
a hypersurface for which the microscopic form of matter is
discontinuous on one side to the other. For example, for one
side of the hyper-surface one might assume longitudinal fields,
while applying ideal hydrodynamics on the opposite side. At
any point on the hypersurface, one can find the four-vector nα

which is orthogonal to the surface. If n2 = +1 it is possible
to boost to the frame where n = (1, 0, 0, 0). In this frame,
neighboring points all undergo the transition simultaneously
and the only discontinuity is in the time direction. If one
integrates the conservation equations across an infinitesimal

time element, one finds the four constraints

0 =
∫ t+δt

t−δt

(∂tT0α + ∂iTiα) (14)

= T α0(x, y, z, t + δt) − T α0(x, y, z, t − δt).

If the hypersurface were defined by a unit four-vector where
n2 = −1, one could boost to a frame where the discontinuity
was locally static. In that case one would integrate the con-
servation equations across the surface, and if the discontinuity
were in the z direction, one would find

0 = T αz(x, y, z + δz, t) − T αz(x, y, z − δz, t). (15)

These are the Rankine-Hugoniot conditions for a shock wave.
For either case, energy-momentum conservation across a
discontinuity is stated as

nαT αβ(x+) = nαT αβ(x−). (16)

The sudden changes of state most often imposed in
relativistic heavy-ion collisions, e.g., changing from fields
to particles, tend to be invoked at a constant Björken time,
τ = √

t2 − z2, which corresponds to n = (1, 0, 0, 0) for z = 0.
This would force T00 and T0i to remain constant across the
discontinuity, and the flow as defined by T0i/T00 would be
unchanged. In contrast, since both the flow velocity u and the
elliptic anisotropy εp require using the spatial components
of the stress-energy tensor for their defnition, they would
change suddenly in such a prescription without violating
energy-momentum conservation. Thus, these measures can
provide misleading insight into whether flow has developed.
For instance, if one considers free streaming particles, εp

remains zero. But if those particles instantaneously thermalize
at a constant Björken τ , the stress-energy tensor will suddenly
adjust itself while preserving the four spatial components T0α .
At this point, εp suddenly becomes finite. Furthermore, to
the degree that T0i/T00 is universal, εp will be determined
by the new state of matter rather than the previous state.
For example, if one believes the matter becomes suddenly
hydrodynamic at τ = 1 fm/c, all the models listed in Table I
would lead to the same flow for τ � 1 fm/c, with the same
collective velocities u and the same εp. In the next two
sections, simple examples are presented where the universality
of flow is tested for sudden transitions to hydrodynamics.
Similar universal behavior would apply if the transition were to
Navier-Stokes hydrodynamics, though the collective velocities
u and the elliptic anisotropy εp would be different than for
transitions to ideal hydrodynamics, and would depend on the
viscosity η. Thus, once one has chosen a time τ0 at which to
begin the hydrodynamic prescription, along with the viscosity
coefficient, the collective velocity at τ0 is then independent of
the properties of the matter assumed for τ < τ0, as long as the
three criteria listed earlier are satisfied.

II. THREE MODELS

As discussed in the previous section, one expects Navier-
Stokes hydrodynamics to become valid for times τ � 1 fm/c.
For Navier-Stokes hydrodynamics with a given equation of
state and viscosity, the stress-energy tensor is completely
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defined by three numbers: ux, uy and the energy density. The
first goal of this section is to see whether the flow,Fi , is similar
for three models, with very different anisotropies. Secondly,
with the assumption that the matter suddenly thermalizes at
τ = 1 fm/c, we will use the continuity of T00 and T0i to
calculate the new stress energy tensor, which then defines the
collective velocity ui and the elliptic anisotropy εp. These
thermalized values should then be universal. Since this is only
for the purposes of demonstration, we will assume the new
state has zero viscosity.

We consider exact solutions for three different models:

(i) Ideal hydrodynamics of an ultrarelativistic gas with
P = ε/3.

(ii) Coherent noninteracting electromagnetic fields (field
points in the same direction initially) that follow
Maxwell’s equations. This can be thought of as the
field generated by two oppositely charged capacitor
plates receding at ±c.

(iii) Incoherent electromagnetic fields generated by a ran-
dom ensemble of ± charges receding from one another
at ±c.

Each of these cases involves a traceless stress-energy tensor,

Txx + Tyy + Tzz = ε, (17)

but with very different asymmetries between the initial
transverse pressure Txx = Tyy and the longitudinal pressure
Tzz. The measure of this initial anisotropy, κ , which is the
ratio of the transverse pressure Txx to the energy density ε

as defined in Eq. (2), is 1/3 for the hydrodynamic model,
1/2 for the incoherent fields and unity for the coherent
fields. Noninteracting massless particles would also result in
κ = 1/2. Colliding particles with insufficient cross section
to thermalize would have 1/3 < κ < 1/2. Thus, these three
models seem to well span the range of possibilities. For the
solutions presented in the next section, each model is initialized
with the same transverse energy density profile and with zero
collective velocity.

The first model is ideal hydrodynamics with a simple
equation of state P = ε/3. For ideal hydrodynamics one
assumes that the stress-energy tensor has the form

T αβ = (P + ε)uαuβ − Pgαβ. (18)

For this model Txx = Tyy = T00/3 at early times, i.e., κ =
1/3. The model is solved numerically, beginning at τ = 0.
Relativistic ideal hydrodynamics has been applied numerous
times for modeling RHIC collisions, beginning with [21]
and for a review see [5]. Solving the equation of motion,
∂αT αβ = 0, is complicated by the fact that the energy density
is singular at τ = 0. For that reason, the equations of motion
are manipulated so that one solves for the quantities

Fi ≡ T0i

T00
,

(19)
U ≡ T00τ

4/3.

The equations of motion for F and U are straight-forward to
generate from Eqs. (7) and (8), with the advantage being that
the quantities have no singular behavior.

For the second model we consider a coherent electromag-
netic field generated from two oppositely charged capacitor
plates receding from one another at ±c. This is not particularly
physical, as the fields are coherently pointing along the same
direction, whereas in a heavy-ion collision the chromo-electric
fields would be random with a coherence length set by the
saturation scale [22,23]. This model is chosen because it has
the extreme Txx ≈ T00 as the initial equation of state. For a
single pair of opposite charges originating from x = y = 0,
Lienart Wiechart potentials can be used to generate the electric
and magnetic fields,

Az(r, t) = 2q

∫ ∞

0
dt ′δ

(
x2 + y2 − (t − t ′)2

)
,

Ez(r, t) = 4qδ(r2 − t2), (20)

Bφ(r, t) = −Ez(r, t).

For receding plates with charge densities ρ(x, y), one can
integrate over the charges and find

Ez(x, y, t) = 2
∫

dφρ(x − t cos φ, y − t sin φ),

Bx(x, y, t) = 2
∫

dφρ(x − t cos φ, y − t sin φ) sin φ, (21)

By(x, y, t) = −2
∫

dφρ(x − t cos φ, y − t sin φ) cos φ.

The fields can then be used to generate the stress-energy tensor,

T00 = 1
2

(
E2

z + B2
x + B2

y

)
,

Txx = 1
2

(
E2

z − B2
x + B2

y

)
,

Tyy = 1
2

(
E2

z − B2
y + B2

x

)
,

(22)
Tzz = 1

2

( − E2
z + B2

x + B2
y

)
,

T0x = −EzBy,

T0y = EzBx.

The initial transverse distribution of the electric field matches
the profile of the charge density, and since T00 ∼ E2

z

initially, the gaussian radius characterizing the electric field
is larger than that of the resulting energy density profile by
a factor of

√
2. The charge density was then chosen with the

larger radius so that the resulting energy density profile would
be the same as the other two models.

The third model is also based on the evolution of classical
fields, but assumes that the fields resulted from a distribution
of point charges ±q, receding at ±c. The resulting fields from
a single point particle are easily calculated from Eq. (20).
Although the fields have a random sign, the resulting stress-
energy tensor is always positive and the energy density always
moves outward. Thus, one calculates the stress-energy tensors
for a single point-charge pair, then integrates over the density
of such charges to find the stress-energy tensor. For such a
case the transverse magnetic field and the longitudinal electric
fields have the same strength, which makes Tzz = 0 and κ =
1/2. Effectively, each point sends out an electromagnetic pulse
which behaves exactly the same as massless partons being
emitted from a point source at z = t = 0. It is not surprising
that the value of κ = 1/2 is identical to what one would obtain
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from a noninteracting parton picture, where all the partons
were emitted at z = t = 0.

Complete incoherence, as assumed in the third model, is
unphysical as it assumes perfectly point-like charges. For a
beam energy E, the uncertainty principle precludes assigning
the starting points for z and t to a region less than ∼1/E. The
transverse sizes of the individual charges is also limited by
whatever radiative dynamics are responsible for the creation
of the charge exchanges. In QCD this coherence length is
referred to as the saturation scale [24]. For finite-sized charges
of correlation length λ, the stress-energy tensor behaves like
the coherent limit for τ 
 λ and like the incoherent limit for
τ � λ. From the delta function forms for the electric and
magnetic field in Eq. (20) one can see that the energy density,
which involves squaring the fields which are described by delta
functions, is infinite in the limit of λ → 0. In fact the radiated
density per unit rapidity behaves ∼α/λ. While it is clear that a
realistic evolution of the fields is more complicated than either
the coherent or the incoherent limit even in the limit of little
interaction, if one considers an ensemble of randomly charged
small but finite-sized Gaussian packets, κ would still depend
mainly on τ , and not x or y. The three criteria for universal
early flow would still be satisfied.

III. RESULTS

Here, we present the evolution of T0x/T00 for the three
simple models described in Table I, each with widely different
initial anisotropies for Tij . For each model, we assume a
Gaussian energy density profile,

T00(x, y) ∝ exp

{
− x2

2R2
x

− y2

2R2
y

}
, (23)

with radii Rx = Ry = 3 fm for the calculations used to
investigate radial flow. The transverse velocity and flow, ux

and T0x/T00, respectively, are calculated as a function of the
transverse coordinate x along the y = z = 0 axis for three early
times: 0.3, 0.6, and 1.0 fm/c. Additionally, one can calculate
the collective velocity that would ensue if the system were to
suddenly change at those three times into pure hydrodynamic
flow with a simple equation of state P = ε/3. These are found
by comparing to the form of the stress energy tensor for ideal
hydrodynamics as defined by Eq. (18). One solves for u′

x and
ε by matching to T00 and T0x ,

T00 = 4
3εu′2

0 − 1
3ε, T0x = 4

3εu′
0u

′
x. (24)

The velocity u′
x will depend only on the ratio T0x/T00. Thus,

if T0x/T00 exhibits universal behavior, so will u′
x . For the

hydrodynamic model u′ = u, whereas the u and u′ differ for
the other two models. From Eq. (12), one can exactly calculate
T0x/T00 to lowest order in the proper time τ ,

T0x

T00
≈ xτ

2R2
x

. (25)

=1 fm/c

=0.6

=0.3

FIG. 1. (Color online) Lower panel: The collective velocity
profile is displayed for three models at three different times, 0.3,
0.6, and 1.0 fm/c. Ideal hydrodynamics (green triangles) has the
greatest transverse radial collective flow even though it had the
smallest transverse pressure, T⊥, of all three models. The evolution
of a non-interacting coherent electric field (blue squares) had the
highest pressure, but the smallest flow. Calculations based on
electromagnetic fields arising from incoherent currents (red circles)
would be the same as for noninteracting partons. For the last two cases,
the electromagnetic fields and accompanying stress-energy tensors
were calculated from Maxwell’s equations assuming a coherent
charge density of ±ρ receding at ±c, or an ensemble of random
incoherent charges receding at ±c. Middle panel: The flow ratio
T0x/T00 is nearly universal for all three models. The symbols are
the same as in the lower panel. The solid lines represent the linear
approximation, ≈ τ , given in Eq. (26). Upper panel: The collective
velocity assuming that the matter suddenly behaves as if it were ideal
hydrodynamics at the prescribed time. Since this ratio depends on
T0x/T00, it is also nearly universal.

Using Eq. (24) one can also find ux and u′
x to lowest order

in τ ,

ux ≈ xτ

(1 + κ)R2
x

,

(26)
u′

x ≈ xτ

(4/3)R2
x

.

Figure 1 displays ux, T0x/T00 and u′
x for all three models

as a function of x for three times, 0.3, 0.6, and 1.0 fm/c. As
expected, T0x/T00 and u′

x exhibit nearly universal behavior,
with differences of a few percent by 1 fm/c. The linear-in-time
approximation, given in Eq. (25), is also displayed for T0x/T00.
The linear approximation is remarkably effective for the first
1.0 fm/c. As expected from Eq. (26), the flow velocities, ux ,
differ. What is surprising is that the models with higher values
of κ lead to lower velocities. This is opposite to the trend one
would obtain if there were no longitudinal flow and Eq. (5)
would be have been applicable.

Elliptic flow was evaluated by considering emission from an
initial energy profile characterized by Rx = 2, and Ry = 3 fm.
As a measure of elliptic flow, εp, defined in Eq. (13), is
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FIG. 2. (Color online) Lower panel: The elliptic anisotropy εp as
defined by Eq. (13) for the case of coherent noninteracting initially-
longitudinal electric fields (blue squares) and for fields driven by
incoherent currents (red circles). The incoherent case yields εp is zero,
exactly as one would obtain with non-interacting particles. The solid
line shows the lowest-order (in τ ) quadratic contribution for ideal
hydrodynamics. Upper panel: Assuming that the matter suddenly
behaves as if it were ideal hydrodynamics at time τ, ε ′

p represents the
anisotropy of the altered stress-energy tensor. The result is close to the
quadratic form approximating the behavior of ideal hydrodynamics.

calculated for the two models based on coherent and incoherent
fields. Results for the hydrodynamic model are skipped be-
cause that model was predicated on radial symmetry, although
calculations have been done previously for ideal hydrodynam-
ics with and without transverse thermalization [25]. Assuming
a sudden transformation to ideal hydrodynamics at τ, ε′

p was
also calculated using the same method to calculate u′

x used
for the radial case above. Figure 2 shows both εp and ε′

p as
a function of τ for both models and compares them to the
small-τ expansion, εp ∼ τ 2. The small-τ limit is found by
calculating ux and uy for small times from Eq. (26) for the
hydrodynamic model, κ = 1/3. The collective velocities are
then

u(hydro)
x ≈ 3

4

x

τ
R2

x, u(hydro)
y ≈ 3

4

y

τ
R2

y. (27)

Using Eq. (18) for the stress-energy tensor, one can then
calculate the elliptic anisotropy with some straight-forward
integrals of Gaussians,

ε(hydro)
p ≈ 9τ 2

32

(
1

R2
x

− 1

R2
y

)
. (28)

As expected, the two models agree with this simple quadratic
form for ε′

p, but differ very substantially for εp. In fact, for the
model with incoherent fields, εp remains zero for all times.
This follows from the fact that each point source contributes
incoherently to the stress-energy tensor, and each point source
has zero elliptic anisotropy.

Once a system has decoupled, the anisotropy εp can be
equated with the angular anisotropy v2,

〈v2〉 ∼ 1
2εp, (29)

where the average 〈· · · 〉 refers to an average over particles in
a central rapidity bin weighted by p2

t /mt . Even though the
values of εp are <∼ 10% of the v2 observed experimentally,
the contribution from the first fm/c is substantial. Since εp

grows quadratically in time, it is important to generate a
rate of change, dεp/dτ , as quickly as possible. The first
fm/c is especially important in elliptic flow analyses for two
reasons. First, one is considering noncentral collisions which
are smaller in overall volume and thus of shorter duration, and
second, elliptic flow saturates earlier than radial flow [25].

IV. SUMMARY

The existence of universal flow patterns for the first
<∼1.0 fm/c of a relativistic heavy ion collision has a profound
impact on the modeling and interpretation of heavy ion
collisions. It eliminates many of the uncertainties plaguing the
prethermalized stage. For example, if one were to use viscous
hydrodynamics beginning at τ = 1 fm/c, the initial profile
for T0i/T00 would be determined by the universal conditions
shown here. Given that the contribution to the final-state flow
from the first fm/c could be of the order of 10–20%, it makes
detailed modeling of the prethermalized stage unnecessary if
one is only interested in the development of the evolution of
the stress-energy tensor at later times.

This does not, by any means, make theoretical investi-
gations of the prethermalized stage irrelevant. Uncertainties
in the shape of the initial profile would remain, including
questions about the magnitude of the initial energy density
and the microscopic structure. Even though two pictures
result in the same flow fields, they might have very different
microscopic structure. Differing profiles of quarks, gluons
and kinetic temperatures should affect a variety of other
observables such as electromagnetic probes [26–28], jet
quenching [29], or charge balance functions [30,31].
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