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We discuss the sensitivity of the three-particle azimuthal cumulant method for a search and study of conical
emission in central relativistic A + A collisions. Our study is based on a multicomponent Monte Carlo model that
includes flow background, Gaussian monojets, jet flow, and Gaussian conical signals. We find the observation of
conical emission is hindered by the presence of flow harmonics of fourth order (v4) but remains feasible even in
the presence of a substantial background. We consider the use of probability cumulants for the suppression of
second-order flow harmonics. We find that although probability cumulant significantly reduce v2

2 contributions,
they also complicate the cumulant of jets and conical emission. The use of probability cumulants is therefore
not particularly advantageous in searches for conical emission. We find the sensitivity of the (density) cumulant
method depends inextricably on strengths of v2, v4, background, and non-Poisson character of particle production.
It thus cannot be expressed in a simple form and without specific assumptions about the values of these parameters.
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I. INTRODUCTION

Observations of away-side dip structures in two-particle
correlations measured in Au + Au collisions at

√
sNN =

200 GeV have stimulated renewed interest in the notion of
conical emission. The passage of a parton through dense matter
at speeds greater than the speed of sound is predicted to lead
to the production of a Mach shock wake resulting in conical
emission pattern that may explain the observed two-particle
correlations [1–11]. Identification of Mach cone is of great
interest because it could provide an experimental determina-
tion of the speed of sound in the dense medium produced
in high-energy A + A collisions [4,12]. A sonic boom is
also expected for a heavy quark propagation based on anti
de Sitter/conformal field theory calculations [13]. Cerenkov
radiation produced by a superluminal parton traversing a dense
medium is expected to generate a similar signature [14–18].
However, other production mechanisms have been proposed
to explain the two-particle correlation data. These include
large angle gluon radiation [19,20], path length effects [21],
collective flow, and jet deflection [22–27].

Three-particle correlation measurements were proposed to
gain further insight in the particle production mechanism
leading to the away-side deep structure seen in two-particle
correlations. Various methods have been suggested and are
currently pursued to carry such analyses. A number of these
analyses are carried out using a flow + signal decomposition,
i.e., an ad hoc flow background is assumed and subtracted
based on the ZYAM approximation [28–38]. Note, however,
that, as Borghini pointed out, momentum conservation can
have a significant impact on two- and three-particle correla-
tions [39]. The magnitude of momentum conservation effects
is, however, difficult to estimate as discussed recently by
Chajecki et al. [40]. A cumulant-based method was proposed
by the author [41] and is also used by the STAR Collaboration
[42] to search for conical emission. This method presents the
advantage that the extraction of a three-particle signal does not
require any model assumptions. Obviously, one can also carry
a model-based decomposition of the extracted three-particle

signal, i.e., the cumulant, to estimate its various components
and seek evidence for conical emission.

In this work, we further study the properties of the three-
particle cumulant observable first proposed in Ref. [41] for a
search for conical emission and studies of particle production
dynamics. Three particles correlations, designed to search for
conical emission, use a high-pt particle as a jet tag. The
azimuthal angle of this high-pt particle should approximately
correspond to the direction of the parton initiating the tagged
jet. It is further assumed the emission of this parton is
surface biased and directed outward, approximately normal
to the surface of the medium. The direction of the high-pt

particle thus provides a reference to study the propagation of
the away-side parton initiating the second jet. Estimates of the
sound velocity in the quark-gluon plasma suggest the wake
produced by a high-energy parton should produce particle
emission at a Mach angle of the order of 1 rad relative to
the parton direction [4]. This corresponds to enhanced particle
emission at angles of order 2 rad with respect to the high-pt

jet tag. An unsuppressed away-side jet should, however, lead
to particle emission at an angle of approximately π relative to
the jet tag. Deflection or radial flow effects should produce a
broadening of the away-side jet relative to the high-pt tag.

We define the notation and variables used in this article in
Sec. II. We next discuss, in Sec. III, simple models of particle
production, including dijets, flow, and conical emission, as
well as the effects of differential jet quenching, hereafter called
jet flow. We show in Sec. III B that in the case of Poisson statis-
tical particle production, the three-particle cumulant (hereafter
termed three-cumulant) associated with azimuthal anisotropy
reduces to a simple expression involving only nondiagonal
Fourier terms. In view of the large values of elliptic flow v2

observed in A + A collisions at the Relativstic Heavy Ion
Collider (RHIC), one expects the leading nondiagonal term
should be of order v2v2v4. However, one finds experimentally
that fluctuations in the number of produced particles are
non-Poissonian. We thus consider in Sec. IV the impact of such
non-Poissonian fluctuations and find they imply the presence
of sizable v2

2 terms in the three-cumulant that may complicate
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the observation of conical emission signals. We show the v2
2

terms may, however, be suppressed if one adopts a modified
version of the cumulant based on probability densities rather
than number densities and suggest this modified cumulant as
an alternative means of studying three-particle correlations.

The cumulant method is a relatively complicated analysis
technique, which may in principle be sensitive to various
instrumental effects. We discuss a specific implementation
of the method based on normalization to single-particle
distributions in Sec. V. We show, based on the conical emission
model introduced in Sec. VI and an ad hoc parametrization of
the detection efficiency, that normalization by single-particle
distributions leads to a robust analysis technique.

A key issue in the search for conical emission is the
sensitivity of the method used to extract the three-particle
correlation information. We discuss, in Sec. VI, the sensitivity
of the cumulant method based on a simple jet and conical
emission Monte Carlo model.

Our conclusions are summarized in Sec. VII.

II. DEFINITIONS AND NOTATION

The conical emission search method introduced in
Ref. [41] is based on the observation of three-particle densities
as a function of the relative azimuthal angles between the
measured particles. The presence of three-particle correlations,
and possible signal for conical emission, is extracted using the
three-cumulants. A high-pt particle is used as a jet tag and
proxy for determination of the direction of the jet. Two lower
pt particles are used to probe the structure of the near-side
jet (i.e., the jet singled out by the high-pt tag particle) and
search for conical emission on the away side. The jet tag
is herein referred as particle 1 while the two associates are
labeled as particles 2 and 3. The three particles are detected
in the collision transverse plane at angles ϕ1, ϕ2, and ϕ3

relative to some arbitrary reference frame. The single, two-,
and three-particle densities are noted as follows:

ρ1(ϕi) = dN1/dϕi

ρ2(ϕi, ϕj ) = dN2/dϕidϕj (1)

ρ3(ϕi, ϕj , ϕk) = dN3/dϕidϕjdϕk,

where the indices i, j , and k take values 1, 2, and 3.
The three-particle or triplet density, ρ3, corresponds to the

average number of particle triplets observed per collision.
The particles of a given triplet are, however, not necessarily
correlated. Indeed, the three particles may originate from one,
two, or three (distinct or not) production processes (e.g., radial
flow, elliptic flow, resonance decay, jets, Mach cone, etc.).
Cumulants are designed to extract the three-particle correlation
component from the three-particle density. They were first
discussed in the context of particle physics (see, for instance,
Ref. [43,44]) and are now used in a variety of analyses. It
is the purpose of this work to study specific aspects of the
cumulant method introduced in Ref. [41] for studies of the
shape and strength of the signal expected from different types
of processes and to characterize the robustness and sensitivity
of the method.

The two- and three-cumulants C2 and C3 are defined as
follows:

C2(ϕi, ϕj ) ≡ ρ2(ϕi, ϕj ) − ρ1(ϕi)ρ1(ϕj )

C3(ϕi, ϕj , ϕk) ≡ ρ3(ϕi, ϕj , ϕk) − ρ2(ϕi, ϕj )ρ1(ϕk)

− ρ2(ϕi, ϕk)ρ1(ϕj ) − ρ2(ϕj , ϕk)ρ1(ϕi)

+ 2ρ1(ϕi)ρ1(ϕj )ρ1(ϕk). (2)

As described in Ref. [41] the two- and three-particle densities
and cumulants are straightforwardly corrected for detector
inefficiencies provided the three- and two-particle detection
efficiencies may be factorized as products of, respectively,
two and three single-particle efficiencies. The robustness of
this correction procedure is discussed in Sec. V on the basis
of Monte Carlo simulations.

Correlation functions in terms of relative angles,
C3(�ϕij ,�ϕik), are formally obtained by integration of the
cumulants C3(ϕi, ϕj , ϕk) with constraints �ϕij = ϕi − ϕj :

C3(�ϕij ,�ϕik) =
∫

C3(ϕi, ϕj , ϕk)δ(�ϕij − ϕi + ϕj )

× δ(�ϕik − ϕi + ϕk)dϕidϕjdϕk. (3)

In practice, this is accomplished by binning C3(ϕi, ϕj , ϕk) and
C3(�ϕij ,�ϕik) into arrays (e.g., 72 × 72 × 72 and 72 × 72,
respectively) and summing the elements of C3(ϕi, ϕj , ϕk) to
obtain C3(�ϕij ,�ϕik) as follows:

C3(p, q) =
72∑

i,j,k=1

C3(i, j, k)δ(p − i + k)δ(q − i + k), (4)

for p = 1, . . . , 72; q = 1, . . . , 72. Given the finite statis-
tics, and the large memory requirement implied by three-
dimensional arrays used in this type of analysis, care must
be taken when binning the densities. We found the use of 72
bins, for analysis of data samples collected, e.g., by the STAR
experiment [45,46], enables sufficient angular resolution and
statistical accuracy.

III. SIGNAL MODELING

We use specific models for jet, dijet production, collective
flow, and conical emission signals to assess the sensitivity of
the cumulant method for a search of conical emission. The
models are described in the following subsections while our
study of the sensitivity of the cumulant method is presented in
Sec. VI.

A. Dijet production

Jet production is characterized by the emission of particles
in a cone (in momentum space) centered on the direction of
the parton that produces the jet. We consider dijet production
restricted to central rapidities (near 90◦ relative to the beam
direction) and assume the number of dijet per event in the
acceptance of the detector, J , varies event by event. The
intrajet particle multiplicity depends on the jet energy but
is order three (3) at RHIC energy [47]. We consider back-
to-back jets in azimuth but possibly different longitudinal
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momenta. We denote the number of jet particles measured
within each kinematics cut “i” as Ai and A′

i , respectively,
for the near- and away-side jets. The emission of particles
relative to the jet axis is described by a probability distribution
Passoc(θ ), where θ is the angle between the particle momentum
and the momentum vector of the parton originating the jet.
Projection of this distribution in the transverse plane leads
to a probability distribution, PJ (ϕ), function of the azimuthal
angle, ϕ, between the parton and the particle direction.
Following Ref. [41], we further simplify the jet model
and use a Gaussian azimuthal profile, G2(ϕi − φα; σi) with

G2(x; σ ) ≡ (
√

2πσ )−1 exp(−x2/2σ 2), where ϕi, φα , and σi

are the emission angle (in the laboratory frame) of measured
particles, the emission angle of the parton, and the width of
the jet, respectively. For this illustrative model, we assume
the emission angle and the jet multiplicity are not correlated
to the collision reaction plane. We further assume one can
decouple the number of particles, in the measured kinematic
range of interest, from the jet profile. The number of jets, their
multiplicity, and directions are not known and must therefore
be averaged out. The three-particle jet cumulant is given by
the following expression.

CJet
3 (�ϕ12,�ϕ13) = (2π )−1〈J 〉

⎡
⎢⎢⎢⎢⎣

〈A1A2A3〉G3(�ϕ12,�ϕ13; σ1, σ2, σ3)

+〈A1A2A
′
3〉G3(�ϕ12,�ϕ13 − π ; σ1, σ2, σ

′
3)

+〈A1A
′
2A3〉G3(�ϕ12 − π,�ϕ13; σ1, σ

′
2, σ3)

+〈A1A
′
2A

′
3〉G3(�ϕ12 − π,�ϕ13 − π ; σ1, σ

′
2, σ

′
3)

⎤
⎥⎥⎥⎥⎦

+ (2π )−2[〈J (J − 1)〉 − 〈J 〉2]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈A1A2〉〈A3 + A′
3〉G2(�ϕ12; σ12)

+〈A1A3〉〈A2 + A′
2〉G2(�ϕ13; σ13)

+〈A2A3〉〈A1〉G2(�ϕ13 − �ϕ12; σ23)

+〈A1A
′
2〉〈A3 + A′

3〉G2(�ϕ12 − π ; σ ′
12)

+〈A1A
′
3〉〈A2 + A′

2〉G2(�ϕ13 − π ; σ ′
13)

+〈A′
2A

′
3〉〈A1〉G2(�ϕ13 − �ϕ12; σ ′

23)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (2π )−3[〈J (J − 1)(J − 2)〉 − 3〈J (J − 1)〉〈J 〉 + 2〈J 〉3]〈A1〉〈A2 + A′
2〉〈A3 + A′

3〉 (5)

with

G3(x1, x2; σ1, σ2, σ3) = (2π )−1σ−2
1,2,3 exp

{−[
σ 2

3 x2
1 + σ 2

2 x2
2

+ σ 2
1 (x1 − x2)2

]
/2σ 2

1,2,3

}
, (6)

where xij = xi − xj , σ
2
ij = σ 2

i + σ 2
j , and σ 4

i,j,k = σ 2
i σ 2

j +
σ 2

i σ 2
k + σ 2

j σ 2
k . Note G3 is defined such its integral over

x1 and x2 is unity. The coefficient 〈J 〉 determines the
average number of jets per event. Coefficients A1, A2, A3

describe the number of particles associated with the near-
side jet, whereas A′

1, A
′
2, A

′
3 correspond to the number of

particles associated with the away-side jet observed within
the kinematic cuts used for the study of the correlation
functions. We note that if the number of jets, J , in each
event is determined by a Poisson process, then one has
〈J (J − 1)〉 = 〈J 〉2 and 〈J (J − 1)(J − 2)〉 − 3〈J (J − 1)〉 −
2〈J 〉3 = 0. The constant term and the terms containing a
two-particle dependence in G2 then vanish in the above
expression. The jet three-cumulant is plotted in Fig. 1, in
arbitrary amplitude units, for σ1 = 0.15, σ2 = σ3 = 0.2, σ ′

2 =
σ ′

3 = 0.4, 〈J 〉 = 1, A1 = 1, A2 = A3 = 2, and A′
2 = A′

3 = 1.
We further assume for simplicity that 〈AiAj 〉 = 〈Ai〉〈Aj 〉 and
〈A1A2A3〉 = 〈A1〉〈A2〉〈A3〉, although it is unlikely realized in
practice. Panel (a) presents the cumulant for the Poissonian
case, whereas panel (b) displays a non-Poissonian case for

which 〈J (J − 1)〉 − 〈J 〉2/〈J 〉2 = 0.05. The peak centered at
�ϕ12 = �ϕ13 = 0 corresponds to two particles associated
with the high-pt particle and is referred to as the near-side jet
peak. Secondary peaks at (0, π ), (π, 0), and (π, π ) correspond
to one or both the associates being detected on the away side.
The bands seen in Fig. 1(b) stem from the nonzero two-particle
contributions to the three-cumulant for non-Poissonian events.
Various effects may alter the strength and shape of the jet
correlations. Interactions of the parton with the medium may
produce jet broadening and deflection. Given jet emission is
expected to be surface biased in A + A collisions (in view
of recent measurements of small RAA and the disappearance
of the away-side jet [48]), one expects the near-side peak to
have similar width in A + A collisions as in p + p collisions,
whereas the away-side peak should be broader. One might
also observe additional broadening along �ϕ12 and �ϕ13 due
to parton scattering and radial flow.

B. Collective flow

Flow, or collective motion, is an important feature of heavy-
ion collisions at relativistic energies. It manifests itself by
a modification of transverse-momentum (pt ) spectra relative
to those observed in p + p collisions and by azimuthal
anisotropy of produced particles. In this section, we focus
on azimuthal anisotropy arising in noncentral heavy-ion
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FIG. 1. (Color online) Three-
cumulants calculated based on the
Gaussian jet model discussed in the
text. (a) Poisson case; (b) non-Poisson
case with 〈J (J − 1)〉 − 〈J 〉2 = 0.05
〈J 〉.

collisions. We decompose the azimuthal anisotropy in terms
of harmonics relative to an assumed reaction plane. The
conditional probability, PF (ϕi |ψ), to observe a particle at a
given azimuthal angle, ϕi , with the reaction plane at angle, ψ ,
is written as a Fourier series:

PF (ϕi |ψ) = F2[ϕi − ψ ; vm(i)], (7)

where

F2(�ϕ; vm) = 1 + 2
∑
m

vm cos[m(�ϕ)]. (8)

The Fourier coefficients vm(i) measure the m-th order
anisotropy for particles emitted in a selected kinematic range
i. Measurements have shown the second-order (elliptical)
anisotropy can be rather large in Au + Au collisions at
RHIC, whereas first- and fourth-order harmonics are typically
much smaller. STAR measurements show the fourth harmonic
scales roughly as the square of the second-order harmonic
(v4 ≈ 1.1v2

2) [48,49]. The third and fifth harmonics are by
symmetry null at η = 0 for a colliding system such as
Au + Au and expected to be rather small at other rapidities.
Higher harmonics are most likely negligible. We neglect pos-
sible event-to-event fluctuations of these coefficients given it
emerges from recent works disentangling flow fluctuations and
nonflow correlations is difficult. We describe the probability
of finding Ni particles in the kinematical range i according
to probability P (Ni). The exact form of this probability is
not required. Only its first, second, and third moments are
needed. The joint probability of measuring Ni particles at an
angle ϕi while the reaction plane angle is at ψ is given by
PF (ϕi,Ni, ψ) = PF (ϕi |ψ)PF (Ni)PRP(ψ), where PRP(ψ) =
(2π )−1 is the probability of finding the reaction plane at a
given angle ψ . Integration yields the single-particle density
ρ1(ϕi) = (2π )−1〈Ni〉. The flow two- and three-cumulants are
given, respectively, by (see Ref. [41] for a derivation of these
expressions):

CF
2 (�ϕij )

= (2π )−2{〈NiNj 〉F2[�ϕij ; vm(i)vm(j )] − 〈Ni〉〈Nj 〉}
= (2π )−2〈NiNj 〉

×
[

1 − dij + 2
∑
m

vm(i)vm(j ) cos(m�ϕij )

]
(9)

and

CF
3 (ϕi, ϕj , ϕk)

= (2π )−3〈N1N2N3〉[�3(ϕi, ϕj , ϕk) + (1 − fijk)�2(�ϕij )

+ (1 − fikj )�2(�ϕik) + (1 − fjki)�2(�ϕjk)

+ 1 − fijk − fikj − fjki + 2gijk], (10)

where

�2(x; v1,m, v2,m) = 2
∞∑

m=1

v1,mv2,m cos(mx) (11)

and

�3(ϕi, ϕj , ϕk) = 2
∑
p,m,n

v1,pv2,mv3,n

×

⎡
⎢⎣

δp,m+n cos(pϕi − mϕj − nϕk)

+δm,p+n cos(−pϕi + mϕj − nϕk)

+δn,m+p cos(−pϕi − mϕj + nϕk)

⎤
⎥⎦
(12)

vi,m correspond to the anisotropy coefficients of order m for
particle i. The coefficients dij , fijk , and gijk are defined as
follows

dij = 〈Ni〉〈Nj 〉
〈NiNj 〉

fijk = 〈NiNj 〉〈Nk〉
〈NiNjNk〉 (13)

gijk = 〈Ni〉〈Nj 〉〈Nk〉
〈NiNjNk〉 .

We find that the flow three-cumulant involves, in general,
an arbitrary combination of second- (e.g., v2

2) and third-order
(e.g., v2v2v4) terms. If particle production is strictly Poisso-
nian, the coefficients fijk and gijk are unity. The second-order
terms of the cumulant thus vanish, and the three-cumulant
(flow only) then reduces to:

C
F,Poisson
3 (ϕ1, ϕ2, ϕ3) = (2π )−3〈N1N2N3〉

×�3[ϕ1, ϕ2, ϕ3; vp(1)vm(2)vn(3)],

(14)

which features only nondiagonal terms vm(i)vn(j )vp(k), i.e.,
with m 	= n,m 	= p, or n 	= p. This is illustrated in Fig. 2(a)
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FIG. 2. (Color online) Three-cumulant flow signal calculated using (a) only v2v2v4 terms, (b) v2v2v4 and v2v2 + v4v4 terms in a 1:0.5 ratio,
(c) v2v2v4 and v2v2 + v4v4 terms in a 1:2 ratio, and (d) only v2v2 + v4v4 terms. The v2v2v4 and v2v2 + v4v4 terms are calculated according to
Eqs. (10)–(13). See text for details.

that shows the flow three-cumulant calculated using only
v2v2v4 terms. In general, particle production is non-
Poissonian, and second-order terms must be considered. The
flow three-cumulant shown in Figs. 2(b) and 2(c) includes v2

2
and v2

4 added to the v2v2v4 terms in the ratios 1:0.5 and 1:2,
respectively. Only v2

2 and v2
4 terms are included in Fig. 2(d),

illustrating a case where non-Poisson fluctuations are very
large and thereby dominate the three-cumulant. The shape of
the three-cumulant thus depends significantly on the strength
of the non-Poisson (second-order terms), as well as the mag-
nitude of the flow coefficients. The interpretation of measured
three-cumulants may thus be considerably complicated by the
presence of non-Poisson fluctuations.

Experimentally, one can estimate the magnitude of second-
order (diagonal) terms from measured total numbers of triplet,
pair, and single-particle densities. STAR observes, based
on data from Au + Au collisions at 200 GeV [46], that
the coefficients f123 and f231 deviate from unity. The size
of the deviation scales qualitatively as the inverse of the
event multiplicity. STAR also finds the magnitude of the
deviation depends on the specific particle kinematic ranges
used to carry the analysis. The particle production process
is manifestly non-Poissonian. Because the bulk of produced
particles exhibits elliptic flow, this implies the conditions
fijk = gijk = 1 are not verified in practice. The second-order

and constant terms of the cumulant do not vanish and may in
fact be sizable. The second-order terms result from number
fluctuations and may in principle be estimated (and thus fitted)
on the basis of measurements of fijk . Note, however, that
multiplicity fluctuations occur for flowlike processes as well as
all other types of production processes (including jets, conical
emission, etc.). It is thus nontrivial to unambiguously evaluate
the proper magnitude of the diagonal flow terms based on
ratios of measured yields.

Effects of flow fluctuations are not specifically addressed
in the above flow model. Note, however, that, as defined,
the three-cumulant measures averages of 〈v2

n〉, and 〈vivj vk〉
coefficients rather than averages of 〈vn〉. The three-cumulant
thus implicitely features fluctuations and nonflow effects.
Given that it is difficult to experimentally distinguish flow
fluctuations and nonflow effects (see, for instance, the review
by Voloshin et al. [50]), analyses attempting explicit subtrac-
tion of flow contributions (from three-particle densities) based
on the above equations are thus intrinsically nonrobust.

C. Conical emission

Mach cone emission of particles by partons propagating
through dense quark-gluon plasma (QGP) matter was proposed
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by Stoecker [2] to explain the peculiar dip structure found at
180◦ in two-particle correlations reported by the STAR and
PHENIX Collaborations and is the subject of many recent
theoretical investigations [1–11,22–24,26,27]. The concept
of Mach cone emission is based on the notion that high-
momentum partons propagating through a dense QGP interact
with the medium and loose energy (and momentum) at a finite
rate. The release of energy engenders a wake that propagates at
a characteristic angle, the Mach angle, determined by the sound
velocity in the medium. Authors of Ref. [4] estimated the speed
of sound in the QGP to be of the order of vs ≈ cRHIC

s ≈ 0.33.
The Mach angle should thus be of the order of 70◦ relative to the
away-side parton direction. We use this prediction to motivate
a simple geometrical model of conical emission. The near-side
jet is described using a Gaussian azimuthal profile. Away-side
particles are emitted at a cone angle of 1 rad with a scatter
of 0.05 rad relative to the away-side direction. Figures 7(a)
and 7(b) present the three-cumulant obtained with a Monte
Carlo simulation based on two million events. Given that
Mach cone particles are produced at 1 rad from the away-side
direction and roughly normal to the beam direction, narrow
Jacobian peaks are seen in the three-particle correlations. A
strong dip is present at 180◦ in the two-particle correlations,
while in the three-particle correlation a clear spacing is found
between the peaks. In this simple model, the finite width of the
peaks is due in part to the finite width of the trigger jet and in
part to the scatter imparted to the cone particles relative to the
away-side direction. In practice, one might expect additional
broadening of the cone because the speed of sound changes
through the life of the QGP medium and given the finite size
of the medium. Radial flow might also significantly alter the
correlation functions. As discussed in Ref. [41], the details of
the correlation shapes clearly depend on assumptions made
about the kinematics of the away-side parton.

D. Flow × jet correlations

The measured nuclear modification factor, RAA , defined as
the ratio single-particle yields measured in A + A collision to
those measured in p + p interactions (scaled by the number
of binary collisions in A + A), suggests the propagation of
jets through the medium is severely quenched and therefore
features a surface emission bias [48]. In this scenario, partons
propagating through the medium lose a large fraction of
their energy. This results in jets lost or lower-energy jets
with smaller particle multiplicity. The path length through the
medium determines the amount of energy loss and quenching.
At a given point of emission, near the medium surface, a
parton propagating outward in a direction normal to the surface
should have a shortest pathway through the medium and
minimal energy loss. Partons produced at the same location,
but emitted in other directions, would have longer path through
the medium and suffer larger energy loss. In this scenario, one
thus expects jet yields (and consequently the high-pt trigger)
to be correlated to the reaction plane orientation. Neglecting
disturbances imparted to the medium by the propagation of
the jet (or parton), we model the jet dependency on azimuthal
angle relative to the reaction plane with Fourier decomposition.

Specifically, we write the probability of the jet being emitted
at angle φ while the reaction plane is at angle ψ as

P (φ|ψ) = 1 + 2
∑

n

an cos[n(φ − ψ)], (15)

where the coefficients an represent the effect of the differential
azimuthal attenuation. We parametrize the jet multiplicity
and azimuthal width using associated yields and Gaussian
widths that do not depend on the azimuthal direction. As in
Sec. III A, the average number of jets per event is written 〈J 〉,
while the number of particles associated with a given jet is
〈Ai〉. We also assume the presence of a flowing background
consisting on average of 〈Bi〉 particles. The single-particle
yield is thus ρ1,J⊗F (ϕi) = (2π )−1(〈J 〉〈Ai〉 + 〈Bi〉). Given
that the production of both jets and background particles is
correlated to the reaction plane, one ends up with flow-induced
correlations between all particles, even those produced by
the jets. The two-particle cumulant involves three sets of
terms, namely jet-jet (J ⊗ J ), jet-background (J ⊗ B), and
background-background (B ⊗ B). Similarly, the three-particle
cumulant involves J ⊗ J ⊗ J, J ⊗ J ⊗ B, J ⊗ B ⊗ B, and
B ⊗ B ⊗ B terms.

A jet-flow model was already discussed in Ref. [41]. We
here rederive and express the various terms of the model
with a more compact and intuitive notation. The terms B ⊗ B

and B ⊗ B ⊗ B are identical in form to those considered in
Sec. III B. We need to discuss only the terms J ⊗ J, J ⊗
B, J ⊗ J ⊗ J, J ⊗ J ⊗ B, and J ⊗ B ⊗ B. We begin with
J ⊗ J and J ⊗ J ⊗ J . These terms contain contributions
where two (three) of the particles are part of the same jet
and others where one or two particles are not from the same
jet. When particles are from the same jet, the correlation to
the reaction plane is unimportant (to the extent, in our model,
that the width of the jets do not change with their orientation
relative to the reaction plane). The corresponding terms are
thus identical to those obtained in the absence of flow. The
two-particle density includes a term with two particles from
the same jet (identical to that discussed in Sec. III A) and a
term with particles from two different jets. This last term is
given by

〈J (J − 1)〉〈Ai〉〈Aj 〉
∫

dψdφαG(ϕi − φα)P (φα|ψ)

×
∫

dφβG(ϕi − φβ)P (φβ |ψ). (16)

Integration and inclusion of the first term yields the jet
component of the two-particle density.

ρ
Jet only
2 (ϕi, ϕj ) = 〈J 〉〈AiAj 〉G2(ϕi − ϕj ; σ12)

+〈J (J − 1)〉〈Ai〉〈Aj 〉F2[ϕi − ϕj ; an(i, j )],

(17)

where σ 2
12 = σ 2

1 + σ 2
2 , an(i, j ) = v′

n(i)v′
n(j ), with v′

n(i) =
an exp(−n2σ 2

i /2). Similarly, the three-particle density in-
cludes a term with three particles from the same jet, two
particles from the same jet, and another with all three particles
from different jets. The J ⊗ J and J ⊗ J ⊗ J part of the
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cumulant is as follows:

ρ
Jet only
3 (ϕi, ϕj , ϕk)

= 〈J 〉〈AiAjAk〉G3(ϕi, ϕj , ϕk; σi, σj , σk)

+〈J (J − 1)〉〈AiAj 〉〈Ak〉G2(�ϕij )

×F2

[
σ 2

j

σ 2
ij

ϕi + σ 2
i

σ 2
ij

ϕj − ϕk; v′′
n(k)

]
+ (jki)

+〈J (J − 1)(J − 2)〉〈Ai〉〈Aj 〉〈Ak〉
×N3[ϕi, ϕj , ϕk; v′

n(i), v′
m(j ), v′

p(k)]. (18)

The functions G3, F3, and F2 were defined in previous
sections. The symbol (jki) indicates identical terms obtained
by permutation of the indices. The term G3 is identical
to that obtained for nonflowing jets. The term of the last
row corresponds to a flowlike correlation between the three
measured particles, albeit with a strength that depends on
the fluctuations of the number of jets per event and the jet-
associated multiplicities in the kinematic ranges considered.
The second row contains three similar terms that embody the
jet-flow correlations: two particles are correlated because they
belong to the same jet, while the third is correlated to the
first two because of reaction plane dependencies. One notes
that in the above expression, F2 depends on the angle of
emission of all three particles (at variance with assumptions
made in Ref. [31,32]) in a nontrivial way. Indeed, in general,
the jet correlation widths σi depend on the particle-momentum
ranges: the ratios σ 2

i /σ 2
ij are arbitrary (noninteger) values. F2

therefore involves inharmonic flow components. This implies
it is inappropriate to model jet-flow cross terms as a simple
product of jetlike correlations, and flowlike correlations, as in
Ref. [31,32], for purposes of background subtraction.

We next consider the component J ⊗ J ⊗ B and J ⊗ B ⊗
B of the three-cumulant. Following the steps used for the
derivation of the pure jet components, one finds it also includes
a term proportional to F2G2 indistinguishable from J ⊗ J ⊗
J . One has

〈J 〉〈A1A2〉〈B3〉G2(�ϕ12; σ12)

×F

[
σ 2

2

σ 2
12

ϕ1 + σ 2
1

σ 2
12

ϕ2 − ϕ3; v′′
n(3)

]
. (19)

The J ⊗ B ⊗ B component of the three-cumulant contains a
nondiagonal flow term as follows

〈J 〉〈A1〉〈B2B3〉F3[ϕi, ϕj , ϕk; v′
n(i), v′

m(j ), v′
p(k)]. (20)

This term has the same functional dependence and is in-
disguishable from the term on the third line of Eq. (19).
Assemblinging all components, one obtains the JET ⊗ FLOW
three-cumulant:

CJ⊗F
3 (ϕi, ϕj , ϕk)

= 〈J 〉〈AiAjAk〉G3(ϕi, ϕj , ϕk; σi, σj , σk)

+ [〈J (J − 1)〉 − 〈J 〉2]〈AiAj 〉〈Ak〉G2(�ϕij ) + (jki)

+〈AiAj 〉[〈J (J − 1)〉〈Ak〉 + 〈J 〉〈Bk〉]G(�ϕij ; σij )�2

×
[

σ 2
j

σ 2
ij

ϕi − σ 2
i

σ 2
ij

ϕj − ϕk; v′′
n(k)

]
+ (jki)

−〈J (J − 1)〉〈Ai〉〈Aj 〉〈Ak〉F2[ϕi − ϕj ; an(i, j )]

+ (jki) + 〈J (J − 1)(J − 2)〉〈Ai〉〈Aj 〉〈Ak〉
×N3[ϕi, ϕj , ϕk; v′

n(i), v′
m(j ), v′

p(k)]

+〈J 〉〈Ai〉〈BjBk〉N3[ϕi, ϕj , ϕk; v′
n(i), v′

m(j ), v′
p(k)]

−〈BiBj 〉〈J 〉〈Ak〉F2[ϕi − ϕj ; vn(i)vn(j )] + (jki)

+ (2π )−3〈BiBjBk〉�3[ϕi, ϕj , ϕk; vp(i)vm(j )vn(k)k]

+ (2π )−3〈BiBjBk〉(1 − fijk)�2[ϕi − ϕj ; vm(i), vm(j )]

+ (jki) − (2π )−3〈BiBjBk〉fijk + (jki)

+ constants. (21)

This cumulant includes components typical of jets (lines 1
and 2), flow (lines 4–11), and one term unique to jet-flow
cross terms (line 3). Although this jet-flow term does include
two-particle jetlike, and flowlike factors, it is important to
note the flow factor is intrinsically inharmonic. Its amplitude
depends on the number jet associates and background particle
multiplicity. Given the number of associates is likely much
smaller than the number of background particles, one expects
the amplitude of this term to be dominated by the magnitude
of the background. It is interesting to compare the magnitude
of this cross term relative to the off-diagonal flow terms. We
focus on the difference between the leading terms in v2v2v4

and v2v2. Given the jet cross section and fragment multiplicity
are small at RHIC energies, one expects the v2v2v4 term should
dominate or at most be of similar magnitude to the cross term
unless the jet flow v2 is considerably larger than the bulk flow.

As discussed in Sec. III B, particle emission in A + A

collisions is a non-Poissonian process. The coefficients fijk

in general deviate from unity. The leading background terms
may thus be those of line 2, 6, 7, and 9 in Eq. (21).

Lines 4 and 7 both contain terms in F2, albeit with different
amplitudes. Experimentally these cannot be distinguished, and
one ends up with an F2 contribution to the cumulant that
depends on both the jet and background yields. Likewise,
lines 5, 6, 8, and 9 feature nondiagonal flow terms (dominated
by v2v2v4) that cannot be distinguished experimentally: the
amplitude of the v2v2v4 three-particle correlation terms depend
intricately on the jet yield, its fluctuations, and the background
yield. The jet-flow “cross term” manifests itself through the
inharmonic terms of line 3 in Eq. (21). Although these
harmonic terms may be approximated as a product such as
G2(�φ12)F�2(�φ13) if the width σ1 (very high-pt particles)
is negligible, when added in quadrature to the width σ2 of
the low-pt particle, the approximation breaks down in general
because σ1 is neither zero or equal to σ2. Additionally, note
that the model used in this section assumed the cross terms
are dominated by jetty and flow components. This may not be
the case in practice. For instance, resonance or cluster decays
in the presence of both radial and elliptical flow should lead
to complex cross terms. Such cross terms shall be inherently
inharmonic also. Given the correlation shapes associated with
resonance or cluster decays can be quite wide, the inharmonic
character of the cross term can be quite intricate. Ad hoc
subtraction of terms in G2(�φ12)F�2(�φ13) in model-based
analyses is therefore unwarranted.
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FIG. 3. (Color online) Detection efficiency dependence on the
particle azimuthal angle used in the simulation results presented in
Fig. 4.

IV. PROBABILITY CUMULANTS

We showed in Sec. III B that the three-cumulant associated
with flow reduces to nondiagonal terms in vnvmvp for
Poissonian particle production processes. However, momen-
tum, energy, and quantum number conservation laws imply
elementary collisions are typically non-Poissonian processes,
as observed from Fig. 3 which shows ratios fijk measured by
STAR [46]. This implies the three-cumulant may have a rather
complicated structure, with second-order terms (i.e., two-
particles) as well as three-particle terms. We note, however,
that the simplicity of the three-cumulant may be recovered, in
this case, by using probability cumulants rather than density
cumulants. The probability cumulants are defined as follows:

P2(ϕi, ϕj ) ≡ ρ2(ϕi, ϕj )

〈NiNj 〉 − ρ1(ϕi)ρ1(ϕj )

〈Ni〉〈Nj 〉 (22)

P3(ϕi, ϕj , ϕk) ≡ ρ3(ϕi, ϕj , ϕk)

〈NiNjNk〉 − ρ2(ϕi, ϕj )ρ1(ϕk)

〈NiNj 〉〈Nk〉
− ρ2(ϕi, ϕk)ρ1(ϕj )

〈NiNk〉〈Nj 〉 − ρ2(ϕj , ϕk)ρ1(ϕi)

〈NjNk〉〈Ni〉
+ 2

ρ1(ϕi)ρ1(ϕj )ρ1(ϕk)

〈Ni〉〈Nj 〉〈Nk〉 , (23)

where Ni correspond to total particle multiplicities accepted in
the kinematic cuts i. It is straightforward to verify that the flow
probability three-cumulant indeed consists of nondiagonal
flow terms only:

P N
3 (ϕ1, ϕ2, ϕ3) = (2π )−3�3[ϕ1, ϕ2, ϕ3; vp(1)vm(2)vn(3)].

(24)

The probability cumulant, P3, thus provides a tool to suppress
the strength of non-Poissonian second-order terms and may
therefore be used, in addition to the number three-cumulant,
C3, in three-particle analyses.

The simplification obtained for flow processes is unfor-
tunately not realized for jet or conical emission processes.
The use of probability three-cumulant may then be of limited
interest in practice. This can be straightforwardly shown
through a calculation of the probability cumulant of the
Gaussian model used in Sec. III A. We limit our calculation
to the near-side jet. One finds the probability three-cumulant
contains terms in G2(�φ) proportional to the nonvanish-
ing factor 〈J (J − 1)〉〈N1N2〉〈N3〉 − 〈J 〉2〈N1N2N3〉, where
N1, N1N2, and N1N2N3 are, respectively, the number of

singles, pairs, and triplets from the near-side jet. By contrast to
the flow probability three-cumulant that contains only genuine
three-particle correlation terms (�3), the Gaussian probability
cumulant thus has a complicated expression that contains terms
in G3 as well as in G2. Its interpretation is therefore nontrivial.

V. EFFICIENCY CORRECTION AND OBSERVABLE
ROBUSTNESS

Measured particle densities, and cumulants, must be cor-
rected for detection efficiencies and other instrumental effects.
We introduced in Ref. [41] a procedure to correct for detector
efficiencies based on ratios of two- and three-particle densities
by products of two and three single-particle densities. For
instance, up to a global efficiency factor, the corrected three-
particle density is given by

ρ3(ϕ1, ϕ2, ϕ3)corrected

= (2π )−3N (1)N (2)N (3)
N3(ϕ1, ϕ2, ϕ3)

N1(ϕ1)N1(ϕ2)N1(ϕ3)
, (25)

where N1(ϕi) stands for uncorrected single-particle densities,
N3(ϕ1, ϕ2, ϕ3) are numbers of triplets, and N (i) are total
particle yields within the kinematics cuts i.

This correction procedure is strictly exact for continuous
functions provided the efficiency is a function of the azimuthal
angles ϕi but independent of other observables such as
the particle rapidity and transverse momentum. For large
detectors such as the STAR TPC [45], the efficiency is a
smooth and slowly varying function of the pseudorapidity
and transverse momentum but exhibits periodic structures in
azimuth because of TPC sector boundaries. A correction for
azimuthal dependencies of the detector response is thus the
most important and relevant in this context.

We examine the robustness of the above correction pro-
cedure in a practical situation, i.e., where the densities are
measured with a finite number of bins, based on the jet and
conical emission models discussed in Sec. II. We parametrize
the detection efficiency, ε(ϕi), with a Fourier decomposition:

ε(ϕi) = ε0

[
1 + 2

∞∑
n=1

εi cos(nϕi)

]
, (26)

where ε0 is the average efficiency and coefficients εn determine
the azimuthal dependence of the efficiency. We assume the
efficiency for simultaneously detecting two and three particles
are factorizable as product of single-particle efficiencies.
The mean single-particle detection efficiency is set to 80%.
The Fourier coefficients [Eq. (26)] are chosen to obtain a
nonuniform azimuthal detector response as shown in Fig. 3.
The JET + Mach cone model described in Secs. III C
and VI is used to carry a simulation of the robustness of the
correction procedure. Figure 4(a) displays the three-cumulants
obtain with perfect detection efficiency. Figure 4(b) shows
the uncorrected two-particle density ρ2(ϕ1, ϕ2) obtained with
the nonuniform azimuthal response illustrated in Fig. 3. The
two-particle density exhibits strong, narrow, and repeated
structures that result from the 12-fold structure of the assumed
detector response. Figure 4(c) displays the three-cumulant
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FIG. 4. (Color online) Study of
the efficiency correction method
[Eq. (25)] using the Mach cone
model described in Sec. VI (a) Three-
cumulant for perfect detection effi-
ciency, (b) two-particle density, (c)
three-cumulant obtained with the az-
imuthal efficiency dependence shown
in Fig. 3, (d) difference between the
three-cumulants shown in (b), and
the perfect efficiency cumulant scaled
by the cube of the average detection
efficiency.

obtained with the same detector response but corrected for
efficiency effects by division of the two- and three-particle
densities by the product of single-particle densities, as in
Eq. (25). In stark contrast to the correlation shown in
Fig. 4(b), one finds the corrected cumulant exhibits no evidence
of the detector response except for a global change in amplitude
corresponding to the cube of the average detection efficiency.
Figure 4(d) shows the difference between this cumulant and
the perfect efficiency cumulant scaled down by the cube
of the average detection efficiency. The standard deviation
of the difference is smaller than 1% of the maximum three-
cumulant amplitude and exhibits no particular structure. We
thus conclude the correction method is numerically robust for
cases where the triplet and pair efficiencies factorize.

VI. CUMULANT METHOD SENSITIVITY FOR JET AND
CONICAL EMISSION MEASUREMENTS

We present in this section a study of the sensitivity of the
cumulant method described in this article for a search for
conical emission. Our study of the sensitivity of the method
is based on Monte Carlo simulations carried out using a
simple event generator that encapsulates flow, jet, and conical
emission as a multicomponent model.

We begin our presentation of the simulations with flow-only
model components. The overall multiplicity, noted m, of an
event is selected randomly according to a flat distribution.
The flow component is designed to produce, on average, a

fraction, fi , of the event multiplicity. The number of flowing
particles, Ni (for a kinematic cut i), is generated event by
event randomly with a Poisson probability density function
(PDF) of mean m × fi . The particle direction, in azimuth, is
selected randomly according to the flow PDF given by Eq. (7).
Various values of the coefficients v2 and v4, which determine
the magnitude of the bulk flow, are used in the following to
study the impact of flow on the cumulant and sensitivity to
a cone signal. All other Fourier coefficients are set to zero.
The event plane azimuthal angle is chosen randomly in the
range [0, 2π ]. The coefficient f1 is set to produce a number
of high-pt particles or order unity in each event, whereas f2

is set to produce a low-pt particle multiplicity of order 100.
These values are selected to mimic STAR data in the range
3 < pt < 20, and 1 < pt < 2 for the trigger and associate
particles, respectively.

Figure 5(a) and 5(b), respectively, display the triplet density
and the three-cumulant obtained with the above flow random
generator with v2 = 0.1 and v4 = 0. The three-cumulant,
shown in Fig. 5(b), exhibits a finite v2

2 component owing to
the fact that although the multiplicities Ni are generated with
Poisson PDFs, the mean of these PDFs varies as a function
of the event multiplicity, thereby implying a correlation
between the low- and high-pt particle multiplicities. This, in
turn, implies the coefficients fijk are nonzero: the cumulant
therefore contains a nonvanishing v2

2 component. This compo-
nent, however, vanishes in the probability cumulant shown in
Fig. 5(c) as expected from Eq. (24).
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FIG. 5. (Color online) Simulations of (a) the three-particle density, (b) three-cumulant, and (c) the probability cumulant for particle emission
with elliptic anisotropy v2 = 0.10.

Figure 6 shows results of a simulation based on the same
flow model as that used in Fig. 5 but with an added fourth-
harmonic component. Flow amplitudes are set to v2 = 0.1
and v4 = 0.01. Although the three-particle density [Fig. 6(a)]
is completely dominated by the second harmonic, one finds
the three-cumulant suppresses this component significantly
[Fig. 6(b)] and enables clear observation of the v2

2v4 non-
diagonal terms expected from Eq. (23). The v2

2 component
is further suppressed in the probability cumulant, shown in
Fig. 6(c), where only the v2

2v4 component manifestly remains.
As anticipated based on Eq. (24), the probability cumulant
enables essentially full suppression of v2

2 terms and shows
irreducible flow components only.

Monojets and conical emission are next added to the
simulated events. The jet axis (corresponding to the parton
direction initiating the jet) is chosen randomly in the transverse
plane. Particles are generated at random polar angles, relative
to the jet direction using Gaussian PDFs. The width of the
Gaussian is set to 0.15 rad for high-pt particles and 0.25
for low-pt particles. Note that the conclusions of this study
are essentially independent of the width of the jets. The
associate multiplicity are generated jet-by-jet using Poisson

PDFs. The near-side jet associated particle multiplicity (i.e.,
number of associates per jet) are set to 1 and 2 for the
high- and low-pt particles, respectively. No away-side jet
is included. Instead, one introduces a conical emission as
described in the following. Jet parameters are selected to
correspond approximately to associate jet yields measured by
the CDF Collaboration for jets of 10 to 20 GeV [47], as well as
jet associated yields reported by RHIC experiments [51]. The
number of jets is generated event by event with a Poisson PDF
of mean 0.01 jet per unit multiplicity: the average number of
jets per event is thence of order 1–2. Such large values are used
to ease our study. Smaller, perhaps more realistic, jet-yield
values result in a weaker signal. This limits the statistical
significance of the measurement but does not constitute an
intrinsic limitation of the cumulant method.

In our simulations, the parton determining the direction
of the jet is first generated and is restricted for simplicity to
the reaction transverse plane. The away-side parton is emitted
in the transverse plane as well, at angle of π rad relative to
the jet parton. Conical emission is simulated by generating
particles at a random polar angle relative to the away-side
parton direction. The azimuthal direction of the particle, in the
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FIG. 6. (Color online) Simulations of (a) the three-particle density, (b) three-cumulant, and (c) the probability cumulant for particle emission
with elliptic anisotropy v2 = 0.10 and v4 = 0.01.
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FIG. 7. (Color online) (a) Simulation of the three-cumulant obtained with monojet, conical emission, and background particles (without
flow). Average jet yield to high-pt particle background yield set to 1. (b) Projections of the cumulant along the main (red triangles) and alternate
(blue circles) diagonals for jet/cone parameters used in (a). Other particle-generation parameters and projections are discussed in the text.
(c) Cumulant projections obtained for a high-pt background to jet-signal ratio of 4.

plane transverse to the parton direction, is randomly selected
based on a uniform distribution. The polar angle is chosen to
have a Gaussian distribution with an average value of 1 rad. The
number of high-pt particles produced in this cone is arbitrarily
set to zero, while the number of low-pt cone particles in a given
parton-parton collision is selected randomly with a Poisson
distribution of mean equal two, unless specified otherwise in
the following.

Because the cone particles are emitted at an arbitrary polar
angle but detected in the transverse plane as a function of
relative azimuthal angles only, conical emission results in
four Jacobian peaks, as seen in Fig. 7(a). To characterize the
shape and strength of these peaks, we use projections of the
cumulants along the diagonals ϕ12 + ϕ13 − 2π and ϕ12 − ϕ13.
Projections, shown in Fig. 7(b), are limited to include narrow
angular ranges about the diagonals. Specifically, the range
|ϕ12 − ϕ13| < 10◦ is integrated to obtain the projection along
the plot main diagonal (displayed as red triangles), whereas

the condition |(ϕ12 + ϕ13) − 2π | < 10◦ is used for projections
along ϕ12 − ϕ13 (shown as blue circles).

At issue is whether one can extract a cone signal given
the presence of background particles and flow. We thus
vary the strength of the jet signal to background ratio by
changing the fractional jet and background yields. Figures 7
through 11 show cumulants and projections obtained with var-
ious model parameters. All plotted cumulants were obtained
with simulations integrating two millions events.

Figures 7(a) and 7(b) shows the cumulant and projections
obtained for an average of 2.5 jets per event. The number
of high- and low-pt particles associated with the jet and
cone are set, respectively, to 1 and 2. The uncorrelated
background of high- and low-pt particle are set to 2.5 and 100
particles per event, respectively. The cone signal obtained with
such parameters is obviously strong and clearly observable.
Figure 7(c) displays the cumulant and projections with a
high-pt background raised by a factor of 4 resulting in a signal
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FIG. 8. (Color online) Idem Fig. 7 in the presence of background flow. (a and b) No background high-pt particle. Average of 100 low-pt

background particle per event, with flow v2 = 0.1 and v4 = v2
2 . (c) Average of 100 low-pt background particle per event, with flow v2 = 0.2

and v4 = v2
2 .
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FIG. 9. (Color online) (a and b) Idem Fig. 7 for average jet yield to high-pt background equal one per event. Average of 100 low-pt

background particle per event, with flow v2 = 0.1 and v4 = v2
2 . (c) Projections obtained for average jet yield to high-pt background equal eight

per event.

to noise ratio of 25%. The observed cone strength remains
unchanged, as expected given the background is uncorrelated.
We also verified that an increase of the width of the Gaussian
PDF used for jet and cone particle emission results in wider
peak structures with reduced amplitude but no actual change in
the integrated cone signal strength. In this context, we conclude
the observability of conical emission is only limited by the
statistical accuracy of the measurement relative to the actual
strength of the signal. For instance, a reduction by a factor of
five of the number of high-pt associated particles results in
cone-signal five times smaller in amplitude, but the shape of
the cumulant remains unchanged and the observability of the
signal is thus only limited by the size of the event sample and
the number of particles associated with the trigger and cone.

We next consider the observability of conical emission in
the presence of anisotropic flow. Figure 8 shows the cumulant
and projections in the presence of a flow background. The jet
and conical signals are identical to those used in Figs. 7(a)
and 7(b). An average background of 100 low-pt particles is

included with v2 = 0.1 and v4 = v2
2. No high-pt background

is included. The cone signal shape and strength remains
unaffected, although the projections exhibit a background
structure somewhat more complex than that observed in Fig. 7.
Figure 8(c) displays the projections obtained when the elliptic
flow is raised to v2 = 0.2. Although the signal is clearly
visible, one observes the emergences of cosine structures
along the �ϕ23 projection. These stem from the non-Poisson
nature of the background multiplicity fluctuations used in the
simulations.

Flowlike or cosine structures also appear when high-pt

background particles are added as shown in Fig. 9, where the
average high-pt particle background is set to 2.5 per event. The
observability of the cone depends on its amplitude relative to
that of the background, as well as on the magnitude of v2

and v4. We note that the signal remains visible in the �ϕ23

projection, with the jet and cone parameters used in Fig. 7,
even when the high-pt background is raised by a factor of eight
as shown in Fig. 9. For substantially larger background, the

 (rad)
12

ϕ∆
0 2 4

 (
ra

d
)

13ϕ∆

0

2

4

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

3C

(a)

 (rad)φ∆
-3 -2 -1 0 1 2 3

Y
ie

ld

-0.002

0

0.002

0.004

0.006

0.008
(b)

FIG. 10. (Color online) Idem Fig. 7 for average high-pt background-to-jet yield equal to 16. Average of 100 low-pt background particle
per event, with flow v2 = 0.1 and v4 = v2
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FIG. 11. (Color online) Comparison
of the cone signal obtained with an
average of two (blue squares) and one
(red circles) low-pt particles involved
in conical emission. Panels (a) and
(b) show the three-cumulant projections
along (�ϕ12 + �ϕ13)/2 and �ϕ23, re-
spectively. Simulations carried out with a
jet-flow component, v2 = 0.05, and an av-
erage number of 100 low-pt background
particles per event, with flow v2 = 0.1 and
v4 = v2

2 . See text for details.

signal, however, becomes more difficult to extract as illustrated
in Fig. 10 where a background-to-signal ratio of 16 is used for
high-pt particles. Clearly, the observability of a cone signal
in the presence of flow depends on the strength of the signal
relative to that of non-Poisson components and values of v2.

The model-independent extraction of a conical signal
becomes increasingly difficult as the signal strength is reduced
and the elliptic flow magnitude increased. The measurement
becomes particularly challenging when the jet amplitude is
modulated by differential attenuation relative to the reaction
plane, i.e., in the presence of jet flow. Figures 11(a) and 11(b)
display projections along �ϕ12 + �ϕ13 and �ϕ23 obtained
with jet v2 = 0.05 (as defined in Sec. III D). The blue squares
and red circles show, respectively, the signals obtained with
an average of two and one low-pt particles involved in conical
emission. Simulations are carried out with an average number
of 2.5 jets/cones per event. The average yield of high-pt low-pt

background particle are set to 8 and 100 per event, respectively.
Background particles are produced with flow v2 = 0.1 and
v4 = v2

2. In our simulation, the number of cone-associated
particles is determined event by event with a Poisson random
number generator. The conical signal is detectable, in the
context of this three-cumulant analysis, only when two, or
more, particles are generated per event. For an average cone
yield of two associated particles, 60% of the cone events
contain two or more cone particles. By contrast, only 26% of

the events contain two cone particles when the average (cone)
yield is one. The signal obtained in the former case is clearly
visible, while it becomes weaker in the latter. The detectability
of the signal thus greatly depends on the actual yield of conical
emission. We note that two-particle correlation analyses report
an away-side yield of two particles per trigger after flow
background subtraction based on a ZYAM hypothesis [52].
If this away side is due to conical emission, this implies the
low-pt cone particle average multiplicity is large and should
therefore be detectable in the context of a three-cumulant
analysis. We note, however, that the cumulant measurements
reported by the STAR Collaboration at recent conferences do
not exhibit as strong cos(2�ϕ) components as those illustrated
in the �ϕ1 + �ϕ2 projections shown in Fig. 11 [42]. Note
additionally that the cone signal remains visible in the �ϕ23

projection even for small signal-to-background ratios. It is,
however, obvious that strong background flow and jet flow
may hinder the observation of conical emission. For instance,
Fig. 12 shows a comparison of the three-cumulant projections
obtained for conical emission in the presence of jet-flow cross
terms with v2 values of 0.05 (blue squares) and 0.1 (red circles)
an associate cone yield of one. One finds the cone single
is difficult to distinguish for v2 = 0.1 but straightforward to
observe for v2 = 0.05.

In summary, we find in the context of our multicomponent
model that the exact sensitivity of the measurement is a
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FIG. 12. (Color online) Compari-
son of the cone signal obtained with
an average of one low-pt particles
involved in conical emission and an
average of 100 low-pt background
particles per event with v2 = 0.05 (red
circles) and v2 = 0.1 (blue squares).
Panels (a) and (b) show the three-
cumulant projections along (�ϕ12 +
�ϕ13)/2 and �ϕ23, respectively. Sim-
ulations are carried out with a jet-
flow component, v2 = 0.05. The back-
ground has v4 = v2

2 .
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“complicated” function of the flow and background parameters
of the model and cannot readily be expressed in analytical form
or even as a table. We further note that the shape and strength of
actual correlations is influenced by momentum and quantum
number conservation effects not explicitly addressed in this
work.

VII. SUMMARY AND CONCLUSIONS

Conical emission has been suggested in the recent literature
to explain the away-side structures observed in two-particle
azimuthal correlations for Au + Au collisions at

√
sNN =

200 GeV. If realized, conical emission should also lead
to three-particle correlations. We introduced in Ref. [41] a
method based on cumulants to carry a search for such a signal.
In this work, we presented a discussion of the properties of the
three-particle cumulant (three-cumulant) calculated in terms
of two relative azimuthal angles, as defined in Ref. [41], for
searches of conical emission in high-energy A + A collisions.
We showed that in the presence of azimuthal anisotry (flow),
the three-cumulant reduces to nondiagonal terms dominated
by components of order v2v2v4 for Poissonian particle produc-
tion. Given particle production is in general non-Poissonian,
one, however, expects the presence of second-order terms,
dominated by components in v2

2 in the cumulant. The strength
of those terms relative to the irreducible v2v2v4 components
depends on the magnitude of v2 and the global strength of
particle correlations or departure from Poisson statistics. The
strength of particle correlation is known to vary inversely with
the collision multiplicity in A + A collisions due to increasing
two-particle correlation dilution with increasing number of
collision participants. We thus expect the mix of v2v2v4 and
v2

2 should be a function of collision centrality.
We introduced a three-particle probability cumulant and

showed it is devoid of v2
2 non-Poissonian components in

the presence of flow only thereby enabling, in principle,

the determination of v2v2v4 amplitudes. We discussed the
shape and strength of the three-cumulant based on simple
particle production models, including dijets, monojet plus
conical emission, and jet × flow correlations. We showed that
jet × flow cross terms should be more complex than those
assumed by some ongoing analyses and cannot, in particular,
be derived from a product of two-particle flow and jetlike
terms. We used the models to discuss the sensitivity of the
three-cumulant for searches of conical emission in A + A

collisions. We showed that the cumulant enables excellent
sensitivity to conical emission for modest values of flow v2

but becomes increasingly challenging for larger values of v2.
We further showed that conical emission can be detected even
in the presence of jet × flow correlations for small values of v2

jet flow. It is, however, obvious the signal may be masked by
large values of jet and background v2 and large non-Poissonian
particle production. Precise values of sensitivity, in terms of
signal strength-to-background ratios, cannot be expressed in a
model-independent way and are found to depend on the relative
amplitude of background v2 and v4 jet-flow correlations,
as well as the global strength of particle correlations, i.e.,
departure from Poisson statistics.

This work neglects effects associated with momentum
conservation, quantum number conservation, and particle cor-
relations present in p + p collisions. Momentum conservation
implies in particular that a multicomponent description of
particle production is not strictly valid, and although it is
useful to estimate the effects of various particle production
mechanisms, its use to search for conical emission signals is
model dependent and therefore unreliable.
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