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Constraining relativistic viscous hydrodynamical evolution
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We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions
one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We
demonstrate this explicitly for (0 + 1)-dimensional viscous hydrodynamics and discuss how the constraint extends
to higher dimensions. Additionally, we present an analytic approximation to the solution of (0 + 1)-dimensional
second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an
ultrarelativistic heavy-ion collision.
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I. INTRODUCTION

The main goal of experiments that perform ultrarelativistic
heavy-ion collisions is to produce and study the properties
of a deconfined plasma of quarks and gluons. This new state
of matter, the quark-gluon plasma (QGP), is expected to be
formed once the temperature of nuclear matter exceeds a
critical temperature of TC ∼ 200 MeV. Such experiments have
already been underway for nearly a decade at the Relativistic
Heavy Ion Collider (RHIC) and higher energy runs are
planned at Large Hadron Collider (LHC). Historically, to make
phenomenological predictions for experimental observables,
fluid hydrodynamics has been used to model the space-time
evolution and nonequilibrium properties of the expanding
matter. For the description of nuclear matter by fluid hydrody-
namics to be valid the microscopic interaction time scale must
be much shorter than the macroscopic evolution time scale.
However, the hot and dense matter created in these experiments
is rather small in transverse extent and expands very rapidly,
causing the range of validity of hydrodynamics to be limited.

After the first results of RHIC, it was somewhat of a
surprise that ideal hydrodynamics could reproduce the hadron
transverse momentum spectra in central and semiperipheral
collisions. This included their anisotropy in noncentral col-
lisions, which is measured by the elliptic flow coefficient,
v2(pT ). Ideal hydrodynamical models were fairly successful
in describing the dependence of v2 on the hadron rest mass
for transverse momenta up to about 1.5–2 GeV/c [1–4]. This
observation led to the conclusion that the QGP formed at RHIC
could have a short thermalization time (τ0 <∼ 1 fm/c) and a low
shear viscosity. As a result it was posited that the matter created
in the experiment behaves like a nearly perfect fluid starting at
very early times after the collision. However, recent results
from viscous hydrodynamical simulations that include all
second-order transport coefficients consistent with conformal
symmetry [5] have shown that estimates of the thermalization
time are rather uncertain owing to poor knowledge of the
proper initial conditions, details of plasma hadronization,
subsequent hadronic cascade, etc.1 As a result, it now seems

1For more about the application of viscous hydrodynamics to heavy-
ion phenomenology we refer the reader to Refs. [5–8].

that thermalization times of up to τ0 ∼ 2 fm/c are not
completely ruled out by RHIC data. Faced with this challenge
it has been recently suggested that it may be possible to
experimentally constrain τ0 by making use of high-energy
electromagnetic probes such as dileptons [9–12] and photons
[13–15].

As mentioned, one of the key ingredients necessary to
perform any numerical simulation using fluid hydrodynamics
is the proper choice of initial conditions at the initially
simulated time (τ0). These initial conditions include the initial
fluid energy density ε, the initial components of the fluid
velocity uµ, and the initial shear tensor �µν . Once the set of
initial conditions is known, it is straightforward to follow the
subsequent dynamics of the fluid equations in simulations. At
the moment there is no first-principles calculation that allows
one to determine the initial conditions necessary. Two different
approaches are currently used for numerical simulations of
fluids in heavy-ion collisions: Glauber type [16] or colored-
glass-condensate (CGC) initial conditions.2 The uncertainty
in the initial conditions introduces a systematic theoretical
uncertainty when, for example, the transport coefficient η/s

is extracted from experimental data [5–8], because when
the initial energy density profile is fixed using CGC-based
initial conditions [18–20], one obtains larger initial spatial
eccentricity and momentum anisotropy when compared with
the Glauber model. Moreover, the values of the components
of the shear tensor �µν at τ0 are also affected by the choice of
either CGC or Glauber initial conditions (see the discussion in
Sec. 4 of Ref. [21]). In the case of Glauber initial conditions
the shear tensor is completely unconstrained. In the case of
CGC initial conditions there is a prescription for calculating
the initial shear; however, with CGC initial conditions the
assumption of exact boost invariance gives a longitudinal
pressure of zero, and the subsequent thermalization of the
system could completely change the initial shear obtained in
the CGC approximation. Therefore, in both cases it would
seem that the initial shear is completely unconstrained.

2For a recent review on the initial conditions based on the CGC
approach see Ref. [17] and references therein.
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Given these uncertainties it would be useful to have a
method that can help to constrain the allowed initial conditions
used in hydrodynamical simulations. In this work we derive
general criteria that impose bounds on the initial time τ0 at
which one can apply second-order viscous hydrodynamical
modeling of the matter created in ultrarelativistic heavy-ion
collisions. We do this first by requiring the positivity of the
effective longitudinal pressure and second by requiring that
the shear tensor be small compared to the isotropic pressure.
Based on these requirements we find that, for a given set
of transport coefficients, the allowed minimum value of τ0

is nontrivially related to the initial condition for the shear
tensor, �µν(τ0) ≡ �

µν

0 , and the energy density ε(τ0) ≡ ε0.
To make this explicit we study (0 + 1)-dimensional second-
order viscous hydrodynamics [22–24], where the transport
coefficients are either those of a weakly coupled transport
theory [25–27] or those obtained from a strongly coupled
N = 4 supersymmetric (SYM) plasma [23,24]. We then show
how the constraints derived from the (0 + 1)-dimensional case
can be used to estimate where higher dimensional simulations
will cease to be physical or trustworthy. Our technique is
complementary to the approach of Huovinen and Molnar
[28], which uses kinetic theory to assess the applicability
of hydrodynamics. In contrast to their work, here we do not
invoke any physics other than hydrodynamical evolution itself
and merely require that it be reasonably self-consistent.

The work is organized as follows: In Sec. II we review the
basic setup of second-order viscous hydrodynamics formalism
and its application to a (0 + 1)-dimensional boost-invariant
QGP (either in the weakly or strongly coupled limits). In
Sec. III we present an approximate analytical solution to
the equations of motion for a (0 + 1)-dimensional system. In
Sec. IV, we present our analytical and numerical results in both
the strong and weak coupling limits of the (0 + 1)-dimensional
QGP. In Sec. V we present our conclusions.

II. BASIC SETUP

In this section we briefly review the general framework
of second-order viscous hydrodynamics equations for a con-
formal fluid (i.e., we will consider just shear viscosity and
neglect bulk viscosity). We will also ignore heat conduction.
The energy-momentum tensor for a relativistic fluid in the
presence of shear viscosity is given by3

T µν = εuµuν − p�µν + �µν, (2.1)

where ε and p are the fluid energy density and pressure, respec-
tively, uµ is the normalized fluid four-velocity (uµuµ = 1), and
�µν is the shear tensor, which has two important properties:
(1) �µ

µ = 0 and (2) uµ�µν = 0. Requiring conservation of
energy and momentum, DµT µα = 0, gives the space-time
evolution equations for the fluid velocity and the energy
density:

(ε + p)Duµ = ∇µp − �µ
αDβ�αβ,

Dε = −(ε + p)∇µuµ + 1
2�µν∇〈νuµ〉, (2.2)

3The notation we use is summarized in Appendix A.

where Dµ is the geometric covariant derivative, D ≡ uαDα is
the comoving time derivative in the fluid rest frame, and ∇µ ≡
�µαDα is the spatial derivative in the fluid rest frame. The
angle brackets 〈〉 construct terms that are symmetric, traceless,
and orthogonal to the fluid velocity (see Appendix A for its
definition).

To obtain a complete solvable system of equations, viscous
hydrodynamics requires an additional equation of motion
for the shear tensor. This is accomplished by expanding the
equations of motion to second order in gradients. It has been
found that at zero-chemical potential in a conformal fluid in
any curved space-time, the shear tensor satisfies [23,24]

�µν = η∇〈µuν〉 − τπ

[
�µ

α�ν
βD�αβ + 4

3
�µν(∇αuα)

]

+ κ

2
[R〈µν〉 + 2uαRα〈µν〉βuβ] − λ1

2η2
�〈µ

λ�
ν〉λ

+ λ2

2η
�〈µ

λω
ν〉λ − λ3

2
ω〈µ

λω
ν〉λ, (2.3)

where ωµν = −∇[µuν] is a symmetric operator that represents
the fluid vorticity and Rαµνβ and Rµν are the Riemann
and Ricci tensors, respectively. The coefficients τπ , κ, λ1, λ2,
and λ3 are the transport coefficients required by conformal
symmetry.

A. (0 + 1)-dimensional conformal second-order
viscous hydrodynamics

Let us consider a system expanding in a boost-invariant
manner along the longitudinal (beamline) direction with a
uniform energy density along the transverse plane. For this
simplest heavy-ion collision model, it is enough to consider
expansion in a flat space. Also for this simple model, there
is no fluid vorticity, and the energy density, the shear viscous
tensor, and the fluid velocity only depend on proper time τ .
For this (0 + 1)-dimensional model the second-order viscous
hydrodynamic equations [Eqs. (2.2) and (2.3)] are rather
simple in the conformal limit. In terms of proper time, τ =√

t2 − z2, and space-time rapidity, ζ = arctanh(z/t), these are
given by [22,23]

∂τ ε = −ε + p

τ
+ �

τ
, (2.4)

∂τ� = − �

τπ

+ 4η

3τπτ
− 4

3τ
� − λ1

2 τπ η2
(�)2 , (2.5)

where ε is the fluid energy density, p is the fluid pressure,
� ≡ �

ζ
ζ is the ζ ζ component of the fluid shear tensor, η

is the fluid shear viscosity, τπ is the shear relaxation time,
and λ1 is a coefficient that arises in complete second-order
viscous hydrodynamical equations either in the strong [23,24]
or weakly coupled limit [22,25–27,29]. The Navier-Stokes
limit is recovered upon taking τπ → 0 and λ1 → 0, in which
case one obtains �Navier−Stokes = 4η/(3τ ).

These coupled differential equations are completed by a
specification of the equation of state, which relates the energy
density and the pressure through p = p(ε) and initial con-
ditions. For (0 + 1)-dimensional dynamics one must specify
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the energy density and � at the initial time, ε0 ≡ ε(τ0) and
�0 ≡ �(τ0), where τ0 is the proper time at which one begins
to solve the differential equations.

B. Specification of equation of state and dimensionless variables

In the following analysis we will assume an ideal equation
of state, in which case we have

p = Ndofπ
2

90
T 4, (2.6)

where for quantum chromodynamics with Nc colors and Nf

quark flavors, Ndof = 2(N2
c − 1) + 7NcNf /2, which for Nc =

3 and Nf = 2 is Ndof = 37. The general method used in the
following, however, can easily be extended to a more realistic
equation of state.

In the conformal limit the trace of the four-dimensional
stress tensor vanishes, requiring ε = 3p, which, using
Eq. (2.6), allows us to write compactly

ε = (T/γ )4, with γ ≡
(

30

π2Ndof

)1/4

. (2.7)

Likewise, we can simplify the expression for the entropy
density s using the thermodynamic relation T s = ε + p to
obtain s = 4ε/3T or, equivalently,

s = 4

3γ
ε3/4. (2.8)

When solving Eqs. (2.4) and (2.5) it is important to recog-
nize that the transport coefficients depend on the temperature
of the plasma and hence on proper time. We summarize in
Table I the values of the transport coefficients in the strong and
weak coupling limits. We point out that these are not universal
relations as explained in Secs. II C and II D. The reader should
note that in either the strong or weak coupling limit τπ ∝ T −1

and λ1 ∝ η̄2s/T . This suggests that we can parametrize the
coefficients as

τπ = cπ

T
, (2.9a)

λ1 = cλ1 η̄
2

(
s

T

)
, (2.9b)

where we have introduced a dimensionless version of the shear
viscosity,

η̄ ≡ η/s. (2.10)

TABLE I. Typical values of the transport coefficients for a weakly
coupled QGP [25–27] and a strongly coupled N = 4 SYM plasma
[23,24].

Transport coefficient Weakly coupled
QCD

Strongly coupled
N = 4 SYM

η̄ ≡ η/s ∼1/(g4 log g) 1/(4π )
τπ 6η̄/T (2 − log 2)/(2πT )
λ1 (4.1 → 5.2) η̄2s/T 2 η̄2s/T

In our analysis we assume that η̄ is independent of time.4

The dimensionless numbers η̄, cπ , and cλ1 carry all of
the information about the particular coupling limit we are
considering.

Using the ideal gas equation of state [Eqs. (2.7) and (2.8)],
the parametrization [Eq. (2.9)] of τπ and λ1 can be rewritten
in terms of the energy density ε:

τπ = cπ

γ ε1/4
, (2.11a)

λ1 = 4

3γ 2
cλ1 η̄

2ε1/2. (2.11b)

To remove the dimensionful scales and rewrite the fluid
equations in a more explicit form we define the following
dimensionless variables:

ε̄ ≡ ε/ε0, (2.12a)

� ≡ �/ε0, (2.12b)

τ̄ ≡ τ/τ0, (2.12c)

where τ0 is the proper time at which the hydrodynamic
evolution equations start to be integrated and ε0 is the energy
density at τ0.

After replacing the dimensionless variables [Eqs. (2.12)] in
the parametrization [Eq. (2.11)] and Eqs. (2.4) and (2.5), we
rewrite the fluid equations as

τ̄ ∂τ̄ ε̄ + 4

3
ε̄ − � = 0, (2.13a)

� + cπ

γ kε̄1/4

[
∂τ̄� + 4

3

�

τ̄

]
− 16 η̄

9γ k

ε̄3/4

τ̄
+ 3cλ1

8

�
2

ε̄
= 0,

(2.13b)

where k ≡ τ0ε
1/4
0 . Note that in terms of Eqs. (2.12) the

boundary conditions are specified at τ̄ = 1, where ε̄ = 1
and �(τ̄ = 1) = �0, which is a free parameter. When the
hydrodynamical equations are written in the form given here
[Eq. (2.13)] all information about the initial proper time
and energy density is encoded in the parameter k and all
information about the equation of state is encoded in the
parameter γ .

C. Strong coupling limit

Motivated and guided by the AdS/CFT correspondence,
Baier et al. [23] and the Tata group [24] have recently shown
that new transport coefficients arise in a complete theory of
second-order relativistic viscous hydrodynamics. They also
estimate their values at infinite t’Hooft coupling for N =
4 SYM theory at finite temperature. Different calculations for
a finite t’Hooft coupling within the same theory have been
carried out [30–35]. A remarkable aspect is that, although
at first the strong t’Hooft coupling limit of the transport
coefficients was expected to be universal [36,37], there is

4Including a temperature-dependent shear viscosity does not change
our observations fundamentally; however, there will be quantitative
effects that will be elaborated upon in a forthcoming publication.
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now evidence that these coefficients are not universal [38–42].
Faced with this complication one is forced to make a choice
as to which dual theory to consider. Here we will consider the
values obtained in N = 4 SYM at infinite t’Hooft coupling as
used in Refs. [23,24] as our typical strong coupling values. One
can expect that these coefficients change in strongly coupled
QCD compared to N = 4 SYM theory at the infinite t’Hooft
limit. Nevertheless, we take these values over from strongly
coupled N = 4 SYM to get a feeling for what to expect in this
regime.

Expressed in terms of the dimensionless transport coeffi-
cients defined earlier, typical values of the strongly coupled
transport coefficients are

η̄ = 1

4π
, cπ = 2 − log 2

2π
, cλ1 = 2. (2.14)

D. Weak coupling limit

In contrast to the case of N = 4 SYM at infinite coupling,
in the case of QCD, where there is a running coupling and
inherent scale dependence, the various transport coefficients
are not fixed numbers but instead depend on the renormal-
ization scale. In this limit the transport coefficients necessary
have been calculated completely to leading order [25–27].
Higher order corrections to some transport coefficients from
finite-temperature perturbation theory show poor convergence
[43,44], which is similar to the case for the thermodynamical
potential; however, resummation techniques can dramatically
extend the range of convergence of finite-temperature per-
turbation theory in the case of static quantities and can, in
the future, also be applied to dynamical quantities.5 Until
such resummation schemes are carried out for dynamical
quantities, the values of the leading-order weak-coupling
transport coefficients in Table I can only be considered as
rough guides to the values expected phenomenologically.
Using this rough guide we find that the value of η̄ from finite-
temperature QCD calculations [26,27] is η/s ∼ 0.5 → 1 at
realistic couplings (g ∼ 2 → 3). In this work we will assume
a typical value of η̄ = 10/(4π ) in the weakly coupled limit to
compare with the results obtained in the strong coupling limit.
In our analysis for the weak coupling limit, we will use

η̄ = 10

4π
, cπ = 6η̄, cλ1 = 9

2
. (2.15)

E. Momentum space anisotropy

We introduce the dimensionless parameter �, which mea-
sures the degree of momentum-space isotropy of the fluid as
follows:

� ≡ pT

pL

− 1, (2.16)

where pT = (T xx + T yy)/2 and pL = T zz = −T
ζ
ζ are the

effective transverse and longitudinal pressures, respectively.
If � = 0, the system is locally isotropic. If −1 < � < 0 the

5See Ref. [45] and references therein.

system has a local prolate anisotropy in momentum space and
if � > 0 the system has a local oblate anisotropy in momentum
space. In Appendix B we derive the relation between the �

parameter defined here and the ξ parameter introduced in
Ref. [46] to quantify the degree of local plasma isotropy. For
small values of � the relation is � = 4ξ/5 + O(ξ 2).

In the (0 + 1)-dimensional model of viscous hydrody-
namics one can express the effective transverse pressure as
pT = p + �/2 and the effective longitudinal pressure as
pL = p − �. In the case of an ideal equation of state, rewriting
Eqs. (2.12) in terms of our dimensionless variables gives

� = 9

2

(
�

ε̄ − 3�

)
. (2.17)

At the initial time τ̄ = 1,�0 ≡ �(τ̄ = 1) is given by

�0 = 9

2

(
�0

1 − 3�0

)
. (2.18)

In the limit � → −2ε̄/3 we have � → −1 and in the limit
� → ε̄/3 we have � → ∞.

Positivity of the longitudinal pressure requires � 
= ∞ at
any time during the evolution of the plasma. Note that requiring
positivity is a weak constraint on the magnitude of � since
the formal justification for applying viscous hydrodynamical
approximations is the neglect of large gradients and higher
order nonlinear terms. This requires that � be small compared
to the pressure p (i.e., |�| � p̄). This can be turned into
a quantitative statement by requiring that −αp̄ < � < αp̄,
where α is a positive phenomenological constant, which is less
than or equal to 1 (i.e., 0 � α � 1). The limit α → 1 gives the
weak constraint of −3/4 � � < ∞ and for general α requires
�−� � � �+, where

�± ≡ ±3

2

(
α

1 ∓ α

)
. (2.19)

For example, requiring α = 1/3 we would find the constraint
−3/8 � �α � 3/4.

III. APPROXIMATE ANALYTIC SOLUTION OF
(0 + 1)-DIMENSIONAL CONFORMAL

HYDRODYNAMICS

In this section we present an approximate analytic solution
to the (0 + 1)-dimensional conformal second-order hydrody-
namical evolution equations. The approximation used will be
to first exactly integrate the differential equation for the energy
density [Eq. (2.13a)], thereby expressing the energy density as
an integral of the shear. We then insert this integral relation
into the equation of motion for shear itself [Eq. (2.13b)] and
expand in η̄. Explicitly, the solution obtained from the first
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step is

ε̄(τ̄ ) = τ̄−4/3

[
1 +

∫ τ̄

1
dτ̄ ′(τ ′)1/3�(τ̄ ′)

]
. (3.1)

We then solve the second differential equation for � approxi-
mately by dropping the second term in Eq. (3.1) and inserting

this into the second of Eqs. (2.13) to obtain

27cλ1γ kτ̄ 10/3�
2 + 72cπ τ̄ 7/3∂τ̄�

+ (72γ kτ̄ 2 + 96cπ τ̄ 4/3)� = 128η̄. (3.2)

This differential equation has a solution of the form

� =
(

4

3cλ1 τ̄
4/3

) C
[
2 1F1

( 1−b

2

∣∣ − aτ̄ 2/3
) + a(b − 1)τ̄ 2/3

1F1
( 2−b

3

∣∣ − aτ̄ 2/3
)] + 2G

2,0
1,2

(
aτ̄ 2/3

∣∣ b

0,0

)
aCτ̄ 2/3

1F1
( 1−b

2

∣∣ − aτ̄ 2/3
) − G

2,0
1,2

(
aτ̄ 2/3

∣∣ b+1
0,1

) , (3.3)

where 1F1 is a confluent hypergeometric function, G is the
Meijer G function, a = 3γ k/(2cπ ), b = cλ1 η̄/cπ , and C is an

integration constant, which is fixed by the initial condition for
� at τ̄ = 1. Requiring �(τ̄ = 1) = �0 fixes C to be

C = 8G
2,0
1,2

(
a
∣∣ b

0,0

) + 3cλ1�0G
2,0
1,2

(
a
∣∣ b+1

0,1

)
[
3acλ1�0 − 8

]
1F1

( 1−b

2

∣∣ − a
) − 4a(b − 1)1F1

( 2−b

3

∣∣ − a
) . (3.4)

To obtain the proper-time evolution of the energy density one
must integrate Eq. (3.1) using Eq. (3.3). This is possible to
do analytically but the answer is rather unwieldy and hence
not very useful to list explicitly. In the following we will
use this approximate analytic solution as a cross-check for
our numerics. In the limit η̄ → 0 this solution becomes an
increasingly better approximation and hence represents the
leading correction to ideal hydrodynamical evolution in that
limit.

Note that in the limit cλ1 → 0 and cπ → 0 the differential
equation (3.2) reduces to an algebraic equation

�Ideal Navier−Stokes = 16η̄

9γ kτ̄ 2
, (3.5)

which, when converted back to dimensionful variables, cor-
responds to the Navier-Stokes solution under the assumption
that ε̄ = τ̄−4/3. Finally, we note that in the large-time limit
Eq. (3.3) simplifies to

lim
τ̄→∞ � = �Ideal Navier−Stokes + O

(
e−aτ̄−2/3)

. (3.6)

IV. RESULTS

In this section we present our results of numerical integra-
tion of Eq. (2.13) and present consistency checks obtained by
comparing these results with the approximate analytic solution
presented in the previous section.

A. Time evolution of �

In the following we present numerical results for the time
evolution of the plasma anisotropy parameter �. For purpose
of illustration we will hold the initial temperature fixed at T =

350 MeV and vary the starting time τ0. This will allow us to
probe different values of k = τ0ε

1/4
0 = τ0T0/γ in a transparent

manner. Note that, by doing this, each curve corresponds to
a different initial entropy density; however, this is irrelevant
for the immediate discussion since we are not concerned
with phenomenological consequences, only with the general
mathematical properties of the system of differential equations
as one varies the fundamental parameters. In Secs. IV C
and IV D we will present the general results as a function
of the dimensionless parameter k.

1. Strong coupling

In Fig. 1 we show our result for the proper-time evolution
of the pressure anisotropy parameter �, obtained by numer-
ical integration of Eq. (2.13). The transport coefficients in
this case are the typical strong coupling values given in
Eq. (2.14). For purpose of illustration we have chosen the
initial temperature T0 to be held fixed at T0 = 350 MeV
and assumed that the initial pressure anisotropy �0 vanishes
(i.e., �0 = 0).

As can be seen from this figure, when the initial value of the
pressure anisotropy is taken to be zero it does not remain so. A
finite oblate pressure anisotropy is rapidly established by the
intrinsic longitudinal expansion of the fluid. Depending on the
initial time at which the hydrodynamic evolution is initialized,
� peaks in the range 0.2 <∼ � <∼ 1.

2. Comparison with analytic approximation

As a cross-check of our numerical method, in Fig. 2
we compare the result for � obtained via direct numerical
integration of Eq. (2.13) and the approximate analytic solution
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1 2 3 4 5 6 7 8 9 10
τ/τ0

0

0.2

0.4

0.6

0.8

1
∆

τ0 = 0.4 fm/c

τ0 = 1 fm/c

τ0 = 2 fm/c

FIG. 1. (Color online) Result for the proper-time evolution of
� obtained by numerical integration of Eq. (2.13). Long-dashed,
solid, and short-dashed lines correspond τ0 = 0.4, 1, and 2 fm/c,
respectively. Transport coefficients were the typical strong coupling
values given in Eq. (2.14). The initial temperature T0 is held fixed at
T0 = 350 MeV and it is assumed that �0 = 0 for this example.

given via Eqs. (3.3) and (3.1). As can be seen from the figure
the analytic solution provides a reasonable approximation to
the true time evolution of the plasma anisotropy. The parameter
� is a particularly sensitive quantity to compare. If one
compares the analytic and numerical solutions for the energy
density, for example, in the strongly coupled case there is at
most a 1% deviation between the analytic approximation and
our exact numerical integration during the entire 10 fm/c of
simulation time. Of course, for larger viscosity the analytic
approximation becomes more suspect but for the weakly
coupled case we find that there is at most a 8% deviation
between the energy densities obtained using our analytic
approximation and the exact numerical result. In the limit
that η̄ goes to zero, the analytic treatment and our numerical
integration agree to arbitrarily better precision. Based on
the agreement between the two approaches we are confident

1 2 3 4 5 6 7 8 9 10
τ/τ0

0

0.1

0.2

0.3

∆

Numerical Integration
Analytic Approximation

FIG. 2. (Color online) Comparison of result for � as a function
of proper time using numerical integration of Eq. (2.13) and the
approximate analytic solution given via Eqs. (3.3) and (3.1). Transport
coefficients in this case are the typical strong coupling values given
in Eq. (2.14). The initial temperature T0 is taken to be T0 = 350 MeV,
the initial time τ0 is taken to be τ0 = 1 fm/c, and it is assumed that
�0 = 0 for this example.
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FIG. 3. (Color online) Result for the proper-time evolution of
� obtained by numerical integration of Eq. (2.13). Long-dashed,
solid, and short-dashed lines correspond τ0 = 0.4, 1, and 2 fm/c,
respectively. Transport coefficients in this case are the typical weak
coupling values given in Eq. (2.15). The initial temperature T0 is
held fixed at T0 = 350 MeV and it is assumed that �0 = 0 for this
example.

in our numerical integration of the coupled differential
equations.

3. Weak coupling

In Fig. 3 we show our result for the proper-time evolution
of the pressure anisotropy parameter �, obtained by numerical
integration of Eq. (2.13). The transport coefficients in this case
are the typical weak coupling values given in Eq. (2.15). For
purpose of illustration we have chosen the initial temperature
T0 to be held fixed at T0 = 350 MeV and assumed that the
initial pressure anisotropy �0 vanishes (i.e., �0 = 0).

As can be seen from this figure, as in the strongly coupled
case, a finite oblate pressure anisotropy is rapidly established
by the intrinsic longitudinal expansion of the fluid. In the
case of weak coupling transport coefficients a larger pressure
anisotropy develops. Depending on the initial time at which
the hydrodynamic evolution is initialized, � peaks in the range
1 <∼ � <∼ 9.

As can be seen from the τ0 = 0.4 fm/c result, if the initial
simulation time is assumed to be small, then very large pressure
anisotropies can develop. In that case, in dimensionful units,
the peak of the � evolution occurs at a time of τ ∼ 2.3 fm/c.
Such large pressure anisotropies would cast doubt on the
applicability of the second-order conformal viscous hydro-
dynamical equations, since nonconformal second-order terms
and higher order nonlinear terms corresponding to third- or
higher order expansions could become important.6 If, in the
weakly coupled case, the initial simulation time τ0 is taken to
be 0.2 fm/c one would find that � would become infinite during
the simulation. This divergence results from the longitudinal
pressure going to zero and then becoming negative during
some period of the time evolution.

6See Ref. [29] for an example of second-order terms that can appear
when conformality is broken.
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FIG. 4. (Color online) Result for the proper-time evolution of the
ratio of the longitudinal pressure over the pressure, pL/p, obtained
by numerical integration of Eq. (2.13). Solid, long-dashed, and
short-dashed lines correspond �0 = 0, −0.5, and 10, respectively.
Transport coefficients in this case are the typical weak coupling values
given in Eq. (2.15). The initial temperature T0 is held fixed at T0 =
350 MeV and it is assumed that τ0 = 0.2 fm/c for this example. The
dotted gray line indicates pL = 0 to more easily identify the point in
time where the longitudinal pressure becomes negative.

B. Negativity of longitudinal pressure

To explicitly demonstrate the possibility that � diverges,
in Fig. 4 we have plotted the evolution of the longitudinal
pressure over the isotropic pressure (p = ε/3), pL/p, obtained
by numerical integration of Eq. (2.13) for different assumed
initial pressure anisotropies. The transport coefficients in this
case are the typical weak coupling values given in Eq. (2.15).
The initial temperature T0 is held fixed at T0 = 350 MeV and
it is assumed that τ0 = 0.2 fm/c for this example.

As this figure shows, if the initial simulation time is too
early, the longitudinal pressure of the system can become
negative. The exact point in time at which it becomes negative
depends on the assumed initial pressure anisotropy. As the
initial pressure anisotropy becomes more prolate, the time over
which the longitudinal pressure remains positive is increased.
For initially extremely prolate distributions the longitudinal
pressure can remain positive during the entire simulation time.
In the opposite limit of extremely oblate distributions, the
longitudinal pressure can become negative very rapidly and
remain so throughout the entire lifetime of the plasma. We
note that in the Navier-Stokes limit the initial shear would
be (�0)Navier−Stokes = 16η̄/(9τ0T0), which, using the initial
conditions indicated in Fig. 4, gives pL,0/p = −11.1. This
means that if one were to use Navier-Stokes initial conditions
the system would start with an extremely large negative
longitudinal pressure. Using τ0 = 1 fm/c and T0 = 350 MeV
improves the situation somewhat; however, even in that
case the initial Navier-Stokes longitudinal pressure remains
negative with pL,0/p = −1.4.

What does a negative longitudinal pressure indicate? From
a transport theory point of view it indicates that something
is unphysical about the simulation since in transport theory
the pressure components are obtained from moments of the
momentum-squared over the energy; for example, for the

longitudinal pressure

pL =
∫

d3p

(2π )3

p2
z

p0
f (p), (4.1)

where f (p) is the one-particle phase-space distribution func-
tion. Therefore, in transport theory all components of the
pressure are positive definite. It is possible to generate negative
longitudinal pressure in the case of coherent fields as in the
case of the early-time evolution of the QGP [47–50]; however,
such coherent fields are beyond the scope of hydrodynamical
simulations that describe the time evolution of a locally color-
and charge-neutral fluid.

If we set this fundamental issue aside, the negativity of the
longitudinal pressure indicates that the expansion that was used
to derive the hydrodynamical equations themselves is breaking
down. This expansion implicitly relies on the perturbation de-
scribed by � being small compared to the isotropic pressure p.
The point at which the longitudinal pressure goes to zero is the
point at which the perturbation, �, is equal in magnitude to the
background around which one is expanding. This means that
the perturbation is no longer a small correction to the system’s
evolution and that higher order corrections could become
important. Therefore negative longitudinal pressure signals
regions of parameter space where one cannot trust second-
order viscous hydrodynamical solutions. In the following two
sections we will make this statement quantitative and extract
constraints on the initial conditions that allow for second-order
viscous hydrodynamical simulation.

C. Determining the critical line in initial condition space

For a fixed set of transport coefficients given by {η̄, cπ , cλ1}
the only remaining freedom in the hydrodynamical evolution
equations [Eqs. (2.13)] comes from the coefficient γ (using the
assumed ideal equation of state) and from the initial conditions
through the dimensionless coefficient k = τ0ε

1/4
0 and the initial

shear �0. In the next section we will vary these two parameters
and determine for which values one obtains a solution that, at
any point during the evolution, has a negative longitudinal
pressure. For a given �0 we find that for k below a certain
value, the system exhibits a negative longitudinal pressure. We
will define this point in k as the “critical” value of k. Above the
critical value of k the longitudinal pressure is positive definite
at all times.

1. Strong coupling

In Fig. 5 we plot the critical boundary in k (kcritical) as
a function of the initial value of the shear, �0. Since k

is proportional to the assumed initial simulation time τ0,
increasing k with fixed initial energy density corresponds
to increasing τ0. Assuming fixed initial temperature, for an
initially prolate distribution, one can start the simulation at
earlier times. For an initially oblate distribution, one must start
the simulation at later times to remain above the critical value
of k. In general, k = τ0ε

1/4
0 and our result can be used to set a

bound on this product.
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FIG. 5. Critical boundary in k (kcritical) as a function of the initial
shear �0. Above this line solutions have positive longitudinal pressure
at all times. Below this line solutions have negative longitudinal
pressure at some point during the evolution. Transport coefficients in
this case are the typical strong coupling values given in Eq. (2.14).
The left limit of the plot region corresponds to �0 = −1 and the right
to �0 = ∞.

In the case of typical strong coupling transport coefficients,
the critical value of k at �0 = 0 is kcritical(�0 = 0) = 0.26.
In the case of an ideal QCD equation of state and with
�0 = 0 assumed, the constraint is that τ0 > γkcriticalT

−1
0 ,

which numerically means τ0 > 0.14T −1
0 . By assuming an

initial time of τ0 = 1 fm/c = 5.07 GeV−1 this implies that
T0 > 28 MeV. For other initial values of �0 one can use
Fig. 5 to determine the constraint.

2. Weak coupling

In Fig. 6 we plot the critical boundary in k (kcritical) as
a function of the initial value of the shear, �0. Since k
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FIG. 6. Critical boundary in k (kcritical) as a function of the initial
shear �0. Above this line solutions have positive longitudinal pressure
at all times. Below this line solutions have negative longitudinal
pressure at some point during the evolution. Transport coefficients in
this case are the typical weak coupling values given in Eq. (2.15). The
left limit of the plot region corresponds to �0 = −1 and the right to
�0 = ∞.

is proportional to the assumed initial simulation time τ0,
increasing k with fixed initial energy density corresponds
to increasing τ0. As in the case of strong coupling, for an
initially prolate distribution, one can start the simulation at
earlier times. For an initially oblate distribution, one must start
the simulation at later times to remain above the critical value
of k.

In the case of typical weak coupling transport coefficients
the critical value of k at �0 = 0 is kcritical(�0 = 0) = 0.74.
In the case of an ideal QCD equation of state and with
�0 = 0 assumed, the constraint is that τ0 > γkcriticalT

−1
0 ,

which numerically means τ0 > 0.40T −1
0 . By assuming an

initial time of τ0 = 1 fm/c this implies that T0 > 79 MeV.
For other initial values of �0 one can use Fig. 6 to determine
the constraint.

D. For which initial conditions can one trust second-order
viscous hydrodynamical evolution?

As mentioned in Sec. II E the requirement that the longi-
tudinal pressure be positive during the simulated time only
gives a weak constraint in the sense that it merely requires that
� < p̄. A stronger constraint can be obtained by requiring
instead −αp̄ � � � αp̄ and then using this to constrain the
possible initial time and energy density that can be used
in hydrodynamical simulations. In the following sections
we will fix α = 1/3 as our definition of what is a “large”
correction. For this value of α the initial values of �0 are
constrained to −1/9 � �0 � 1/9. For a given �0 in this
range we find that for k below a certain value we cannot
satisfy the stronger constraint at all simulated times. We
will define this point in k as the “convergence” value of k

or kconvergence. Above this value of k = kconvergence the shear
satisfies the constraint −p̄/3 � � � p̄/3 at all simulated times
and therefore represents a “reasonable” simulation.

1. Strong coupling

In Fig. 7 we plot the “convergence boundary” in k

(kconvergence) as a function of the initial shear, �0. In the case of
typical strong coupling transport coefficients the convergence
value of k at �0 = 0 is kconvergence(�0 = 0) = 1.58. In the case
of an ideal QCD equation of state and with �0 = 0 assumed,
the constraint is that τ0 > γkconvergenceT

−1
0 , which numerically

means τ0 > 0.85T −1
0 . By assuming an initial time of τ0 =

1 fm/c this implies that T0 > 167 MeV. For other ini-
tial values of �0 one can use Fig. 7 to determine the
constraint.

2. Weak coupling

In Fig. 8 we plot the “convergence boundary” in k

(kconvergence) as a function of the initial shear, �0. In the case of
typical weak coupling transport coefficients the convergence
value of k at �0 = 0 is kconvergence(�0 = 0) = 10.9. In the
case of an ideal QCD equation of state and with �0 = 0
assumed, the constraint is that τ0 > γkconvergenceT

−1
0 , which
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FIG. 7. Convergence boundary in k (kconvergence) as a function of
the initial shear �0. Above this line solutions satisfy the convergence
constraint. Transport coefficients in this case are the typical strong
coupling values given in Eq. (2.14).

numerically means τ0 > 5.9T −1
0 . By assuming an initial time

of τ0 = 1 fm/c = 5.07 GeV−1 this implies that T0 > 1.16 GeV.
For other initial values of �0 one can use Fig. 8 to determine
the constraint.

E. What does this imply for higher dimensional
hydrodynamical simulations?

If one proceeds to more realistic simulations in higher
dimensional boost-invariant treatments (e.g., 1 + 1 and 2 + 1),
the spatial variation of the initial conditions and time evolution
in the transverse plane have to be taken into account. In
addition, new freedoms such as the initial fluid flow field
and additional transport coefficients arise; however, to first
approximation one can treat these higher dimensional systems
as a collection of (0 + 1)-dimensional systems with different
initial conditions at each point in the transverse plane. Within
this approximation one would quickly find that there are
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FIG. 8. Convergence boundary in k (kconvergence) as a function of
the initial shear �0. Above this line solutions satisfy the convergence
constraint. Transport coefficients in this case are the typical weak
coupling values given in Eq. (2.15).

problems with the hydrodynamic treatment at the transverse
edges of the simulated region.

This happens because, as one goes away from the center
of the hot and dense matter, the energy density (temperature)
drops and, assuming a fixed initial simulation time τ0, one
would find that at a finite distance from the center the condition
k > kcritical would be violated by the initial conditions. In
these regions of space, hydrodynamics would then predict an
infinitely large anisotropy parameter �, casting doubt on the
reliability of the hydrodynamic assumptions. Even worse is
that at a smaller distance from the center one would cross the
“convergence boundary” in k, kconvergence, and therefore not
fully trust the analytic approximations used in deriving the
hydrodynamic equations (conformality, truncation at second
order, etc.).

Of course, an approximation by uncoupled (0 + 1)-
dimensional systems with different initial conditions would
not generate any radial or elliptic flow; however, we
find empirically that the picture just described holds true
in higher dimensional simulations, justifying the basic
logic. For example, using strongly coupled transport coef-
ficients and assuming an initially isotropic plasma (�0 =
0), we found in Sec. IV C1 that kcritical = 0.26. In terms
of the initial temperature this predicts that, when start-
ing a simulation with τ0 = 1 fm/c, one will generate
negative longitudinal pressures for any initial temperature
T0 <∼ 28 MeV.

We will now compare this prediction with results for the
longitudinal pressure extracted from the (2 + 1)-dimensional
code of Luzum and Romatschke [5,51]. In Fig. 9 we show fixed
τ snapshots of the longitudinal pressure. The runs shown in
Fig. 9 were performed on a 692 transverse lattice with a lattice
spacing of 2 GeV−1 using Glauber initial conditions starting at
τ0 = 1 fm/c, an initial central temperature of T0 = 350 MeV,
zero initial shear, and zero impact parameter. For these runs we
have used the realistic QCD equation of state used in Ref. [5].
In the left panel of Fig. 9 the transport coefficients were set
to the typical strong coupling values given in Eq. (2.14),
except with cλ1 = 0 because the code used did not include
this term in the hydrodynamic equations. Based on the initial
transverse temperature profile and our estimated critical initial
temperature, in the strong coupling case we expect negative
longitudinal pressures to be generated at transverse radius
r >∼ 10 fm. As can be seen from the left panel of Fig. 9, at
the edge of the simulated region the longitudinal pressure
becomes negative starting already at very early times. The
transverse radii at which this occurs is in good agreement with
our estimate based on the (0 + 1)-dimensional critical value
detailed earlier.

Based on our convergence criteria detailed in Sec. IV D
we found, in the strong coupling case, that kconvergence(�0 =
0) = 1.58. By assuming τ0 = 1 fm/c this translates into a
minimum initial temperature of 167 MeV. Based on the
transverse temperature profile used in the run shown in the left
panel of Fig. 9 this results in a maximum transverse radius
r ∼ 6.8 fm. At radii larger than this value it is pos-
sible that higher order corrections are large and there-
fore the applicability of second-order viscous hydrody-
namics becomes questionable. Since this temperature is
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FIG. 9. (Color online) Evolution of the longitudinal pressure in proper-time obtained from the (2 + 1)-dimensional viscous hydrodynamics
code of Ref. [5]. The horizontal axis is the distance from the center of the simulated region. In the left panel we show the result obtained using
the typical strong coupling values given in Eq. (2.14) but with cλ1 = 0. In the right panel we show the result obtained using the typical weak
coupling values given in Eq. (2.15) but with cλ1 = 0. The runs shown used Glauber initial conditions with an initial central temperature of
T0 = 350 MeV, initial time τ0 = 1 fm/c, and �ν

µ(τ0) = 0.

greater than the typical freeze-out temperature used, Tf ∼
150 MeV, this means that in the strong coupling limit it
is relatively safe to use hydrodynamical simulations. How-
ever, one should be extremely careful with the transverse
edges.

The situation, however, is not as promising in the weak
coupling case. To see this explicitly, in the right panel of Fig. 9
we show the longitudinal pressure resulting from a run with
weak coupling transport coefficients [Eqs. (2.15)]. Based on
the initial transverse temperature profile and our estimated
critical initial temperature, in the weak coupling case we expect
negative longitudinal pressures to be generated at transverse
radius r >∼ 8 fm. Comparing this prediction to the results shown
in the right panel of Fig. 9 we see that the situation is even
worse than expected. By the final time of 4.5 fm/c the entire
central region has very low or negative longitudinal pressure.
We note that at that time the radius at which the temperature
has dropped below the freeze-out temperature is around
7.3 fm so the region where the longitudinal pressure
is negative (or almost negative) is still in the QGP
phase.

In terms of convergence, we remind the reader that based
on our convergence criteria detailed in Sec. IV D we found
that in the weakly coupled case kconvergence(�0 = 0) = 10.9.
Assuming τ0 = 1 fm/c we found that the initial central
temperature should be greater than 1.16 GeV. As can be
seen in Fig. 9 the corrections to ideal hydrodynamics are
sizable so this again points to the possibility that there
are large corrections to the second-order hydrodynamic
equations. Based on this, it would be questionable to ever
apply second-order viscous hydrodynamics to a weakly
coupled QGP generated in relativistic heavy-ion collisions.
At the very least one would need to include nonconformal
second-order terms and third-order terms to assess their
impact.

V. CONCLUSIONS AND OUTLOOK

In this paper we have derived two general criteria that
can be used to assess the applicability of second-order
conformal viscous hydrodynamics to relativistic heavy-ion
collisions. We did this by simplifying to a (0 + 1)-dimensional
system undergoing boost-invariant expansion and then
(a) requiring the longitudinal pressure to be positive during
the simulated time or (b) requiring a convergence criteria that
|�| < p/3 during the simulated time. We showed that these
requirements lead to a nontrivial relation among the possible
initial simulation time τ0, the initial energy density ε0, and
the initial value of the fluid shear tensor, �0. As a cross-
check of our numerics we presented an approximate analytic
solution of second-order conformal viscous hydrodynamical
evolution that represents the leading correction to (0 + 1)-
dimensional boost-invariant ideal hydrodynamics in the limit
η/s → 0.

The constraints derived here were then shown to provide
guidance for where one might expect second-order viscous
hydrodynamics to be a good approximation in higher dimen-
sional cases. We found that the prediction of our criticality
bound was in reasonable agreement with where the lon-
gitudinal pressure becomes negative in (2 + 1)-dimensional
viscous hydrodynamical simulations. Based on these findings
it seems possible to estimate where one obtains convergent and
trustable second-order viscous hydrodynamical simulations
based solely on the initial conditions and analysis of the
hydrodynamical evolution equations themselves.

In closing, we mention that another outcome of this work is
that we have shown that it is possible to use hydrodynamical
simulations to predict the proper-time dependence of the
plasma momentum-space anisotropy as quantified by the �

or ξ parameters. This can be used as input to calculations of
production of electromagnetic radiation from an anisotropic
plasma [9–15] and to calculations of quarkonium binding and
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polarization in anisotropic plasma [52,53], and also to assess
the phenomenological growth rate of plasma instabilities on
top of the mean colorless fluid background (see Ref. [54] and
references therein). The findings here present a complication
in this regard since phenomenological studies will require
knowledge of � in the full transverse plane. As we have
shown, second-order hydrodynamical simulations predict that
this parameter can become infinite in certain regions. In
these regions one would no longer trust the predictions of
the hydrodynamical model and additional input would be
required.
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APPENDIX A: NOTATION AND CONVENTIONS

We summarize the conventions and notation we use in the
main body of the text:

(i) The metric for a Minkowski space in curvilinear co-
ordinates (τ, x, y, ζ ) is gµν = diag(gττ , gxx, gyy, gζζ ) =
(1,−1,−1,−τ 2).

(ii) �µν = gµν − uµuν is a projector orthogonal to the fluid
velocity, uµ�µν = 0.

(iii) The comoving time derivative is defined as D ≡ uαDα .
(iv) The comoving space derivative is defined as ∇µ ≡

�µαDα .
(v) Angle brackets 〈〉 denote an operator that is symmetric,

traceless, and orthogonal to the fluid velocity:

A〈µBν〉 = (
�α

µ�β
ν + �α

ν �β
µ − 2

3�αβ�µν

)
AαBβ. (A1)

(vi) The symmetric and antisymmetric operators are

A(µBν) = 1
2

(
AµBν + AνBµ

)
, (A2)

A[µBν] = 1
2

(
AµBν − AνBµ

)
. (A3)

APPENDIX B: RELATION BETWEEN � AND ξ

In this Appendix we derive the relation between the
anisotropy parameter � introduced in this paper and the
ξ parameter introduced in Ref. [46]. In the general case
ξ is defined by taking an arbitrary isotropic distribution
function fiso(p) and stretching or squeezing it along one
direction in momentum space to obtain an anisotropic dis-
tribution. Mathematically, this is done by introducing a
unit vector n̂, which defines the direction of anisotropy,
and an anisotropy parameter −1 < ξ < ∞, and requiring
f (p) = fiso(

√
p2 + ξ (p · n̂)2). By fixing n̂ = ẑ to define the

longitudinal direction and assuming massless particles, it is
straightforward to evaluate the transverse and longitudinal
pressures through the components of the stress-energy tensor

pT = 1

2
(T xx + T yy)

= 1

2

∫
d3p

(2π )3

p2
x + p2

y

|p| fiso
(√

p2 + ξp2
z

)
(B1)

and

pL = T zz =
∫

d3p
(2π )3

p2
z

|p|fiso
(√

p2 + ξp2
z

)
. (B2)

By a change of variables to p̃ ≡ √
p2 + ξp2

z and the use of
spherical coordinates one can show that

pT = 3

4ξ

(
1 + (ξ − 1)

atan
√

ξ√
ξ

)
piso

T (B3)

and

pL = 3

2ξ

(
atan

√
ξ√

ξ
− 1

1 + ξ

)
piso

L , (B4)

where piso
T and piso

L are the isotropic transverse and longitudinal
pressures, respectively, which are obtained from fiso. Com-
bining these relations and using piso

T = piso
L = εiso/3, where

εiso is the isotropic energy density, we obtain the following
expression for �:

� = 1

2
(ξ − 3) + ξ

(
(1 + ξ )

atan
√

ξ√
ξ

− 1

)−1

. (B5)

In the small-ξ limit

lim
ξ→0

� = 4

5
ξ + O(ξ 2), (B6)

and in the large-ξ limit

lim
ξ→∞

� = 1
2ξ + O(

√
ξ ). (B7)

For general ξ one needs to invert Eq. (B5) numerically to
obtain ξ as a function of �.
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