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Antiproton evolution in little bangs and in the Big Bang
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The abundances of antiprotons and protons are considered within momentum-integrated Boltzmann equations
describing Little Bangs, i.e., fireballs created in relativistic heavy-ion collisions. Despite a large antiproton
annihilation cross section we find a small drop of the ratio of antiprotons to protons from 170 MeV (chemical
freeze-out temperature) to 100 MeV (kinetic freeze-out temperature) for CERN-SPS and BNL-RHIC energies
thus corroborating the solution of the previously exposed “antiproton puzzle”. In contrast, the Big Bang evolves
so slowly that the antibaryons are kept for a long time in equilibrium resulting in an exceedingly small fraction.
The adiabatic path of cosmic matter in the phase diagram of strongly interacting matter is mapped out.
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I. INTRODUCTION

The abundances of hadrons emerging from relativistic
heavy-ion collisions can be described with surprisingly high
accuracy by a thermostatistical model [1]. Over a wide
range of bombarding energies essentially two parameters, the
temperature Tchem and the baryochemical potential µchem, ad-
justed to experimental data give a smooth curve Tchem(µchem),
the so-called chemical freeze-out curve, being an important
landmark in the phase diagram of strongly interacting matter.
At a given beam energy the variation of Tchem, µchem for various
centralities is fairly small [2].

The transverse momentum spectra of various hadron
species, at a given beam energy, may also be described
by a set of parameters Tkin, µkin, where additionally a flow
parameter may be employed. It was argued, e.g., in [3], and
later confirmed, e.g., in [4], that Tchem > Tkin holds in central
collisions at high energies. This is often interpreted in a
schematic picture as ceasing of inelastic (chemical) reactions
at Tchem, while in a later stage of the fireball evolution a kinetic
freeze-out happens at Tkin where the elastic interactions are no
longer efficient enough to modify the momentum distributions.
A different view was advocated in [5] with Tchem ≈ Tkin. In the
former scenario there is still “hadronic life” after freezing
out the chemical composition, while the latter scenario would
mean a sudden termination of inelastic and elastic reactions
roughly at the same time.

A possible problem in the commonly accepted first scenario
with Tchem > Tkin was pointed out in [6]: The antiproton
(p̄) annihilation cross section is so large that the p̄ survival
until kinetic freeze-out needs special consideration. This was
exposed as the “antiproton puzzle”. In [6,7] it was shown
that chemical off-equilibrium combined with multihadron re-
actions give rise to sufficient antiproton regeneration ensuring
a moderate drop of the ratio of abundances p̄/p from Tchem

until Tkin for CERN-SPS energies. This fits well in the above
first hadrochemical scenario [8].

It is the aim of this note to reconsider the off-equilibrium
evolution of antiprotons in an expanding hadron fireball. We
extend the consideration of [7,8] toward BNL-RHIC and
CERN-LHC top energies. In a schematic model we show

that the p̄/p ratio at CERN-SPS energies decreases from a
given temperature Tchem ≈ 170 MeV until kinetic freeze-out
temperature Tkin ≈ 100–120 MeV only by a small fraction,
while at BLN-RHIC energies the variation of p̄/p in such
a temperature interval is even negligible. We expect that at
CERN-LHC energies the latter statement also applies. We
employ here a transparent (thus simplified) model to elaborate
the features of the evolution toward off-equilibrium after
an assumed chemical equilibrium which complies with the
mentioned hadrochemical model [1]. In contrast to this, the
involved and sophisticated transport models give a much more
complicated description, both for hadrochemistry in general
[9] and for the antiprotons especially [10–12].

Furthermore, we emphasize similarities and differences
to antimatter (baryon) evolution in the early universe after
confinement. The adiabatic path of cosmic baryon matter is
exhibited in the phase diagram of strongly interacting matter.

The paper is organized as follows. In Sec. II we discuss
the appropriate evolution equations for protons (baryons)
and antiprotons (antibaryons) coupled by a conservation law.
The main emphasis is devoted to applications in relativistic
heavy-ion collisions (Sec. III) covering situations with baryons
and antibaryons being nearly symmetric or very asymmetric.
Section IV describes the cosmic baryon matter. The summary
can be found in Sec. V. The Appendix sketches the derivation
of the used evolution equations.

II. OFF-EQUILIBRIUM EVOLUTION OF ANTIPROTONS

Our starting point is the pair of momentum-integrated
Boltzmann equations (see Appendix)

dY+
dx

= −�(ξ )

xξ

(
Y+(Y+ − η) − Y 2

eq

)
, (2.1)

dY−
dx

= −�(ξ )

xξ

(
Y−(Y− + η) − Y 2

eq

)
, (2.2)

where Y± = n±/s are the baryon densities n± normalized
to entropy density s = 2π2

45 heffT
3. We attribute Y+, n+ to

protons (p) and Y−, n− to antiprotons (p̄). heff is the effective
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number of degrees of freedom of hadrons in the fireball
with co-moving volume V (t). Here, we assume a spatially
homogeneous fireball and apply for protons and antiprotons
the Boltzmann approximation, which is appropriate for the fol-
lowing since x ≡ mN/T is larger than unity. Therefore, Yeq =
45

4π4
2

heff
x2K2(x) with the Bessel function K2. Both evolution

equations refer to pair-wise annihilations and regenerations,
thus Y+ − Y− ≡ η = const, i.e., Ẏ+ = Ẏ−. The two parameters
in the evolution equations, �(ξ ) and η, determine together
with initial conditions the off-equilibrium dynamics. In what
follows we are going to explore their interplay for Little Bangs
and Big Bang.

For Little Bangs (ξ = 4, see Appendix) one has

�(4) = 3〈σv〉τ̄m3
N

2π2

45
heff

(
1 + τ

ḣeff

heff

)−1

. (2.3)

It encodes essentially the thermally averaged annihilation cross
section 〈σv〉, and ḣeff accounts for the time variation of the
effective degrees of freedom. In deriving Eqs. (2.1) and (2.2)
for Little Bangs we use adiabaticity of the expanding fireball,
i.e., sV = const. Instead of a specific expansion model we
utilize V/V̇ = τ̄ with τ̄ as characteristic time scale. This
allows us to formulate the evolution as a function of x instead
of a function of time.

In the Big Bang (ξ = 2, see Appendix and [13–15]) the
dimensionless factor �(ξ ) reads

�(2) = 〈σv〉 g1/2
∗ MPl mN

√
π

45
(2.4)

with g
1/2
∗ = heff g

−1/2
eff (1 + T

3heff

ḣeff

Ṫ
) and geff determining the

effective degrees of freedom relevant for the energy density,
i.e., e = π2

30 geffT
4, and MPl as Planck mass and mN again as

nucleon mass. Clearly, different heff’s apply in Little Bangs
and Big Bang.

Using 〈σv〉 = C/m2
π with C = O(1) and with mπ denoting

the pion (π0) mass one arrives for τ̄ ∼ 5 fm/c at �(4) ∼ O(104)
as an estimate (for heff see below), while �(2) ∼ O(1021) for
g

1/2
∗ ∼ 4 [16] highlights the vast difference of Big Bang and

Little Bang dynamics. Actually, the thermally averaged cross

section is 〈σv〉 =
∫ ∞

2x
dξξ 2(ξ 2−4x2)K1(ξ )σ (plab)

4x4K2
2 (x)

[13] with plab =
T ξ

√
ξ 2 − 4x2/(2x), see also [17]. Employing σ (plab) =

(40p−0.5
lab,GeV/c + 24p−1.1

lab,GeV/c) mb [7] or (38 + 35p−1
lab,GeV/c) mb

for the p̄p annihilation cross section one arrives at 〈σv〉 �
42.5–47 mb in the temperature interval 170–100 MeV or
51.5 mb fairly independent of T , thus yielding C ∼ 2.

III. RESULTS FOR LITTLE BANGS

Equations (2.1) and (2.2) are of Riccati type with no
general analytical solution in closed form. The solutions,
to be found numerically, depend on �(ξ ) and the initial
conditions (encoded in η). For the latter ones we employ
Tchem = T0 = 170 MeV and µchem = µ0 = 250 MeV (SPS
top energy resulting in n−/n+ = 0.052) or µchem = µ0 =
25 MeV (RHIC top energy resulting in n−/n+ = 0.75), thus
neglecting a possible small change of chemical freeze-out

temperature when going from SPS to RHIC but catch-
ing the typical values extracted in the data analysis [1,
2]. SPS energies are in the realm µchem > Tchem, while
RHIC and LHC operate in the region µchem < Tchem. A
good approximation of heff is provided by heff(T ) = h1 +
b̂(T − T1) + ĉ(T − T1)2 with b̂ = [h2 − h1 − (h3 − h1)(T2 −
T1)2/(T3 − T1)2]/[T2 − T1 − (T2 − T1)2/(T3 − T1)] and ĉ =
(h3 − h1)/(T3 − T1)2 − b̂/(T3 − T1) and (T1, T2, T3, h1, h2,
h3) = (0.100, 0.150, 0.175, 3.0, 9.8, 17.5) for small chemi-
cal potentials as appropriate for RHIC top energies and
(0.100, 0.150, 0.175, 5.411, 13.150, 21.750) for an isentrope
with entropy per baryon equal to 23 as appropriate for SPS
top energy. These values are for the resonance gas model
with the first hundred hadronic states as used in [1] and for
temperatures in GeV. While the scales 〈σv〉 and τ̄ as well
as heff are condensed into one dimensionless parameter �(4)

which would be useful for heff = const, the strong variation
of heff in the considered temperature range along isentropic
trajectories makes �(4) not a concise characteristic quantity.
Therefore, we present the results for various values of C to
expose the influence of annihilations and to discriminate them
from diminishing densities due to expansion.

In Fig. 1 the change of n−/n+ (denoted by p̄/p) as
a function of the temperature is exhibited. We note that,
similar to the consideration in [7], the ratio drops only by
a small fraction even when extending the evolution down
to a temperature of 100 MeV. The reason is the small
change of Y±. The experimental mid-rapidity value of p̄/p

is 0.058 ± 0.005 (statistical error) in central collisions of
Pb + Pb at Ebeam = 158A GeV [18]. Clearly, our above
mentioned initial value is already somewhat below this
experimental value. If one would change µ0 to 235 MeV,
being still in the range of admissible values according
to [1], the start value would be n−/n+ = 0.063 and all curves
exhibited in Fig. 1 are then upshifted, roughly by factor 1.2. As
a consequence, values of C < 4 would be compatible with the
data. While this range of C is realistic, such a fine tuning is not
appropriate given the schematic character of our model (use
of a characteristic time scale τ̄ for the expanding fireball, no
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FIG. 1. (Color online) The ratio of antiprotons to protons as a
function of temperature for various values of C = 1, 2, 10 (from top
to bottom). Initial conditions for SPS as described in the text.
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feeding, etc.). This refrains us from considering further details
like the centrality dependence. Nevertheless, one may consider
the beam energy systematics for central collisions. Instead of
individually selected values of µchem and Tchem, one may use a
global fit of many hadron ratios with the parametrization [1],
µchem = 1303 MeV/(1 + 0.286

√
sNN/GeV) and Tchem =

162 MeV (1 − (0.7 + exp[(
√

sNN/GeV − 2.9)/1.5])−1)
(where

√
sNN is in GeV) and get initial values for n−/n+

being 15%, 1.5%, 18%, 30%, and 29% larger than the
experimental ratios p̄/p quoted in [18] for central Pb + Pb
collisions at SPS beam energies of 158, 80, 40, 30, and
20 A GeV. The offset of n−/n+ above the experimental p̄/p

value [19] at
√

sNN = 200 GeV is 36% according to this
parametrization. With the exception of the data situation for
beam energy of 80A GeV, there is room for a 20% drop, in
average, of p̄/p toward kinetic freeze-out, consistent with the
results in Fig. 1.

In contrast to the ratio p̄/p, the densities rapidly change
with dropping temperature, as exhibited in Fig. 2. A notable
point is the increasingly strong departure of n− from the
chemical equilibrium value n

eq
− toward kinetic freeze-out. For

this comparison we have determined n
eq
± by sYeq exp(±µ/T )

with µ from the resonance gas model along the isen-
tropic curve imposing baryon conservation (a convenient
parametrization is provided by µ = ã/T x̃ + b̃ with (x̃, ã, b̃) =
(1, 0.045198563,−0.015873836) – T and µ in units of GeV).
The emerging relation n

eq
+ > n+ (see Fig. 2) is surprising at

the first glance. In fact, baryon conservation enforces nN >

n
(0)
N V (t = 0)/V (t > 0) for the net nucleon density. Since the

antibaryon density in the situation at hand is significantly
smaller than the baryon density, the nucleon density also
decreases slower than V (t = 0)/V (t > 0). As our evolution
equations impose pair-wise annihilations and regenerations,
for n+ 
 n−, n+ goes approximately with V (t = 0)/V (t),
while the fiducial density obeys n

eq
+ > n

(0)
+ V (t = 0)/V (t > 0).

This ostensible ambiguity can be resolved by introducing

FIG. 2. (Color online) The proton density and antiproton density
as a function of temperature. Initial conditions for SPS. Solid curves:
actual densities n± for the off-equilibrium evolution [i.e., solutions
of Eqs. (2.1) and (2.2)]; dashed curves: fiducial equilibrium densities
n

eq
± which need special explanation (see text). For C = 2.

effective chemical potentials in line with [6–8]. This, however,
is not necessary for the present purposes, as the combina-
tion n

eq
+ n

eq
− (or Y

eq
+ Y

eq
− ) enter the evolution equations, and

neither n
eq
+ nor n

eq
− separately: In the employed Boltzmann

approximation, the chemical potentials cancel in Y
eq
+ Y

eq
− =

Y 2
eq. Discarding this gain (or recombination) term would

result in a significantly reduced ratio p̄/p, thus emphasizing
the importance of the back-reaction, as already stressed in
[6–8]. (In [7] the regeneration term is of utmost importance
to counteract the stronger annihilations at the total baryon
content.)

Summarizing, the inspection of Fig. 2 reveals the strong
deviation from equilibrium, i.e., despite of the large annihi-
lation cross section the expansion is too rapid to maintain
chemical equilibrium of antiprotons. For larger values of 〈σv〉
parameterized by C, n− follows more closely the fiducial
density n

eq
− and, as a consequence, the antiproton to proton

ratio drops stronger during cooling (see also Fig. 1). A larger
value of the expansion time scale τ̄ reduces also the ratio p̄/p:
For τ̄ = 10 fm/c we get 0.040 at T = 100 MeV. In contrast, a
shorter expansion time scale keeps the ratio at higher values,
say 0.048 for τ̄ = 3 fm/c. As n+ is essentially not modified, one
can infer the corresponding values of n− from these numbers.

Reference [1] (first quotation) states that the thermostatis-
tical model applies not only to selected ratios of hadron yields
but also to yields themselves. It is instructive, therefore, to
consider the evolution of the yields from chemical freeze-out
toward kinetic freeze-out temperatures. We normalize the
yields according to (niV )100 MeV/(niV )170 MeV and exhibit
in Fig. 3 the dependence on C = 〈σv〉/m2

π . The yield of
antiprotons depends smoothly on C; values C > 3 would cause
a sizable annihilation which would obscure the hadrochemistry
picture.

For RHIC energy the same features hold. However, different
initial conditions cause some different evolution: The ratio
p̄/p is fairly insensitive to C, see Fig. 4. The departure from
equilibrium for protons is nearly as strong as for antiprotons,
as shown in Fig. 5. [Here, the above parametrization of
µ(T ) with (x̃, ã, b̃) = (4.8, 2.2671929 × 10−6, 0.013797031)

0.0
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FIG. 3. (Color online) The proton yield (upper curve) and
antiproton yield (lower curve) at 100 MeV normalized to those at
170 MeV as a function of C. Initial conditions for SPS.
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FIG. 4. (Color online) As Fig. 1 but for RHIC initial conditions.

applies.] Also the yields in Fig. 6 drop with increasing values
of C as they are more dragged by the respective equilibrium
values. For C < 10 the reduction via annihilation is less than
10% thus not invalidating the consistency of hadrochemistry
with a late kinetic freeze-out. Experimentally, one finds p̄/p =
0.731 ± 0.011 ± 0.062 [19] in central collisions Au + Au at√

sNN = 200 GeV which is fairly independent of centrality.
This value compares well with the results in Fig. 4, even for
large C.

For smaller values of µchem the difference of n− and n+
becomes smaller: Annihilation diminishes both n− and n+ by
the same amount thus keeping the ratio n−/n+ nearly constant.
This consideration applies in particular for LHC. In contrast,
for the above baryon-antibaryon asymmetric situation at SPS,
given by a larger value of µchem, the annihilation of p by the
small admixture of p̄ is not severe, and only the evolution
equation for n− is sufficient, as exploited in [7].

Resolving the “antiproton puzzle” means demonstrating
that the p̄/p ratio does not change noticeably from Tchem

until Tkin. At high beam energies (say, for RHIC and LHC
energies) corresponding to smaller values of the normalized

FIG. 5. (Color online) As Fig. 2 but for RHIC initial conditions.
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FIG. 6. (Color online) As Fig. 3 but for RHIC initial conditions.

particle-antiparticle number difference η this seems to be
fairly robust. At SPS one sees already a sensitivity to the
interplay of thermally averaged annihilation cross section and
expansion dynamics. At AGS and later on planned FAIR
energies one expects a stronger drop of the p̄/p ratio. However,
the differences of Tchem and Tkin may be much smaller so that
again annihilation is less severe.

Our results base on a few assumptions which we recollect
here: (i) kinetic equilibrium (which is left at the kinetic
freeze-out, see [20] for dealing with the freeze-out itself);
(ii) spatial homogeneity; (iii) expansion dynamics character-
ized by one time scale; (iv) restriction to one hadron species,
p, p̄ (the other hadrons are implicitly in the heat bath, encoded
in heff)1; (v) chemical equilibrium at Tchem, µchem; (vi) detailed
balance and unitarity. Items (i)–(v) are relaxed in transport
codes, which also attempt to include (vi). We insist here to
arrive at a qualitative and transparent understanding of an
aspect of chemical freeze-out. Items (i) and (ii) are related
with the derivation of the employed form of the momentum
integrated Boltzmann equation, see [13] for details. Item
(iii) refers to the fact that we consider a specific expansion
pattern of the fireball [which is assumed to contain a homoge-
neous matter distribution according to item (ii)] characterized
by V/V̇ = τ̄ with τ̄ as expansion time scale, see Appendix.
Item (v) fixes the initial conditions in agreement with the
thermostatistical model [1].

Strictly speaking, item (vi) refers to the balance p + p̄ ↔
X + X̄ as the underlying Boltzmann equation including a
binary collision kernel leads to our evolution equations (2.1)
and (2.2). One may think, however, that both X and X̄

represent clusters of pions. Such states X, X̄ are successfully
considered in [21] as two-meson doorway states coupling in
turn to multipion states. This approach, also known as minimal
two-body model, realizes the nearest threshold dominance
and describes the pp̄ annihilation data in the energy region

1A more detailed picture is considered in [22], where coupled
rate equations for many hadron species are solved in the dynamical
background of 2 + 1 dimensional hydrodynamics.
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relevant for our purposes. It bridges to [6,7], where such
multipion collisions were considered as key to resolve the
antiproton puzzle together with chemical off-equilibrium in
the pion component. As further possible ingredients one may
consider the role of baryon excitations (as sources for further
annihilations and regenerations) and feeding of the ground
state baryons eventually observed, as done in [22] for RHIC
energy.

IV. ANTIBARYONS IN BIG BANG

Due to the numerically large value of �(2), the evolution of
n± follows closely the equilibrium values n

eq
± for a long time.

In other words, Y± are dragged by Y
eq
± as evidenced by solving

numerically Eqs. (2.1) and (2.2). In the temperature region
T > 1 MeV, Y± ≈ Y

eq
± represent highly accurate solutions

of the evolution equations. Freeze-out of the antinucleon
annihilation happens at temperatures being considerably lower
than the MeV scale [15] thus yielding an exceedingly small
antibaryon density in the assumed homogeneous scenario (for
inhomogeneous scenarios cf. [23]). Indeed, using n± ≈ n

eq
± =

sYeq exp{±µ/T }, one finds a rapid dropping of the scaled
antibaryon density, represented by n−/T 3, with decreasing
temperature, see top panel of Fig. 7 [µ is determined by
Eq. (4.1) below]. For the given small surplus of baryons, the
scaled density n+/T 3 follows closely n−/T 3 until 40 MeV;
on the exhibited scale in Fig. 7 the difference of n+/T 3 to
n−/T 3 is not visible. Below that temperature of 40 MeV, how-
ever, n+/T 3 stays approximately constant at ηs/T 3; the still
continuing annihilations diminish n+/T 3 only marginally2

since n−/T 3 became small. The turn of n+/T 3 from dropping
to the approximately constant value near ηs/T 3 at temper-
atures of 40 MeV is entirely determined by the value of
η [24] which quantifies the baryon surplus, encoding also the
chemical potential.

In the cosmic evolution, say after confinement, η ∼ 10−10

is presumably realized, governed by the observed ratio
of baryons to photons being 6.12 × 10−10 (�CDM 3-year
WMAP-only data [25]) and relying on adiabaticity. This ratio
also determines the adiabatic path of cosmic matter after
confinement until the onset of primordial nucleosynthesis at
T <∼ 1 MeV, see Fig. 8 which is based on baryon conservation
expressed by

µ = T arsh

(
η

2π4

45

heff

2

1

x2K2(x)

)
. (4.1)

Strictly speaking, this equation applies for heff = const and
for situations where nucleons are essentially the carriers
of baryon charge. Accordingly, the cosmic baryochemical
potential µ evolves from 10−6 MeV at T = 170 MeV toward
mN ∼ 938 MeV prior to nucleosynthesis at T < 1 MeV
[24,26]. Features of Eq. (4.1) are (i) min(µ) = O(mNη),

2Given �(2) ∼ O(1021), only for hypothetical values of η < 10−16

the antinucleon contribution could be sizable due to chemical freeze-
out at T

<∼ 30 MeV, as can be found in solving numerically Eqs. (2.1)
and (2.2).

FIG. 7. (Color online) Evolution of scaled hadron densities
ni/T 3 = Yis/T 3 ≈ Y

eq
i s/T 3 (top panel) and related energy densities

[bottom panel; the top curve is for the electroweak contribution
(γ, ν’s, e, µ) + pions (π ); the pion component is also depicted
separately]. Instead of p and p̄, the densities of nucleons (N, n+)
and antinucleons (N̄, n−) are exhibited. For η = 10−10.

(ii) max(µ) = mN , (iii) crossing the µ = T line at T ≈
mN/(− log η + · · ·) (this is the point where the difference of
n+ and n− becomes large with dropping temperature: n+/T 3

then stays approximately constant at η(2π2/45)heff , while
n−/T 3 continues dropping exponentially, see Fig. 7 and [24]),
(iv) before the region µ ∼ T is reached, the temperature
drops as T ∝ mN/(log(µ/mNη) + · · ·). The · · · in items
(iii) and (iv) are for subleading terms. The variation of heff

with temperature, according to the resonance gas model, pulls
down the isentropic curve (solid line) for µ < 1 keV so that
the crossing with the dashed line occurs at a temperature of
165 MeV (instead of 225 MeV). For µ > 1 keV, the results
of the resonance gas model with adiabaticity and baryon
conservation are on top of the solid line.

For an orientation, in Fig. 8 also chemical freeze-out points
in relativistic heavy-ion collisions from the analysis in [1] (first
quotation) are exhibited. At the freeze-out temperature of about
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FIG. 8. (Color online) Adiabatic path of cosmic matter in the
phase diagram of strongly interacting matter for η = 10−10 (solid
curve for confined matter, heff = 10). The straight upper section
(dashed curve) is for an approximation of deconfined matter. (The
crossing does not necessarily imply phase equilibrium. For the given
approximations, the turn from deconfined to confined adiabatic paths
is by a Maxwell like construction with mixed phase; these path
sections are not displayed.) The asterisks depict chemical freeze-out
points from [1] (first quotation, table 2-upper part, and LHC estimate
mentioned in text there).

160 MeV in Little Bangs at RHIC the baryochemical potential
is about 107 times larger than in Big Bang. Otherwise, when
the baryochemical potential values of Little Bangs at RHIC
are achieved, the temperature in Big Bang is about 40 MeV
(see also [27]), being surprisingly high.

During the evolution of matter after electroweak symmetry
breaking at T ∼ O(100 GeV) down to confinement at Tc ∼
O(200 MeV), the strongly interacting matter dominates by
far the pressure, the energy density and the entropy density
[28]. The masses of carriers of baryon charge change in the
confinement transition. Below 160 MeV the energy density
is dominated by electroweak matter for a long time including
primordial nucleosynthesis, see bottom panel of Fig. 7. Pions
are exceptional, as they are sizable in number and energy
density contribution down to 5 MeV. The bottom panel of
Fig. 7 evidences also the slow relative increase of the scaled
baryonic energy density; much later (before “recombination”)
it will exceed the electroweak matter thus turning the radiation
universe into a matter dominated universe.

V. SUMMARY

In summary we contrast the baryonic antimatter evolution
in Little Bangs (i.e., bulk matter of fireballs created in rela-
tivistic heavy-ion collisions) and Big Bang from confinement
toward the onset of primordial nucleosynthesis. To expose
the similarities and differences we focus on antiprotons in
heavy-ion collisions and nucleons in the cosmic evolution
within a schematic kinetic description neglecting the explicit

coupling to other hadron states. The vast differences of Little
Bangs and Big Bang are impressively described by the huge
difference of the dimensionless parameters �(ξ ) governing
the chemical freeze-out dynamics. In addition, the scaled net
baryon densities encoded in η are also drastically different.

In Little Bangs, the ratio p̄/p drops only by a tiny amount
from the established chemical freeze-out temperature (which
is defined by a multitude of other hadron abundances) until
kinetic freeze-out for RHIC conditions, where antiprotons
appear in a sizable fraction. For a larger asymmetry of
antiprotons to protons (as realized for SPS conditions) the
ratio p̄/p changes still by a sufficiently small amount to
maintain the consistency of the thermostatistical model for
hadron chemistry. The thermostatistical model is an important
tool for mapping out the phase diagram of strongly interacting
matter in the T − µ plane. In so far, it is important that its
features conform with a detailed description of heavy-ion
collisions.

In homogeneous scenarios for the Big Bang, the chemical
equilibrium is maintained for a long time thus resulting in
an exceedingly small fraction of primordial antibaryons [15].
An interesting point is the adiabatic path of cosmic baryons
through the phase diagram of strongly interacting matter and
the related temperature of about 40 MeV (determined by
η) during the orders-of-magnitude change of the chemical
potential turning cosmic baryon matter from µ/T  1 into
µ/T 
 1.
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APPENDIX: MOMENTUM-INTEGRATED BOLTZMANN
EQUATION

Let be LiNi = Ci the Boltzmann transport equation for
particles of species i, where Li is the covariant Liouville
operator, Li = p

µ

i
∂

∂xµ − 

µ
αβpα

i p
β

i
∂

∂p
µ

i

with affine connection



µ
αβ and Greek indices running from 0–3 (Einstein’s sum

convention applies only for them). Ci may be a general
source term modifying the free-stream of the distribution
function Ni(x, p) by collisions and feeding by decays. A
consequence of the structure of the Liouville operator is
Nα

i ;α = ∫
LiNii [29,30] and thus with the Boltzmann

equation one gets Nα
i ;α = ∫

Cii , where the coordinate-
independent momentum element for particle of species i

is in the notation of [30] i = di(2π )−3√−g
d3pi

|p0
i |

with the

fundamental determinant −g, to be built of the metric tensor
gµν , and particle degeneracy di ; the semicolon stands for the
coordinate-covariant derivative. The particle momenta p

µ

i are
normalized to rest masses mi as gµνp

µ

i pν
i = −m2

i . The particle
current is defined by Nα

i ≡ ∫
Nip

α
i i . For an observer moving

with four-velocity vα the corresponding particle density is
ni = −vαNα

i .
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We consider here bulk matter in sufficiently small volume
elements where matter looks isotropically and homogeneously.
Moreover, the matter is provided to be in collisional (i.e.,
thermal) equilibrium so that a common flow field uα(x) can be
attributed to all particle species. This means, Nα

i = niu
α [31].

Synchronizing the observer velocity with the flow by intro-
ducing a co-moving coordinate system where uα = gα

0 ≡ δα
0 ,

the l.h.s. of the balance equation for the density ni, (niu
α);α =∫

Cii , becomes 1√−g
(
√−gnig

α
0 ),α = 1√−g

(
√−gni )̇, where

the dot means time derivative in the respective co-moving
coordinate system. Introducing with the reasoning of [30] a
co-moving three-volume V , defined, e.g., by (nconV )̇ = 0 for
a conserved charge density ncon or by entropy conservation,
(sV )̇ = 0, the l.h.s. of the considered balance equation may be
written as 1

V
(niV )̇.

Binary elastic collisions, i + i ′ ↔ i ′′ + i ′′′, cancel out the
r.h.s. of the balance equation as they represent collisional
invariants. For the moment being, we focus on binary
annihilation processes, i + ī ↔ X + X̄ [32]. In the absence
of Bose condensation or Fermi degeneracy effects and with
the assumption that species X and X̄ have equilibrium
distributions, the collision term

∫
Cii can be evaluated (see

[13,32] for details) to result in the master type equation

ṅi + ni

V̇

V
= −〈σv〉(ninī − n

eq
i n

eq
ī

)
(A1)

and an analog equation for ī by the replacement i → ī.
For Robertson-Walker-Friedmann cosmology, where strict
isotropy and homogeneity is applied, this is an often derived
and applied equation, see [13–15,32], and is referred to
as momentum-integrated Boltzmann equation. In heavy-ion
collisions such an equation, supplemented by decay terms, is
used too, for instance in [22]. In order to apply the above ar-
guments, however, special flow symmetries must be required.
We consider examples below. (Other approaches [33] to rate
equations use a spatial average over the expanding fireball,
where a Lorentz factor for transforming the time coordinate to
the external coordinate system occurs additionally.)

We follow further the arguments in [13,32] and reformulate
the rate equation (A1), instead as time evolution equation with
respect to comoving or proper observer time, as evolution
equation with respect to temperature T : Define the yields Yi =
ni/s, use the definition of the comoving volume V by (sV )̇ =

0, and introduce the new variable x = mN/T to arrive at

dYi

dx
= −〈σv〉(YiYī − Y

eq
i Y

eq
ī

)

× m3
N

x4

3V

V̇

2π2

45
heff

(
1 + ḣeff

heff

T

3Ṫ

)
. (A2)

Clearly, further evolution equations are still needed de-
scribing the expansion dynamics of the system under
consideration. For our schematic discussion in heavy-ion
collisions we put V/V̇ = τ̄ with τ̄ as characteristic ex-
pansion time. If the flow pattern is assumed to be spe-
cific, the relevant time scales are henceforth prescribed.
Examples for simple flow patterns are the four-velocities
(i) ūµ = (chη̂, 0, 0, shη̂), (ii) ūµ = (chη̂, shη̂ cos φ,
shη̂ sin φ, 0), (iii) ūµ = (chη̂, shη̂ sin θ cos φ, shη̂ sin θ sin φ,
shη̂ cos θ ) with η̂ = 1

2 log((t̄ + ζ )/(t̄ − ζ )), for (i) ζ = z̄,

(ii) ζ =
√

x̄2 + ȳ2, and (iii) ζ =
√

x̄2 + ȳ2 + z̄2 describing
(i) purely longitudinal (Bjorken), (ii) axial-symmetric trans-
verse and (iii) spherical expansion yielding with τ =√

t̄2 − ζ 2 for (1/V )(dV/dτ ) (i) 1/τ , (ii) 2/τ , and (iii)
3/τ (here, t̄ , x̄, ȳ, z̄ are Cartesian coordinates in Minkowski
space-time where ūα refers to; θ and φ are usual cylin-
der or polar coordinates). The approximation leading to
Eqs. (2.1) and (2.2) consists in the replacement of the
latter ratios by the inverse of a characteristic time scale,
1/τ̄ . Executing the transformation to the co-moving coor-
dinates via uα = ∂xα (x̄)

∂x̄µ ūµ yields uα = gα
0 ; the line elements

in the co-moving coordinates read (i) ds2 = −dτ 2 + dx2 +
dy2 + τ 2dη̂2, (ii) ds2 = −dτ 2 + τ 2dη̂2 + τ 2 sh2η̂dφ2 + dz2,
(iii) ds2 = −dτ 2 + τ 2dη̂2 + τ 2 sh2η̂dθ2 + τ 2 sh2η̂ sin2 θdφ2

representing time-orthogonal (Gaussian) coordinates, as re-
quired to arrive at Eq. (A1).

In Robertson-Walker-Friedmann cosmology with the line
element ds2 = −dt2 + R2(t)d �x2 the co-moving velocity is
as mentioned above; R(t) is the scale factor. The Einstein
equations govern the dynamics. For conformal flat three-space
and without cosmological constant one has [34] V̇ /V =
3Ṙ/R = 3

√
8π
3 GN e with Newton’s constant GN = M−2

P l and
the energy density e = π2

30 geffT
4. Combining these quantities

appropriately one gets Eqs. (2.1) and (2.2) with Eq. (2.4) from
Eq. (A2) as compact notation of the evolution equations for
protons or nucleons (i → +) and antiprotons or antinucleons
(ī → −).
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