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Hadron correlation in jets on the near and away sides of high- pT triggers in heavy-ion collisions
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The correlation between the trigger and associated particles in jets produced on near and away sides of high-pT

triggers in heavy-ion collisions is studied. Hadronization of jets on both sides is treated by thermal-shower and
shower-shower recombinations. The energy loss of semihard and hard partons traversing the nuclear medium
is parametrized in a way that renders a good fit of the single-particle inclusive distributions at all centralities.
The associated hadron distribution in the near-side jet can be determined showing weak dependence on system
size because of trigger bias. The inverse slope increases with trigger momentum in agreement with data. The
distribution of associated particles in the away-side jet is also studied with careful attention given to antitrigger
bias that is due to the longer path length that the away-side jet recoiling against the trigger jet must propagate in
the medium to reach the opposite side. Centrality dependence is taken into account after determining a realistic
probability distribution of the dynamical path length of the parton trajectory within each class of centrality.
For symmetric dijets with p

trig
T = passoc

T (away), it is shown that the per-trigger yield is dominated by tangential
jets. For unequal p

trig
T , passoc

T (near) and passoc
T (away), the yields are calculated for various centralities, showing

an intricate relationship among them. The near-side yield agrees with data both in centrality dependence and
in passoc

T (near) distribution. The average parton momentum for the recoil jet is shown to be always larger than
that of the trigger jet for fixed p

trig
T and centrality and for any measurable passoc

T (away). With the comprehensive
treatment of dijet production described here, it is possible to answer many questions regarding the behavior of
partons in the medium under conditions that can be specified on measurable hadron momenta.
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I. INTRODUCTION

Recent studies of jet correlation in heavy-ion collisions at
the BNL Relativistic Heavy Ion Collider (RHIC) have gener-
ated a wealth of information about jet-medium interaction, not
only on how the dense medium modifies the characteristics of
high-pT jets, but also on how intermediate-pT jets affect the
medium [1–4]. Two-particle correlation has been particularly
effective in revealing the nature of the medium response to
the passage of a hard or semihard parton [5]. The discovery
of a ridge, for example, in the structure of the same-side
distribution of particles associated with a trigger has stimulated
intense interest both experimentally and theoretically [6–18].
The properties of the ridge (in centrality and pT dependencies
and in baryon/meson ratio) distinguish its origin from that of
the jet peak that stands above the ridge. Similar distinction can
be found between the punch-through jet and the double-hump
peaks on the away side. In this paper, we study the properties of
the associated jets on both sides. We calculate not only the pT

distributions of the particles in those jets, but also the fractional
energy loss of the hard partons traversing the medium toward
and away from the trigger. As a consequence, we can quantify
the notion of trigger and antitrigger biases.

It has come to be generally accepted that the hadronization
process at intermediate pT is recombination/coalescence [19–
21]. The approach that we adopted in Ref. [22] emphasizes the
role that shower partons play in interpolating the production
processes from thermal-thermal (TT) recombination at low
pT to shower-shower (SS) recombination at high pT , which
is identical to fragmentation, through the intermediate region
where thermal-shower (TS) recombination is important. The

application of that approach to dihadron correlation had been
considered previously [23,24], but before the discovery of
ridges. The phenomenology of ridges (or ridgeology) has
clarified the characteristics of the associated particles on the
near side. There are strong indications that the ridge particles
are formed by the recombination of enhanced thermal partons
[25–27]. Thus after subtracting out the ridge particles, what
remain are the jet particles, which being close to the trigger in
�φ, are due exclusively to TS and SS recombination. With
the experimental data on the jets being refined, it is now
appropriate to reexamine the jet correlation problem in both
the near and away sides.

Our formalism allows us to study the trigger bias on the
near side and the antitrigger bias on the away side, i.e.,
higher average initiating parton momentum in order to allow
for more energy loss in traversing a longer path length to
reach the other side. The average transverse momentum 〈pT 〉
on either side, which is related to the inverse slope, turns
out to depend sensitively on the origin of the partons that
hadronize. TS recombination has a softer pT distribution than
SS recombination (or fragmentation). The varying mixture
of TS and SS components in different pT ranges makes the
hadronization process an integral part of any procedure to
associate the characteristics of the pT distribution with either
the trigger or antitrigger effect. We are able to calculate the
inverse slopes of the associated particles on both the near
and away sides. Data exist for the former, since the ridge
contribution has been studied experimentally in detail and can
be subtracted. Our result agrees very well with those data. The
associated particles in the away-side jets are hard to analyze
because of the double-hump background that is difficult to
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separate, so our results on those jets cannot yet be checked
by data. For fixed medium suppression in central collisions,
we have studied various other quantities that are not directly
measurable in experiments, but they can shed considerable
light on the trigger and antitrigger effects.

For realistic nuclear collisions, the path lengths of hard
partons and the quenching effect depend on the point of hard
scattering in the transverse plane and the azimuthal angle
of the trajectory. An important part of our study is to find
a way to describe the variation of both the path length and
the quenching effect, what may be called the dynamical path
length, for different collisions within each class of centrality. A
distribution of that measure will play a crucial role in relating
theoretical calculations to experimental observation at definite
intervals of centrality. Such a distribution has been found in
our study and is shown to render an excellent reproduction of
the dependence of the inclusive spectra of pions in the range
2 < pT < 11 GeV/c at all centralities. With that distribution
at hand, we can then calculate a dihadron correlation that can
realistically describe the properties of dijet production. We find
that the dominance of tangential jets emerges naturally as the
momenta of the trigger and associated particles on opposite
sides approach each other. It is a clear demonstration of the
interplay between trigger and antitrigger effects.

II. DIHADRON CORRELATION IN THE
RECOMBINATION MODEL

We adopt the formalism initiated in Ref. [22] for single-
particle inclusive distribution and in Ref. [23] for dihadron
correlation. Concentrating on only the jet component of the
associated particles, we ignore TT recombination which gives
rise to the ridge on the near side and to the double-hump
on the away side. The medium effect is parametrized by an
exponential damping factor that depends on the path length.
Our focus is on the momentum distribution of the associated
particles for trigger-particle momentum larger than 4 GeV/c.
We restrict our consideration to midrapidity and study only the
transverse momentum pT . Thus we shall omit the subscript T ,
and use pt to denote trigger momentum, pa for the associated
particle on the near side, and pb for the associated particle
on the away side. Without any subscript, p shall be used as a
generic symbol for the transverse momentum of any hadron.

In the simplest form, the invariant distribution of a pion
is [22]

p
dNπ

dp
=

∫
dq1

q1

dq2

q2
Fqq̄(q1, q2)Rπ (q1, q2, p), (1)

where the qq̄ distribution is in general

Fqq̄(q1, q2) = T T + T S + SS, (2)

and the recombination function (RF)

Rπ (q1, q2, p) = q1q2

p2
δ

(
q1

p
+ q2

p
− 1

)
. (3)

The thermal parton distribution has the form

T (q1) = q1
dN th

q

dq1
= Cq1e

−q1/T , (4)

so that the thermal pion distribution is exponential

dNTT
π

p dp
= C2

6
e−p/T . (5)

The quark momenta qi above are just before hadronization at
the end of the medium expansion. The shower parton at that
stage is in the vacuum after the hard parton has emerged from
the medium. Just after hard scattering, the distribution of the
hard parton momentum k of parton type i, while still in the
medium, is given by

dNhard
i

k dk dy

∣∣∣∣
y=0

= fi(k), (6)

whose specific properties are given in the next section. After
propagating through the medium, the parton loses momentum
in a way that we describe by the function G(q, k, t), where t

denotes the distance the parton travels to reach the surface, and
q is the momentum of that parton at the surface. We discuss
G(q, k, t) below presently. The parton distribution in q after
averaging over all k and t is

Fi(q) =
∫ L

0

dt

L

∫ ∞

k0

dk kfi(k)G(q, k, t), (7)

where in calculation we set the lower limit k0 at 3 GeV, below
which the parton distribution fi(k) is not known reliably. L

is the average maximum length of the system that the hard
parton traverses. In the limit L → 0, we should recover the
parton distribution for the pp collision.

For the degradation factor G(q, k, t) due to energy loss,
there is a rich literature on the subject studied by various
methods. Two articles reviewing the subject are Refs. [28,29].
The quenching factor Q(p) determined in Ref. [30] increases
with p, a property at very high energy not found at RHIC. In
the opacity expansion approach [31], the energy loss is found
to depend on the path length as �E ∝ L2−α , where α = 1
for one-dimensional expansion. The effective quark energy
loss with detailed balance between induced gluon emission
and absorption taken into account has the form for a one-
dimensional expanding medium [32]〈

dE

dL

〉
1d

= ε0(E/µ − 1.6)1.2/(7.5 + E/µ), (8)

which is essentially ∝ E for 6 < E < 12 GeV. A reasonable
summary of these properties is

�E

E
= β�L, (9)

whose implication for the relationship between q and k in
Eq. (7) is that

k − q = kβt. (10)

For t not infinitesimal, we exponentiate Eq. (10) and get

q = ke−βt . (11)

Fluctuation from this relationship is undoubtedly possible, but
we shall take the simple form

G(q, k, t) = qδ(q − ke−βt ) (12)
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as an adequate approximation of the complicated processes
involved in the parton-medium interaction. The justification
for Eq. (12) is to be found in the degree to which the inclusive
cross section can be reproduced in our description of hadron
production at intermediate and high pT .

Using Eq. (12), the integration over t in Eq. (7) can readily
be carried out, giving

Fi(q) = 1

βL

∫ qeβL

q

dk kfi(k) (13)

for q > k0. The lower limit of this integration corresponds
to t = 0, i.e., when the hard scattering occurs at the surface,
while the upper limit corresponds to the hard-scattering point
being on the far side so that k is a factor of eβL larger than q.
Equation (13) exhibits the nuclear effect in changing fi(k) to
Fi(q) with βL being the explicit medium factor, while fi(k)
contains the hidden modification of the parton distributions
in the nucleus due to shadowing, etc. [33]. Clearly, as
βL → 0, Fi(q) becomes directly related to fi(q) appropriately
extrapolated to pp collision.

Using S
j

i to denote the matrix of shower parton distributions
(SPDs) that are calculable from the fragmentation functions
[34], we can determine the distribution of shower partons in a
heavy-ion collision by

S(q1) =
∫

dq

q
Fi(q)Sj

i (q1/q). (14)

The T S contribution to the inclusive pion distribution is then,
following Eqs. (1), (2), (4), and (14),

dNTS
π

p dp
= 1

p2

∑
i

∫
dq

q
Fi(q)T̂S(q, p), (15)

with the RF absorbed in the compound notation for the TS
term in the integrand:

T̂S(q, p) =
∫

dq1

q1
S

j

i

(
q1

q

) ∫
dq2Cj̄e

−q2/T Rjj̄ (q1, q2, p),

(16)

where for every hard-scattered parton of type i the shower
parton of type j is paired with a thermal parton of type j̄ for
recombination in forming a pion. For the SS component, we
can use the fragmentation function D(z) and write

dNSS
π

p dp
= 1

p2

∑
i

∫
dq

q
Fi(q)

p

q
Dπ

i

(
p

q

)
. (17)

The overall pion inclusive distribution, including the TT
contribution as given in Eq. (5), is thus

dNπ

p dp
= C2

6
e−p/T + 1

p2

∑
i

∫
dq

q
Fi(q)

×
[
T̂S(q, p) + p

q
Dπ

i

(
p

q

)]
. (18)

For the dihadron correlation on the same side, we consider
the trigger-momentum pt to be greater than 4 GeV/c and cal-
culate the associated particle distribution in the approximation

that the TT contribution to the trigger and jet can be neglected.
We then have for pa on the near side associated with pt

dNππ

ptpa dpt dpa

= 1

(ptpa)2

∑
i

∫
dq

q
Fi(q)

×
{[

T̂S(q, pt ) + pt

q
Dπ

i

(
pt

q

) ]
T̂S(q − pt , pa)

+ T̂S(q − pa, pt )
pa

q
Dπ

i

(
pa

q

)
+ ptpa

q2
j

Dπ
2

(
pt

q
,
pa

q

)}
,

(19)

where the dihadron fragmentation function D2(z1, z2) is
assumed to have the symmetrized form

D2(z1, z2) = 1

2

[
D(z1)D

(
z2

1 − z1

)
+ D

(
z1

1 − z2

)
D(z2)

]
.

(20)

The near-side yield per trigger for trigger momentum in a
narrow range �pt around pt is

Y near
ππ (pt , pa) = 1

Ntrig

dNππ

pa dpa

(pt , pa)

=
∫

�pt

dpt

dNππ

pa dpt dpa

/∫
�pt

dpt

dNπ

dpt

, (21)

where dNπ/dpt is the trigger pion distribution that excludes
the TT component of the inclusive distribution given in
Eq. (18).

For an associated particle on the away side relative to the
trigger, we must consider the recoil hard parton that propagates
a distance L − t in the opposite direction, so Eq. (7) should be
revised to contain another parton with momentum q ′ exiting
on the away side, having the form

F ′
i (q, q ′) =

∫ L

0

dt

L

∫ ∞

k0

dk kfi(k)G(q, k, t)G(q ′, k, L − t)

= 1

βL

∫ qeβL

q

dk kfi(k)qq ′δ(qq ′ − k2e−βL), (22)

where the recoil parton has momentum k under the assumption
of negligible initial kT of the beam partons. However, for
reasons that will become clear later, we label it by k′ to
be distinguished from k of the trigger parton, when clarity
is needed. To help with the visualization of the various
momentum variables in the problem, we give a sketch in
Fig. 1 of the parton (red) and hadron (blue) momentum vectors
with the trigger being on the right side. With due caution in
the interpretation of momentum vectors drawn in coordinate
space, momenta on the near side (q, pt , and pa) are depicted
to originate from the surface on the right, while the momenta
on the away side (q ′ and pb) are pointed from the surface on
the left.

The recoil parton of type i ′ need not be linked to the parton
type i of the trigger jet, since beam partons can be of any
type. However, to limit the problem to a manageable size, we
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FIG. 1. (Color online) Sketch of momentum vectors of partons
(red) and hadrons (blue) with the near side being on the right and
away side on the left.

make the simplifying assumption that i ′ = ī if they are quarks
and i ′ = i if they are gluons (thus tantamount to assuming
dominance by g + g scattering), and we shall only calculate
identical pions on the two sides. The di-pion distribution for
particle with pb on the away side is thus

dNππ

ptpb dpt dpb

= 1

(ptpb)2

∑
i

∫
dq

q

dq ′

q ′ F ′
i (q, q ′)

×
[
T̂S(q, pt ) + pt

q
Dπ

i

(
pt

q

)]

×
[
T̂S(q ′, pb) + pb

q ′ D
π
i ′

(
pb

q ′

)]
. (23)

Carrying out the integration over k yields

dNππ

ptpb dpt dpb

= eβL

2βLp2
t p

2
b

∑
i

∫
pt

dq

∫ qeβL

q ′
0

dq ′fi(
√

qq ′eβL)

×
[
T̂S(q, pt ) + pt

q
Dπ

i

(
pt

q

)]

×
[
T̂S(q ′, pb) + pb

q ′ D
π
i ′

(
pb

q ′

)]
, (24)

where q ′
0 = Max(qe−βL, pb).

We note that the limits of integration of q ′ in Eq. (24) reveal
the medium effect in the following sense. If the hard scattering
occurs at the near-side surface, then the recoil parton (having
k′ = k = q) must travel a distance L to emerge on the away
side with momentum q ′ = q ′

0 = qe−βL. On the other hand,
if the hard scattering occurs at the away-side surface, then q

must be ke−βL, so q ′ = k = qeβL. Thus the integration over q ′
reflects the integration over all points t in the medium where
the hard parton is created.

The away-side yield per trigger is, analogous to Eq. (21),

Y away
ππ (pt , pb) = 1

Ntrig

dNππ

pb dpb

(pt , pb)

=
∫

�pt

dpt

dNππ

pb dpt dpb

/∫
�pt

dpt

dNπ

dpt

. (25)

In our calculation we can, of course, take the theoretical limit
�pt → 0.

III. MODEL INPUTS

We list here all the inputs to the model that we use to perform
our calculation. They are all taken from previous work without

any parameters to adjust, except for βL, which is introduced
here in lieu of an average suppression factor used earlier.

The hard-scattered parton distribution fi(k) is taken from
Ref. [33], which uses the parametrization

fi(k) = K
A

(1 + k/B)a
, (26)

with K = 2.5 and the parameters A,B, and a tabulated for
each parton type i and for Au+Au collisions at RHIC with
shadowing taken into account. The sum

∑
i will be performed

over i = g, u, d, s, ū, d̄, s̄. For the thermal partons, the values
of C and T in Eq. (5) for 0–10% centrality are [22]

C = 23.2 GeV−1, T = 0.317 GeV. (27)

Their centrality dependence are given in Ref. [24]. The shower
parton distributions are described in Refs. [22,34]. For z in
S

j

i (z) very small, the distributions are not reliable, so we cut
off the low-pT contribution to the TS component by a factor
of 1 − exp(−0.5pT ), which has no effect on our result for
intermediate and high pT . For the fragmentation function D(z),
we use the parametrization in Ref. [35], from which the shower
parton distributions were derived [34]. Since we now consider
higher pT than before, the Q2 dependence of D(z,Q2) will be
included by setting Q2 = p2

T .
With these inputs specified there are no more free parame-

ters to adjust, except the suppression factor quantified by βL,
which will be determined below by fitting the overall single-
pion inclusive distribution. The properties of the dihadron
correlations on both the near and away sides can then be
calculated without unknown parameters.

IV. NEAR-SIDE CORRELATION AND TRIGGER BIAS

We first calculate the pion inclusive distribution using
Eq. (18) and compare the result to the data in Fig. 2. What we
have calculated is dNπ/pT dpT at midrapidity averaged over
all φ, while the data are for dNπ0/2πpT dpT integrated over
all φ [36], both for 0–10% centrality in the Au+Au collision
at

√
s = 200 GeV. The value

βL = 2.9 (28)

has been used to fit the data for 2 < pT < 13 GeV/c. Since the
suppression factor involving βL enters Eq. (18) only through
Fi(q) given in Eq. (13), the excellent fit in Fig. 2 over such a

2 4 6 8 10 12 14
10

10
6

10
4

10
2

10
0

π0 (PHENIX)
0 10%

p
T
 (GeV/c)

dN
π/p

T
dp

T
 [(

G
eV

/c
)

2 ]

FIG. 2. Inclusive distribution of π 0 as calculated from Eq. (18).
The data are from Ref. [36].
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FIG. 3. (Color online) Distribution of associated pion (pa) in the
near-side jet for six values of pion trigger momentum (pt ) in GeV/c.

wide range of pT requires a high degree of coordination among
the three components of recombination, and therefore is not
a trivial result from varying one quantity, βL. The agreement
with data confirms the soundness of the model for the range
of pT considered.

Using βL given in Eq. (28), we can now calculate the
dihadron correlation on the near side for the trigger momentum
at pt > 4 GeV/c and an associated particle in the jet with
momentum in the range 2 < pa < 4 GeV/c. We use Eq. (19)
to study the ππ correlation without TT recombination, which
we have assigned to the ridge. The result for the yield per
trigger is shown in Fig. 3 for six values of pt . It is evident that
the pa spectrum becomes slightly harder, as pt increases. The
effective inverse slope Ta determined in the range 2 < pa <

4 GeV/c is shown in Fig. 4. The data in that figure are from
Refs. [6,7] for all charged hadrons. Although our result is for
pions only, we expect that the contributions from the other
charged hadrons are not as important in the jet as they are in
the ridge. Thus the general agreement of our result with the
data may be regarded as supportive of our description of the
physics that generates the dihadron correlation.

The results obtained so far average over all possible points
of hard scattering, as indicated by the integration over t in
Eq. (7). However, we know that with βL = 2.9 the contri-
butions from the points on the far side of the medium are
more suppressed than those from the nearer points. That is the
trigger bias in heavy-ion collision. We can quantify that effect
by calculating the average of exp(−βt). Such an averaging
process is feasible by using Eqs. (7) and (18), where we
insert exp(−βt) into Eq. (7) before integration over t . It is
not necessary to know β separately from βL because of the
structure of G(q, k, t) that demands e−βt = q/k. With the
near-side suppression factor defined as

�near(pT ) = 〈e−βt 〉, (29)

4 5 6 7 8 9

0.4

0.6

0.8

1 STAR

p
t
 (GeV/c)

T
a (

G
eV

)

FIG. 4. Inverse slope of associated pion in near-side jet. Data are
from Refs. [6,7] determined from 2 < passoc

T < 4 GeV/c.

2 4 6 8 10 12 14
0.6

0.7

0.8

0.9

1

p
T
 (GeV/c)

Γ ne
ar

(p
T
)

FIG. 5. Near-side suppression factor for which the value of 1
means no suppression. The averaging is done over single-particle
distribution of pion momentum pT .

which is also 〈q/k〉, we show our calculated result in Fig. 5.
Evidently, it saturates at 0.85. Thus on average only 15% of
the parton energy is lost to the medium when pT is high, but
more is lost at lower pT . This result is roughly independent of
the medium size L and is a feature of the trigger bias. That is,
if the point of origin is allowed to vary, the detected hadrons
are predominantly due to partons created near the surface and
losing only a small fraction of the energy.

In Fig. 6 we show both 〈k〉 and 〈q〉 as functions of pT .
Their ratio 〈q〉/〈k〉 is not exactly 〈q/k〉. The two lines provide
insight into how hard the hard scattering has to be to give rise
to a pion at pT . Note that 〈k〉 is approximately 2pT throughout
the range, while 〈q〉 ≈ 1.6pT for pT > 3 GeV/c where both
TS and SS components of recombination are important. Since
〈exp(−βt)〉 	= exp〈−βt〉, we have calculated 〈βt〉 as shown in
Fig. 7. It is an estimate of �E/E according to Eq. (9), although
TS recombination renders the connection with parton energy
loss imprecise. For pT > 4 GeV/c, the average 〈βt〉 is between
0.18 and 0.2. That is to be compared with βL = 2.9, implying
〈t〉/L ≈ 0.065. Thus the result suggests that the thickness of
the layer near the surface where hard partons are created is
roughly 13% of L. That is a quantitative statement about
the trigger bias to the extent that we can calculate it without
taking into account such details as nuclear geometry, tangential
jets, etc.

V. AWAY-SIDE CORRELATION AND ANTITRIGGER BIAS

As we consider the correlation between jets on opposite
sides, we first fix βL = 2.9, which corresponds to a slab of

2 4 6 8 10 12 14
0

5

10

15

20

〈q
〉 (

G
eV

/c
)

〈k〉
〈q〉

〈k
〉 (

G
eV

/c
)

p
T
 (GeV/c)

FIG. 6. Average values of parton momenta k (at point of hard
scattering) and q (at the near-side surface) for pions detected at pT .
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FIG. 7. Average value of βt as a function of pion momentum pT .

nuclear medium with fixed thickness. That is not a realistic
nuclear medium, whose thickness depends on the transverse
distance from the center. The value of βL determined in
Eq. (28) corresponds to the effective thickness in fitting the
single-particle distribution shown in Fig. 2. Because of trigger
bias, the correlation between particles on the same side is
mostly independent of that thickness, as we have seen in the
preceding section. Now, as we go to dijet correlation on the
two sides, it makes a big difference whether the medium has
varying thickness. To illuminate the nature of the away-side
correlation and antitrigger bias, we first consider in this section
the simplest scenario of fixed thickness. After becoming
familiar with the issues involved, we then extend our study
to the case of a realistic nuclear medium in the next section.

For the away-side yield per trigger, we use Eqs. (24)
and (25) to calculate Y

away
ππ (pt , pb) as functions of pb for

six values of pt . The results are shown in Fig. 8. As with
the near-side yield, the away-side per-trigger yield increases
with pt , not simply because the corresponding hard parton
k is forced to be, higher, but also because the number of
triggers is lower. However, the spectrum does not become
harder at larger pt , for a reason to be discussed later. Figure 9
shows the inverse slope Tb determined in the range 2 < pb <

4 GeV/c, exhibiting only a mild decrease of ∼ 10% over the
range of pt . Since it is a property of the jet yield, there are
no suitable data to compare with our result. PHENIX has
extensive data on dihadron correlation [4]; however, on the
away side the division between head and shoulder regions is
done in terms of cuts in �φ, with the consequence that a direct
relationship between the yield in the head region and the jet
yield calculated here cannot easily be established. Data on
inclusive γ have been analyzed for correlated hadrons, using
a Gaussian description for punch-through jets on the away
side [37], but no pT distribution has been shown.
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FIG. 8. (Color online) Distribution of associated pion (pb) in the
away-side jet for six values of pion trigger momentum (pt ) in GeV/c.
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FIG. 9. Inverse slope of associated pion in away-side jet.

To learn about the medium effect on the away-side jet, we
study the suppression factor defined as

�away(pt , pb) = 〈exp[−β(L − t)]〉. (30)

It should be recognized that whereas �near(pT ) involves an
average over the single-particle distribution, �away(pt , pb)
requires for the averaging process the opposite-side dihadron
correlation that depends on pt and pb. Our results are shown
in Fig. 10 as functions of pb for four values of pt . As expected,
the suppression is far more severe on the away side than on the
near side. The higher the trigger momentum pt , the closer is
the hard-scattering point to the surface on the near side due to
trigger bias, and we see that the more severe is the suppression
on the away side. That is a property of antitrigger bias because
of the longer path length that the recoil parton must travel
in the medium. Whereas �near(pT ) increases with pT , here
�away(pt , pb) decreases with pt , but increases with pb for a
fixed pt . That is because higher pb requires higher hard-parton
k or shorter L − t . Fixing pt does not fix k, as the value of
〈k〉 in Fig. 6 is determined without any extra condition. Now,
with higher pb, k must be higher, as well as t must be larger,
resulting in increasing 〈exp[−β(L − t)]〉. In other words, the
condition of higher pb favors the hard-scattering points closer
to the away-side jet to reduce suppression.

In a hard-scattering process, the two outgoing hard partons
have equal and opposite momenta, if we ignore the transverse
momenta kT of the initial partons. However, the averages
of the two hard parton momenta may differ, depending on
what observables are held fixed. That is, if k′ is the recoil
momentum, opposite to k that generates the trigger, we have
k′ = k event-by-event, but 〈k′〉(pt , pb) may well be different
from 〈k〉(pT ). We have seen how 〈k〉(pT ) depends on pT in
Fig. 6. We now show in Fig. 11 the dependence of 〈k′〉(pt , pb)
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FIG. 10. Away-side suppression factor determined by averaging
over opposite-side ππ correlation function with trigger momentum
at pt and associated-particle momentum at pb.
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FIG. 11. Average value of recoil parton momentum k′ for various
values of trigger pt and associated-particle pb in the away-side jet.

on pb for four values of pt . Evidently, 〈k′〉 is much larger than
〈k〉 for all values of pb and pt . This is the essence of antitrigger
bias. The condition of having a hadron on the away side among
the triggered events gives higher weight to the larger k′ pro-
cesses in the averaging. That is why 〈k′〉 increases with both pt

and pb.
As pb increases, 〈k′〉 must increase in order to provide

enough 〈q ′〉 that can accommodate the larger pb. Figure 12
shows 〈q ′〉(pt , pb), which exhibits a mild dependence on
pt , but rises almost linearly with pb above 3 GeV/c as
∼(1.5–2)pb. That dependence on pb is roughly the same as the
dependence of 〈q〉 on pT shown in Fig. 6, as it should, since the
hadronization processes are similar. The weak dependence on
pt implies that as pt is increased, the point of hard scattering is
pulled to the near side at the same time as the scattered-parton
momentum k is increased (see Fig. 6), so their opposite effects
on the away side q ′ are nearly canceled. With 〈q ′〉 not changing
much in the range of pt probed, the jet yield on the away side
remains roughly the same, but the per-trigger yield increases
as a result of the decrease of the number of triggers at higher
pt ; that property of Y

away
ππ (pt , pb) is shown in Fig. 8. Since

〈q ′〉 is insensitive to pt , the shape of the pb distribution should
therefore also be insensitive to pt , and that is confirmed by the
property of Tb in Fig. 9.

The values of 〈q ′〉 are smaller than 〈k′〉 because of the
longer path length for the recoil parton to reach the away
side. We have already a hint of that in Fig. 10, since
�away(pt , pb) is also 〈q ′/k′〉(pt , pb), owing to the δ function
in G(q ′, k′, L − t), despite the fact that 〈q ′/k′〉 	= 〈q ′〉/〈k′〉
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FIG. 12. Average value of parton momentum at the away-
side surface for trigger momentum pt and associated particle
momentum pb.
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FIG. 13. Away-side suppression factor for symmetric momenta
on the two sides: p = pt = pb.

exactly. Nevertheless, at pt = pb = 4 GeV/c, both 〈q ′〉/〈k′〉
and 〈q ′/k′〉 are approximately 0.24.

Let us now make a more careful comparison between 〈k〉
and 〈k′〉, bearing in mind the difference in the probability
distributions used in the averaging of k and k′. If we set pT in
Fig. 6 to pt in Fig. 11 and consider pb = pt in the latter, then
we find 〈k′〉 = 4.7〈k〉 for pT = pt = pb = 4 GeV/c (dropping
to 4.2〈k〉 at pt = 6 GeV/c). Thus the condition of having an
associated particle on the away side with equal momentum
as the trigger eliminates the trigger bias and raises 〈k′〉 to
approximately 9pt . The implication is that the average location
of the hard-scattering point is in the middle of the medium
(because of the symmetry of the two sides), and a large fraction
of the parton energy is lost before exiting on either side. That
fraction is 76%, as we learned from 〈q ′〉/〈k′〉 above.

There are properties of the suppression factor that are
noteworthy at the symmetry point pt = pb. We see in
Fig. 10 that �away(pt , pb) appears to be constant when pt = pb

is changed from 4 to 6 GeV/c. Let us then define

�(p) = �away(pt , pb), p = pt = pb, (31)

and calculate its p dependence. The result is shown in Fig. 13.
It is indeed constant with the value �(p) = 0.24. As we have
stated above, it follows from the δ function in G(q ′, k′, L −
t) that �away(pt , pb) = 〈q ′/k′〉(pt , pb). Thus for pt = pb, we
have

�(p) = 〈q ′/k′〉 = 〈q/k〉 = e−βL/2, (32)

the last equality being the consequence of identifying
Eqs. (29) and (30) at the symmetry point. Putting βL = 2.9 in
Eq. (32), one finds that �(p) = 0.235, which is essentially the
value 0.24 determined in Fig. 13. Thus we have consistency.

It is also of interest to compare 〈q〉 and 〈q ′〉 for correlated
particles on both sides. The result on 〈q ′〉/〈q〉 is shown in
Fig. 14. Note that the ratio is unity at the symmetry points
pt = pb at 4 and 6 GeV/c. For fixed pt , the ratio increases
with pb, and, of course, for fixed pb it decreases with pt ,
since the inverse ratio, 〈q〉/〈q ′〉, should increase. This feature
essentially describes how the hard-scattering point moves from
one side of the midpoint to the other side, as pb is changed
from below pt to above pt . That is clearly a consequence of
the counteracting effects of trigger and antitrigger biases.
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VI. CENTRALITY DEPENDENCE

In the preceding section, we studied the properties of
dihadron correlation on opposite sides for a nuclear slab of
fixed βL = 2.9, which is the average value of the quenching
parameter in central collision. Before considering other cen-
tralities, we must first establish a scheme to treat the realistic
nuclear medium that has varying transverse width even for a
fixed centrality, depending on the section of the overlap that
the hard parton traverses. As a start we can formally treat βL

as a variable and study how the yield depends on it.
Let us define the per-trigger yield at the symmetry point as

Y (p, ξ ) = Y away
ππ (pt , pb, βL), (33)

where p = pt = pb and ξ = βL now treated as a variable.
Using Eqs. (24) and (25), we can calculate Y (p, ξ ) with the
results shown in Figs. 15(a) and 15(b) for fixed ξ and p,
respectively. The decrease with p for fixed ξ is more gentle
than in Fig. 8 for unsymmetrical pt and pb. The decrease with ξ

for fixed p is exponential for ξ > 0.5, approximately as e−3.8ξ ,
which is roughly what one expects from the βL dependence
that one sees in Eq. (24), remembering that fi(k) behaves in
a power law as indicated in Eq. (26) with a ∼ 7.7–8.7. What
we gain from Fig. 15 is a quantification of the picture that we
already have in the increase of yield when the thickness of
the nuclear medium is decreased. A corollary to that picture
is that the hard parton momentum k′ need not be much larger
than p, when ξ is smaller. That is shown in Fig. 16, where 〈k′〉
decreases by nearly a factor of 3 when ξ is decreased from 3
to 0.5.

The above consideration is merely a preview of what to
anticipate when we treat the medium realistically and change
the centrality. What we need first is a distribution of ξ for a fixed
centrality. Since the quenching characteristic is involved in βL,
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FIG. 15. Yield per trigger at the symmetry point p = pt = pb for
(a) fixed ξ and (b) fixed p.
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FIG. 16. Average value of recoil parton momentum as a function
of p and ξ .

it is not just a geometrical problem of determining the path
length in the elliptic overlap. The quenching effect depends
on the local nuclear density and the location and orientation
of the parton trajectory, so ξ is a measure of the dynamical
path length. Obviously, it is a very complicated problem for
which no reliable solution is known. We shall approach it by
first determining the average βL for single-particle inclusive
distribution at each centrality c, as we have done in Fig. 2 for
0–10% centrality. We use c to denote the % centrality so that
c = 0.1 means 10% centrality, for example. We then construct
a probability distribution P (ξ, c) such that the average ξ̄ (c)
can fit the average βL as a function of c. With P (ξ, c) at hand,
it is then possible to calculate the yield per trigger for any
centrality.

We start by revisiting Sec. IV and the beginning of Sec. V,
but now consider all centralities c. For thermal partons, the
values of C and T in Eq. (4) as functions of c are given
in Ref. [24]. For hard partons, fi(k) is scaled by Ncoll. We
use Eq. (18) to calculate the single-pion pT distribution and
obtain a good fit of the data, shown in Fig. 17, by adjusting
βL(c) at each c. The data are from PHENIX [36] for c =
0.05, 0.15, . . . , 0.86 at intervals of 0.1. The fits are remarkably
good for all centralities. The resulting βL(c) are shown by the
solid dots in Fig. 18, which will serve as the key link between
the centrality dependence of realistic nuclear collisions and
the modeling of the quenching probability P (ξ, c) at each c.

With the aim of fitting βL(c) in mind, it is sufficient to use
a simple form for P (ξ, c) that contains the basic features of
noncentral collisions, namely, at any fixed c, P (ξ, c) should
have a maximum between the two ends of ξ , with the location
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FIG. 17. Inclusive distribution of π 0 for all centralities ranging
from 0–10% (top) to 80–92% (bottom) in 10% steps, each displaced
by a factor of 0.2. The data are from Ref. [36]. The curves are
calculated by using Eq. (18) with βL(c) adjusted to fit and shown
as dots in Fig. 18.
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FIG. 18. The dots are the values of βL(c) used to fit the inclusive
distributions in Fig. 17. The solid line is the average ξ̄ (c) from the ξ

distribution P (ξ, c) given in Eq. (34).

of the maximum decreasing with increasing c. We adopt the
form

P (ξ, c) = Nξ (ξ0 − ξ )αc, (34)

where N normalizes the total probability to unity, and ξ0 and
α are two parameters. We find that with

ξ0 = 5.42, α = 15.2, (35)

we get the average ξ̄ (c) that fits βL(c) very well, as shown
by the solid line in Fig. 18. The distribution P (ξ, c) itself,
shown in Fig. 19, exhibits the decrease of the maximum with
increasing c. In view of the difficulty of deriving βL(c) from
first principles, let alone P (ξ, c), we regard Eqs. (34) and (35)
as being totally satisfactory for the description of how the path-
dependent quenching parameter varies among the collisions
within each class of centrality.

With P (ξ, c) thus obtained, we can now return to the per-
trigger yield Y (p, ξ ) at the symmetry point defined in Eq. (33).
To determine the yield at a fixed centrality, it is not simply a
matter of averaging Y (p, ξ ) over all ξ , using P (ξ, c) as the
weighting factor at each ξ . The Y (p, ξ ) shown in Fig. 15 is
obtained for centrality being held at c = 0.05, while ξ is varied.
We must redo the calculation for Y

away
ππ (pt , pb) using Eqs. (24)

and (25), but now include also the dependencies of C, T , and
fi(k) on c, discussed above. That is, we define

dNπ (c)

pt dpt

=
∫

dξP (ξ, c)
dNπ (c, ξ )

pt dpt

, (36)

dNππ (c)

ptpb dpt dpb

=
∫

dξP (ξ, c)
dNππ (c, ξ )

ptpb dpt dpb

, (37)
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FIG. 19. Distribution of the dynamical path length ξ for six values
of centrality c in steps of 0.1.
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FIG. 20. Yield per trigger at the symmetric point p = pt = pb

for four values of centrality.

Y away
ππ (pt , pb, c) = dNππ (c)

ptpb dpt dpb

/
dNπ (c)

pt dpt

, (38)

and calculate

Y (p, c) = Y away
ππ (p = pt = pb, c). (39)

The results are shown in Fig. 20 for four centralities. Note
that the dependence on c is not as drastic as the dependence
of Y (p, ξ ) on ξ in Fig. 15(a), which shows the dominance
of ξ = 1 over ξ = 3, so upon averaging over ξ at each c,

the small ξ contribution is always more important at any c.
The per-trigger yield rises with c because of reduced medium
suppression. The p dependence appears to be universal.

Related to the mild dependence on c in Fig. 20, we can
investigate the properties of 〈k′〉. Recall from Fig. 11 that
for fixed βL = 2.9, 〈k′〉 is much larger than pt or pb, the
phenomenon referred to as a feature of antitrigger bias. We
have also seen that at the symmetry point p = pt = pb the
values of 〈k′〉(p, ξ ) decrease significantly at lower ξ , shown in
Fig. 16. To calculate 〈k′〉(p, c) for different c, we again cannot
simply average 〈k′〉(p, ξ ) over ξ using P (ξ, c) as weight, since
the normalization factor of 〈k′〉(p, ξ ) must also be averaged
over ξ separately. The result for 〈k′〉(p, c), shown in Fig. 21,
exhibits essentially no dependence on c. The magnitude is
approximately 2.5 p, which is much lower than 〈k′〉(p, ξ )
in Fig. 16 and more like the near-side 〈k〉(pT ) in Fig. 6.
Furthermore, 〈q ′〉(p, c) can also be calculated in the same
manner with similar results shown in Fig. 22. The small
difference is that whereas 〈k′〉(p, c) decreases slightly with
c, 〈q ′〉(p, c) increases imperceptibly. The ratio 〈q ′〉/〈k′〉 is
seen in Fig. 23 to be nearly constant at around 0.8, increasing
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FIG. 21. Average value of the initial hard parton momentum
directed at the away side for hadron momenta p = pt = pb for four
values of centrality.
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FIG. 22. Average value of the parton momentum at the away-side
surface for hadron momenta p = pt = pb for four values of centrality.

about 4% when c changes from 0.05 to 0.35. The value of
that ratio is roughly the same as the value of �near(pT ) at
comparable pT in Fig. 5, which corresponds to 〈q/k〉 on the
near side without the requirement of a recoil jet. Thus the
medium degrades the parton momentum from k′ to q ′ on
the away side by about the same degree as from k to q on
the near side, and the degree of suppression is essentially
independent of centrality. The inescapable conclusion is then
that when symmetric back-to-back hadron momenta (pt = pb)
are required, the dijets that give rise to them are due to hard
partons created very near the surface on both sides so that
they suffer minimal energy loss as they propagate in opposite
directions through the rim of the nuclear medium. That means
they must be tangential jets. This is a remarkable result that
emerges from the calculation and is consistent with the dijet+1
correlation data [38] in which no ridge is found and whose N

2/3
part

dependence suggests that they are generated near the surface,
i.e., tangential jets.

VII. YIELDS AT UNEQUAL TRIGGER AND ASSOCIATED
PARTICLE MOMENTA

Having studied in the previous section the behavior of the
yield at the symmetry point p = pt = pb at different central-
ities, we can finally investigate the properties at asymmetric
points and appreciate the significance of small variations. We
first consider the per-trigger yield of an associated particle
on the near side at centrality c. The basic formula is as
in Eq. (21), except that both the numerator and denomi-
nator must be averaged over P (ξ, c) separately, similar to
Eqs. (36)–(38). The centrality dependence of the result is
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FIG. 23. Ratio 〈q ′〉/〈k′〉 at the symmetry point p = pt = pb for
four values of centrality.
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FIG. 24. (Color online) Yield per trigger in the near-side jet as
functions of centrality c for pt = 4 GeV/c in black lines and pt =
6 GeV/c in red line. Dash-dotted line is for pa = 2 GeV/c and dashed
line for pa = 4 GeV/c. The solid lines are for the yields integrated
over pa from 2 to 4 GeV/c. The data are from Ref. [39] for 3 < p

trig
T <

4 GeV/c and passoc
T > 2 GeV/c.

shown in Fig. 24 for pt = 4 and 6 GeV/c and pa = 2 and
4 GeV/c. The near-side yield is nearly constant in c and
decreases with pa for a fixed pt , but it increases with pt

for a fixed pa . The solid lines in that figure represent the
integrated results for 2 < pa < 4 GeV/c. The data in Fig. 24
are for 3 < p

trig
T < 4 GeV/c and passoc

T > 2 GeV/c [39]. The
agreement between our result and the data is remarkably good
both in magnitude and in c dependence. The magnitude of
the integrated yield is sensitively dependent on the lower limit
of integration in pa , so other data on centrality dependence
with different lower limits, such as in Refs. [40,41], cannot be
compared with the black line in Fig. 24, although the rough
insensitivity to Npart is seen irrespective of the cut in passoc

T . The
approximate independence on centrality is a manifestation of
the trigger bias, as we have already noted in Sec. IV that the
hard-scattering point is in a layer roughly 13% of L inside the
near-side surface and is insensitive to how large the main body
of the medium is. However, the thermal and shower partons
have different dependencies on c and the decrease of the TS
recombination with increasing c cancels the increase of the SS
recombination with c so that their sum results in approximate
independence of c.

To see the dependence on pa for fixed pt , we show the
yield in Fig. 25 for two representative values of c at 0.05
and 0.35. These distributions are very similar to Y near

ππ in
Fig. 3, which is the yield for fixed βL = 2.9. Thus the result
is the same whether we fix c or βL. The inverse slope Ta
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FIG. 25. Yield per trigger in the near-side jet as function of pa for
two values of c and three values of pt . Data points are from Ref. [41];
see text for details.
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FIG. 26. (Color online) Three-dimensional plot of Y near
ππ (pt , pa, c)

for c = 0.05 (top plot), c = 0.35 (middle) lowered by a factor of 10−1,
and c = 0.86 (bottom) lowered by 10−2.

is therefore essentially what is shown in Fig. 4 already. In
Fig. 25, we have included two data points from Ref. [41], where
recent results on near-side correlations have been reported. The
data for central Au+Au collisions (0–10%) at 200 GeV are
given for integrated jet yield per trigger (for −1 < �φ < 1)
with 3 < p

trig
T < 6 GeV/c and 1.5 < passoc

T < p
trig
T . Since our

calculation is for per-trigger yield of particles in the near-side
jet averaged over all �φ in the jet, we have divided the data by
2 (the range of �φ) and included only the points at passoc

T >

2 GeV/c in the upper panel of Fig. 25. Our curve for pt =
4 GeV/c agrees very well with those two data points, which
are averaged over the range 3 < pt < 6 GeV/c.

An overall view of Y near
ππ (pt , pa, c) as a function of both pt

and pa for three illustrative values of c is shown in Fig. 26.
For clarity’s sake, we have multiplied the yield for c = 0.35
(in yellow) by 10−1 and for c = 0.86 (in blue) by 10−2. The
increase with pt is perceptible, while the dependence on c is
negligible.

For the away-side yield, we use Eq. (38) and obtain the
results shown in Fig. 27, where a factor of about 2 increase in
the magnitude is seen when c is raised from 0.05 to 0.35. Thus
when the nuclear overlap is smaller, it is easier for the recoil jet
to reach the away side and to produce a particle at pb. The shape
of the pb distribution is basically independent of centrality,
since the hadronization process does not change with c.
Figure 28 shows a three-dimensional plot of Y

away
ππ (pt , pb, c),

again with c = 0.35 and c = 0.86 lowered by factors of 10−1

and 10−2, respectively. The near independence on pt is evident,
while the increase with c is only from 0.05 to 0.35, but not
from 0.35 to 0.86.
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FIG. 27. Yield per trigger in the away-side jet plotted in the same
format as in Fig. 25 with pa replaced by pb.
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FIG. 28. (Color online) Same as Fig. 26, but for Y away
ππ (pt , pb, c).

For fixed c and varying combinations of pt and pb, we
can determine a quantitative measure of the antitrigger bias
by calculating the average 〈βt ′〉, where t ′ denotes the distance
from the hard-scattering point to the away-side surface. In
the calculation, we identify βt ′ with ln(k/q ′) by virtue of
G(q ′, k, L − t) in Eq. (22). Figure 29 shows the results for c =
0.05 and 0.35. For fixed pt , 〈βt ′〉 decreases with increasing
pb as the scattering point is pulled closer to the away side.
For fixed pb, that point moves closer to the near side, as pt

increases, thus increasing 〈βt ′〉. The whole set of curves are
lower at higher c. Thus Fig. 29 provides a good description
of the antitrigger bias. Note that the magnitude of 〈βt ′〉 is not
large, less than 0.5 even for c = 0.05. It is much smaller than
the value βL = 2.9 in Eq. (28), which is for the single-particle
inclusive distribution. Again, we see that when a particle on
the away side is required, the scattering point cannot be too
far from the surface of the away side. At pt = pb = 4 GeV/c,
we have 〈βt ′〉 ≈ 0.2 for both values of c. That is just the
value of 〈βt〉 at pT = 4 GeV/c in Fig. 7, consistent with the
scattering point being midway between the two sides. As we
have learned from the preceding section, when pt = pb the two
jets produced are tangential jets near the rim of the overlap. As
pt is increased, the scattering point can be embedded deeper
in the interior, so 〈βt ′〉 increases, but not by very much.

We can also present a more explicit description of the
antitrigger bias in terms of parton momenta. We show in
Fig. 30 the average momentum 〈k′〉(pt , pb, c) of the hard
parton directed away from the trigger as a function of pb for
fixed c and pt . The increase with pb is now much slower than
the increases with p(= pt = pb) in Fig. 21. The difference
between c = 0.05 and 0.35 is minor, as in Fig. 21. Focusing
on pt = 4 GeV/c, we see that 〈k′〉 increases from ∼8 to
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FIG. 29. Average value of βt ′ where t ′ is the distance between
the hard-scattering point and the away-side surface for various values
of c, pt , and pb.
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FIG. 30. Average value of the initial hard parton momentum
directed at the away side for various hadron momenta pt and pb

for two values of centrality.

∼13 GeV/c, as pb increases from 2 to 6 GeV/c, the magnitude
being significantly lower than the corresponding 〈k′〉 in Fig. 11
for fixed βL = 2.9. However, compared to 〈k〉 on the near side
in Fig. 6, where 〈k〉 ≈ 8 GeV/c at pT = 4 GeV/c, 〈k′〉 starts
from about the same value at low pb but increasing persistently
with pb, although pt is fixed. That is, 〈k′〉 is always greater
than 〈k〉 at fixed c and pt for one of the following two reasons.
If pb is less than pt , then the longer path length on the away
side due to antitrigger bias leads to higher 〈k′〉 despite the
momentum balance k′ = k in every hard-scattering event. If
pb is more than pt , then clearly the jet momentum on the away
side must on average be higher than on the trigger side.

The behavior of 〈q ′〉(pt , pb, c) at the away-side surface,
shown in Fig. 31, differs from that in Fig. 22 in the same way
that Fig. 30 differs from Fig. 21. Compared with 〈k′〉(pt , pb, c),
the magnitude of 〈q ′〉(pt , pb, c) is, of course, lower, but the pt

and pb dependencies are similar. More revealing is the ratio
〈q ′〉/〈k′〉(pt , pb, c) in Fig. 32, which shows the effect of energy
loss that decreases (difference from unity) with increasing pb

due to the decreasing path length, but increases with increasing
pt due to the increasing path length. The push-and-pull effect
of pt and pb is now clearly depicted in Figs. 30–32, which
could not be shown in Figs. 21–23 where p = pt = pb.

We have been able to exhibit these characteristics of the
medium effects by calculating theoretical quantities, such
as 〈βt ′〉, 〈k′〉 and 〈q ′〉, for various values of pt , pb and c

that are experimentally measurable. Beside the per-trigger
yields Y near

ππ (pt , pa, c) and Y
away
ππ (pt , pb, c) that can be directly

checked by experiment, it is possible that 〈q〉 and 〈q ′〉
can indirectly be estimated by studying the total transverse
momenta of charged particles in the near- and away-side jets.
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FIG. 31. Average value of the parton momentum at the away-side
surface for various pt , pb, and c as in Fig. 30.
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VIII. CONCLUSION

We have made an exhaustive investigation of the properties
of the dihadron correlation in jets produced in heavy-ion
collisions. Our treatment is based on a reliable description
of hadronization through recombination on the one hand and
on a realistic accounting of the medium effect on the other.
Only two free parameters were used to specify the distribution
of dynamical path length ξ for any centrality, and they were
determined by fitting over 100 data points of the π0 inclusive
spectra. All other parameters were fixed by previous work
in the recombination model. Thus our study of the hadronic
correlation with high-pT trigger has very little freedom for
adjustment, and for that reason we have been able to calculate
unambiguously many quantities that reveal the medium effect
on partons and the relationship among the momenta of hadrons
that they produce. Not all the quantities calculated can be
measured, but for those that can be checked by experiments,
each encounter with existing data exhibits good agreement.
It is therefore reasonable to conclude that the theoretical
framework presented here offers a reliable description of one-
and two-jet production at RHIC energy.

One outcome of this study is the determination of the
probability P (ξ, c) of a hard parton having a dynamical path
length ξ in a collision at centrality c, where ξ plays the role of
the suppression parameter βL, except that it varies among
all possible trajectories and density-dependent energy-loss
factors, while βL is the average over all ξ . The behavior of
P (ξ, c) exhibited in Fig. 19 for various c may be regarded
as the fruit of the program to learn about the medium effect
from heavy-ion collisions. Our calculation of the dihadron
correlation in jets for each centrality would not have been
reliable enough to compare favorably with data as in Figs. 24
and 25, if we did not have P (ξ, c) to link theory with
experiment.

Our study has shed light on the trigger and antitrigger
biases, which are brief terms, referring to the complex issues
involving nuclear geometry and medium suppression, that we
have made more precise by examining the average momenta
〈k〉, 〈k′〉, 〈q〉, and 〈q ′〉 under different conditions. The ratios
of those quantities reveal the different suppression factors on
partons propagating toward the near and away sides. When
the trigger momentum and the away-side associated-particle
momentum are equal, we have learned, somewhat by surprise,
that the yield is dominated by tangential jets, essentially
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independent of centrality. Such revealing results await precise
verification by experiments.

We have restricted our attention in this paper to the
dependence on pT only and to the range of pT large enough
to leave out the consideration of ridge on the near side and
of double humps on the away side. Ridgeology is a separate
subject in its own right and is treated elsewhere [27]. Lowering
the pT range would contaminate the trigger with medium
partons through thermal-thermal recombination, a situation
well within the capability of our formalism to handle but
not considered here. Our treatment can also be generalized
to include the azimuthal angle φ. The dependence of jet
production on the trigger angle φs relative to the reaction
plane would be very interesting to study, as has already been
initiated in data analysis by STAR [16]. The widths of the jet
peaks on the two sides, as well as the possible misalignment
of the back-to-back jets, are challenging problems still to be
investigated.

A significant qualitative conclusion that can be drawn
from the many ways of posing our questions on the medium
effect is that it is hard experimentally to probe the interior
of the collision zone. The profile of the nuclear overlap is
like a small island whose inhabitants may live uniformly
throughout the island, but only the ones near the shore can
react easily to activities in the sea. The detected trigger jets
are produced mainly along the near side, like the coastal
inhabitants responding to a call from the sea. If an away-side jet
is detected at the same time as the trigger jet, the production
point is moved along the rim so that the back-to-back jets
are dominantly tangential jets, just as in the analogy where
the inhabitants that can respond to calls from both sides are
the ones on the coast with unobstructed vision of the two
sides. In that sense, partonic jet tomography fails to probe the
interior of the medium, since rim production overwhelms any
signal arising from the interior in one- and two-jet events. The
situation naturally suggests that three-jet events may reach the
interior, analogous to the inland dwellers of the island being
able to have equal, though harder, access to all points at sea. In
e+e− annihilation, gluon jets were discovered in events where
three jets were produced, each being at nearly equal azimuthal
angles from the other two. Similarly, three jets originating
from a common point in heavy-ion collision are possible, such

as in the gluonic process g + g → g + g + g. They are, of
course, less abundant than two jets for the dual reason of
higher order and enhanced suppression. However, the more
serious experimental difficulty is to distinguish the three-jet
events from the background consisting of the double-hump
structure in the conventional away-side �φ distribution. The
latter is due to TT recombination, if the double humps can be
related to the Mach cone, whereas the three-jet event structure
is associated with shower partons in each jet. The subject is
rich and worthy of attention if the medium interior is to be
probed by jet tomography.

Another area of extension from this work is obviously heavy
quark physics. In our sum over all parton types i in Eqs. (18),
(19), and (23), we have limited it to g, u, d, and s, and their
antiquarks. To consider charm quark, for example, we must
redo everything from the beginning, including the shower
parton distribution and single-hadron (D) spectrum. The basic
formalism is, however, the same as we have given here. A new
P (ξ, c) would have to be found for heavy quarks, and different
possibilities of dijet correlation may reveal different medium
effects [42].

Finally, it is worth commenting that dijet correlation will
undoubtedly be drastically different at the CERN Large
Hadron Collider (LHC), where not only numerous jets with
pT < 20 GeV/c will be created, but also the recombination of
shower partons from neighboring jets can totally change the
correlation between hadrons [43]. The formalism used in this
work will have to be thoroughly revised. Even the notion of jets
distinguishable from background will require reexamination.
The challenging work ahead, however, will not be daunting
but stimulating, both theoretically and experimentally.
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