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Statistical model of heavy-ion fusion-fission reactions
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Cross-section and neutron-emission data from heavy-ion fusion-fission reactions are consistent with the fission
of fully equilibrated systems with fission lifetime estimates obtained via a Kramers-modified statistical model
that takes into account the classical collective motion of the system about the ground state, the temperature
dependence of the location and height of fission transition points, and the orientation degree of freedom.
If the “standard” techniques for calculating fission lifetimes are used, then the calculated excitation-energy
dependence of fission lifetimes is incorrect. We see no evidence to suggest that the nuclear viscosity has a
temperature dependence. The strong increase in the nuclear viscosity above a temperature of ∼1.3 MeV deduced
by others is an artifact generated by an inadequate fission model.
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I. INTRODUCTION

The study of the fission of highly excited nuclei remains a
topic of great interest [1–7]. It has been known for more than
20 years that the “standard” statistical theory of fission leads
to an underestimation of the number of measured prescission
neutrons emitted in heavy-ion reactions [8–12]. It is generally
accepted that the main causes of this discrepancy are effects
associated with the viscosity of hot nuclear matter [13]. More
recently, giant dipole resonance (GDR) γ -ray emission has
also been used to infer inadequacies in our models of nuclear
fission decay widths [14–17]. Assuming the standard methods
for calculating fission decay widths are correct, many authors
have adjusted the properties of the viscosity of hot nuclear
matter to reproduce experimental data. On the basis of these
analyses, it is generally believed that the collective motion
in the fission degree of freedom is strongly damped for hot
systems and that the nuclear viscosity increases strongly
with either the temperature and/or the nuclear deformation
[15–17]. A consensus appears to have emerged that strong
dissipation sets in rather rapidly at nuclear excitation energies
above ∼40 MeV [14], i.e., above a nuclear temperature of
∼1.3 MeV. Few have considered the possibility that the
problem with the “standard” model of fission is due to, or
partly due to, an incorrect implementation of the standard
model.

In the present work we show that the standard techniques
that have been widely used to model heavy-ion-induced fusion-
fission reactions are missing three key pieces of physics. These
pieces of physics have been previously discussed individually
in the literature, but have not been incorporated into many of
the codes used to model heavy-ion fusion-fission reactions.
These codes include CASCADE [18], ALERT [19], ALICE [20],
PACE [21], JULIAN [22], and JOANNE [23]. The key pieces of
physics missing from the above-mentioned codes include the
determination of the total level density of the compound system
taking into account the collective motion of the system about
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the ground-state position [24]; the calculation of the location
and height of fission saddle points as a function of excitation
energy using the derivative of the free energy [25,26]; and the
incorporation of the orientation (K state) degree of freedom
[27,28].

If the “standard” (but incorrect) techniques for calculating
fission lifetimes are used, then the calculated excitation-energy
dependence of fission lifetimes is incorrect. The nature of
the inadequacies in the techniques commonly used can be
overcome by using a nuclear viscosity that increases strongly
with increasing temperature. We show that if heavy-ion fusion-
fission lifetimes are modeled in a more correct fashion [2] then
fission cross-section and prescission neutron multiplicity data
are consistent with the fission of fully equilibrated nuclear
systems. The fission cross sections and prescission neutron-
multiplicity data are consistent with a nuclear viscosity at the
fission saddle points that is independent of temperature [2] as
given by the surface-plus-window dissipation model of Nix
and Sierk [29,30], the finite-range liquid-drop model [31], and
a nuclear shape dependence of the Fermi-gas level-density
parameter in the range of theoretical estimates [32–38].

II. THEORY

In many respects, the theory of heavy-ion-induced fusion-
fission reactions is relatively simple. Much of the available
data can be understood using statistical mechanics with
a few semiclassical modifications. Although each piece of
theory required is relatively simple, model calculations quickly
become complex because of the large number of physical
considerations that need to be modeled correctly. These
include the potential-energy surface of cold nuclei as a function
of elongation (deformation), total spin J , and spin about
the elongation (symmetry) axis K; the level density of the
compound system as a function of shape; the total level density
including collective motion; the calculation of equilibrium
shapes and potential curvatures, and fission-barrier heights,
using the force on the collective degree of freedom as a
function of shape, orientation, and temperature; the nuclear
viscosity; the fusion spin distribution; and the modeling of the

0556-2813/2009/79(4)/044611(24) 044611-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.044611


J. P. LESTONE AND S. G. McCALLA PHYSICAL REVIEW C 79, 044611 (2009)

cooling processes (particle evaporation and γ -ray emission)
that compete with fission.

We claim that others have not included several key pieces of
classical physics when calculating fission lifetimes. Therefore,
we describe the calculation of the fission lifetimes of hot
rotating nuclei in detail, excluding the complexities of shell
corrections, in Secs. II A to II G. We start from a very
simple idealized system and slowly increase the complexity
of the calculations with each successive section, until the
methodology used by the statistical-model code JOANNE4 [27]
is described. At each step in added complexity, the validity
of analytical expressions based on statistical physics is tested
by comparison to numerical results obtained using dynamical
theory. Some may view the detailed description of fission
presented here as excessive. However, given that the concepts
discussed here have been previously introduced but not widely
adopted, we feel that a slow and detailed buildup in system
complexity is warranted. Drawing strong conclusions based
on statistical-model analysis can be difficult because of the
large number of adjustable parameters. To reduce the number
of adjustable parameters, in the present work we focus on
the heavy-ion-induced fission of systems with ACN < 220,
where the decision to fission is predominately made at high
excitation energies and spins, where shell corrections and
γ -ray emission strengths are of relatively little importance. As
ACN is increased above 220 the survival probability becomes
increasingly controlled by the details of the last chance fission
at low excitation energies where shell corrections and γ -ray
emission can play important roles. The methods used by
others to model the fusion of the projectile and the target
and the cooling processes are generally adequate. However,
for completeness, we summarize the methods used in the
code JOANNE4 to model fusion, particle evaporation, and γ -ray
emission in Secs. II H, II I, and II J.

A. Bohr-Wheeler fission decay width

The Bohr-Wheeler decay width [39],

� = h̄

t̄
= NTS

2π ρ
, (1)

is a powerful and elegant expression that can be used to easily
obtain the properties of particle emission from a hot oven
[40] and, thus, the Maxwell velocity distribution for an ideal
gas, black body radiation [40], particle evaporation from hot
nuclei, and the probability per unit time that a hot equilibrated
nucleus will fission. Figure 1 is a schematic representation
of a fissioning compound nucleus showing levels at both the
ground state and the fission saddle point. Key properties that
govern the fission lifetime are the thermal excitation energy at
the ground-state position U, and the height of the fission barrier
Bf . The level density of the nuclear system at both the ground-
state and the saddle-point positions is often estimated assuming
a weakly interacting Fermi gas and expressed (approximately)
as [41]

ρ(U ) ∝ exp(2
√

a(q)U ), (2)

FIG. 1. A schematic representation of a fissioning compound
nucleus showing levels at both the ground state and the fission saddle
point, the thermal excitation energy at the ground-state position U ,
and the height of the fission barrier Bf .

where a(q) is the Fermi-gas level-density parameter as a
function of the deformation q and U is the thermal excitation
energy of the system given by

U (q) = E − V (q), (3)

where E is the total excitation energy of the system and V (q)
is the potential energy. Using the standard definition of the
inverse of temperature as the logarithmic derivative of the
level density gives the familiar expression

U (q) = a(q)T 2(q). (4)

More complex expressions for the Fermi-gas level-density
parameter exist [28,41]. However, these more complete
expressions generally make little difference to the overall
properties of hot systems with thermal excitation energies
larger than several tens of MeV. The Fermi-gas level-density
parameter is equal to the total density of neutron and proton
states at the Fermi surface multiplied by π2/6 [41] and should
be considered a function of the nuclear shape. However, for
simplicity we shall initially assume that the level-density
parameter is independent of deformation. The complexities
associated with a shape dependence of the level-density
parameter are introduced in Sec. II F.

Within the framework of a one-dimensional model, the
Bohr-Wheeler fission decay width is often expressed as (see,
for example, Ref. [15])

�BW
f = 1

2πρgs(E −Vgs)

∫ E−Vgs

0

−Bf

ρsp(E −Vgs −Bf − ε)dε,

(5)

where Bf is the fission-barrier height and the subscripts “gs”
and “sp” denote the ground state and saddle point, respectively.
If the level densities ρgs and ρsp are assumed to be as given
in Eq. (2) and the level-density parameter a is assumed to be
a constant, then in the limit of a small barrier height or very
high excitation energy the temperatures at the ground state and
saddle points as defined in Eq. (4) will be equal and the fission
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FIG. 2. A simple square-well potential with a narrow barrier. The
ground-state well has a width �xgs.

decay width becomes

�BW
f = T

2π
exp(−Bf /T ). (6)

In general, the barrier height can be large enough and the
excitation energy low enough such that the temperatures at the
ground state and the saddle point are significantly different
and the fission decay width needs to be expressed as

�BW
f = Tsp

2π
exp

( −2Bf

Tgs + Tsp

)
. (7)

B. Fission from a square-well potential with a narrow barrier

We now consider the fission decay width for a simple system
with a potential energy V (q) as a function of deformation q

as shown in Fig. 2. In this section, we assume the width of
the barrier �xsp is small. Through very simple arguments, it is
clear that key pieces of physics are missing from Eqs. (6) and
(7). These equations contain no terms that allow the fission
decay width to change based on the width of the ground-state
well, as must be the case at high temperature where the
collective degree of freedom behaves classically. If the width
of the ground-state well �xgs increases, a classical system
will encounter the barrier region less often and the decay
width must decrease. This apparent problem with the statistical
model was overcome by Strutinsky [24] more than 30 years
ago. Strutinsky [24] pointed out that the total level density
of the system must not be estimated assuming the system
exists at only the ground-state equilibrium position, but must
be calculated taking into account the collective motion about
the ground-state position. If the level density as a function of
thermal excitation energy at a fixed point is assumed to be
ρ(U ), then the total level density, in a one-dimensional model,
is given by [24]

ρtot(E) =
∫ ∫

ρ

(
E − V (q) − p2

2µ

)
dq dp

h
, (8)

where µ is the inertia of the collective coordinate. The integrals
are over all collective momenta p and over all locations q that
make up the ground-state well. For the square-well potential

shown in Fig. 2, the total level density is given by

ρtot(E) =
∫ ∞

p=−∞

∫ �xgs

0
ρ(E) exp

( −p2

2 µT

)
dq dp

h
. (9)

Because of quantum effects, Eq. (9) fails at temperatures lower
than or comparable to the corresponding zero point energy of
the square well, E0 = π2h̄2/(2µ�x2

gs). If we assume that the
inertia is independent of the location, then Eq. (9) simplifies
to

ρtot(E) = ρ(E)
T

h̄ωeff
, with ωeff = 1

�xgs

√
2πT

µ
. (10)

If Eq. (6) is recalculated correctly, taking into account the
motion about the ground-state position, then the fission decay
width is

�f = h̄ωeff

2π
exp(−Bf /T ). (11)

To confirm that Eq. (11) is the correct expression for the
classical (T � E0) fission decay width for the potential shown
in Fig. 2, we calculate the mean fission time by numerical
means using the Langevin equation [42]. The acceleration of
the collective coordinate q over a small time interval δt is given
by [42]

q̈ = −1

µ

∂V

∂q
− q̇2

2 µ

∂µ

∂q
− βq̇ + �

√
2βT

δtµ
, (12)

where � is a random number from a normal distribution
with unit variance and β is the reduced nuclear dissipation
coefficient that controls the coupling between the collective
motion and the thermal degrees of freedom. We start with an
ensemble of systems at t = 0, each with q(t = 0) = �xgs/2,
and with the collective velocity set to zero. Details on how to
use the Langevin equation to model the time evolution of an
ensemble of compound nuclei can be found in Ref. [43].

Figure 3 compares various model calculations of the mean
fission time as a function of the width of the equilibrium
well �xgs for the potential shown in Fig. 2. The barrier
height is Bf = 3 MeV, the temperature is assumed to be

FIG. 3. Various model calculations of the fission lifetime for the
potential shown in Fig. 2, with Bf = 3 MeV, T = 1 MeV, µ =
50 amu, and β = 1021 s−1 as a function of the width of the ground-
state well �xgs. The solid circles show the results of Langevin
calculations. The solid and dashed lines show statistical model
estimates obtained using two different approaches (see text).
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T = 1 MeV, the inertia of the collective coordinate is assumed
to be µ = 50 amu, and β = 1021 s−1. Applying the statistical
model incorrectly, via Eq. (6), gives a mean fission time that
is independent of the width of the ground-state well as shown
by the dashed line in Fig. 3. Applying the statistical model
correctly, as outlined by Strutinsky [24], gives a mean fission
time that increases linearly with the width of the well, in
agreement with the Langevin calculations shown in Fig. 3.
In the case of a narrow barrier, the mean fission time
for a fully equilibrated system is completely governed by
equilibrium (statistical) physics and the mean fission time is
independent of the reduced nuclear dissipation coefficient,
β. Technically, both the solid and dashed lines in Fig. 3
show Bohr-Wheeler calculations. Unfortunately, the way
Eq. (5) and approximations thereof are used is incorrect for hot
systems. These methods have been commonly referred to in
the literature as the Bohr-Wheeler fission model. In the present
article we continue to label these inadequate approaches as the
Bohr-Wheeler model to separate it from the Bohr-Wheeler
model applied correctly as described by Strutinsky [24].

C. Effect of a finite barrier width

If the barrier is narrow then every time the barrier is
surmounted the barrier is successfully crossed and the mean
fission time for an equilibrated system is completely governed
by statistical physics; i.e., surmounting the barrier leads to
an irreversible transition. However, if the barrier has a finite
width then the coupling between the collective motion and
the thermal degrees of freedom produces a nonequilibrium
effect while the barrier is being traversed, which leads to an
increase in the mean fission time relative to that obtained by a
purely statistical model. This effect is well known and has been
incorporated into statistical models of heavy-ion fission since
the early 1980s. However, it is generally discussed within the
framework of a parabolic barrier, as is done in the next section.
We believe that readers who are not familiar with this effect
will obtain a better intuitive feel for its origin if it is first
introduced for a system with a more simple potential.

Consider an equilibrated system with T = 2 MeV, µ =
50 amu, and a potential of the form shown in Fig. 2 with
Bf = 3 MeV, �xgs = 5 fm, and a finite barrier width �xsp =
5 fm. The mean time for this equilibrated system to surmount
(get on top of) the fission barrier is correctly given by
Eq. (11) and is 3 × 10−20 s. Upon surmounting the barrier,
all systems will have an initial collective motion that will take
the systems to larger deformation. However, as the barrier is
traversed, the coupling between the collective motion and the
thermal degrees of freedom will cause the systems to lose their
memory of their initial motion toward larger deformation. The
typical collective kinetic energy toward larger deformation at
the moment the barrier is surmounted will be approximately
the temperature of the system T . The average distance that
a system will travel across a flat potential before losing all
memory of a collective motion with kinetic energy E = T is
approximately given by

�x ∼ 1

β

√
2T

µ
. (13)

FIG. 4. Langevin calculations (circles) of the ratio of the barrier
mountings to the successful barrier crossings (fissions) as a function
of β for a square-well potential with T = 2 MeV, µ = 50 amu, Bf =
3 MeV, and �xgs = �xsp = 5 fm. The solid line guides the eye.

For a system with T = 2 MeV, µ = 50 amu, and β = 1021 s−1,
we obtain �x ∼ 2.5 fm. Therefore, if the barrier width is
�xsp = 5 fm then the average system will lose all memory of
its motion toward larger deformation approximately halfway
across the barrier. On the basis of the symmetry of this location,
half of these systems will randomly find their way to the
outer barrier edge and fission, while the other half will find
the inner edge and return to the ground-state well. This will
cause the mean fission lifetime to be approximately twice the
purely statistical result of 3 × 10−20 s. As β is increased above
1021 s−1 then the memory loss will occur increasingly closer
to the inner barrier edge, increasing the probability that the
system will be returned to the ground-state well and thus
increasing the mean fission time. Figure 4 shows Langevin
calculations of the ratio of the barrier mountings to the
successful barrier crossings as a function of β for the system
considered above. For large β this ratio becomes ∼β/ωsp,
where the effective angular frequency of the barrier is obtained
via Eq. (10) by replacing �xgs with �xsp. The symbols in
Fig. 5 show dynamical calculations of the mean time spent
in the ground-state well as a function of β for the system
discussed above. The increase in the Langevin mean fission
time below β ≈ 0.5 × 1021 s−1 is caused by the weak coupling

FIG. 5. The circles show Langevin calculations of the mean time
spent in the ground-state well as a function of β for a square-well
potential with T = 2 MeV, µ = 50 amu, Bf = 3 MeV, and �xgs =
�xsp = 5 fm. The solid line shows the statistical (Strutinsky) model
result multiplied by the ratios shown in Fig. 4.
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between the collective motion and the thermal degrees of
freedom. Below β ∼ 0.5 × 1021 s−1 the mean fission time
is increasingly governed by the time it takes the collective
motion to equilibrate with the thermal degrees of freedom.
The curve shows the statistical-model result multiplied by the
ratios shown in Fig. 4.

D. Parabolic potentials

If the ground-state well is characterized by a parabolic
(harmonic) potential

Vgs(q) = µω2
gsq

2

2
, (14)

then the total level density of the system [see Eq. (8)] can be
expressed as [24]

ρtot(E) =
∫ ∞

p=−∞

∫ ∞

q=−∞
ρ(E) exp

(−µω2
gs q

2

2 T

)

× exp

( −p2

2 µT

)
dq dp

h
, (15)

which gives

ρtot(E) = ρ(E)
T

h̄ωgs
. (16)

The corresponding statistical-model expression for the fission
decay width from a harmonic well is

�f = h̄ωgs

2π
exp(−Bf /T ). (17)

Equations (15)–(17) assume the collective motion is classical
and thus fail at low temperatures. This deficiency can be
overcome by including the collective enhancement to the total
level density using the expression

ρtot(E) =
∞∑

n=0

ρ(E) exp(−nh̄ωgs/T ), (18)

which gives

ρtot(E) = ρ(E)

1 − exp(−h̄ωgs/T )
. (19)

For nuclear temperatures less than h̄ωgs, the total level density
is dominated by the nonvibrational degrees of freedom, and
Eq. (19) leads to a transition-state fission decay width as
expressed by Eq. (6). For T > h̄ωgs, Eq. (19) gives a transition-
state fission decay width that approaches the classical result
given by Eq. (17). A typical value of h̄ωgs is ∼1 MeV, which
corresponds to an excitation energy of ∼25 MeV. In the present
work, we choose to keep our model calculations as classical
as possible and use Eq. (17). We thus restrict the analysis
presented in Sec. III to systems with compound nucleus mass
numbers less than 220, where the decision to fission is being
predominately made at T > h̄ωgs. Future versions of the code
JOANNE will use Eq. (19).

As discussed in Sec. II C, the purely classical statistical-
model result given by Eq. (17) is only valid for an equilibrated
system in the limit of either a narrow fission barrier or
low dissipation where reaching the transit point leads to an

irreversible transition. It is well known that the fission decay
width for a system with a harmonic ground-state well and a
parabolic barrier is reduced by dissipation [44] and given by

�f = (
√

1 + γ 2 − γ ) × h̄ωgs

2π
exp(−Bf /T ), (20)

where γ is the dimensionless nuclear viscosity given by

γ = β

2 ωsp
(21)

and ωsp is the angular frequency of the inverted potential
around the barrier (saddle point). The scaling factor that
modifies the purely statistical result is often referred to as
the Kramers’ reduction factor. In the limit of large nuclear
viscosity, the Kramers’ reduction factor becomes 1/(2γ ) =
ωsp/β. Therefore, when the viscosity is large, the mean
fission time is increased by a factor of β/ωsp relative to the
purely statistical result. This is analogous to the similar result
obtained in Sec. II C. Since Kramers’ [44] original work in
one dimension, the diffusion over a multidimensional barrier
has been solved [45]. In n dimensions the fission decay width
is still dependent on the shape of the ground-state well and is
bigger (smaller) than Kramers’ results if the fission valley gets
wider (more narrow) as the transition point is approached.

To better understand Eq. (20) and further illustrate fission
from parabolic potentials, consider the potential shown in
Fig. 6. The potential around the ground-state position in
Fig. 6 is as given by Eq. (14) with ωgs = 1021 s−1 and µ =
50 amu. The potential around and beyond the fission saddle
point is of the form

Vsp(q) = Bf − µω2
sp(qsp − q)2

2
, (22)

with ωsp = 1021 s−1. Here, we have chosen a barrier height
of Bf = 3 MeV. Given the form of the potentials Vgs and
Vsp, in conjunction with the assumption of a smooth potential,
the fission-barrier height Bf = 3 MeV defines the location
of the saddle point to be qsp = 4.82 fm. The transition from
Vgs to Vsp occurs at q = 2.41 fm. Assuming the potential at
the scission configuration (where the system breaks into two
separate fission fragments) has a potential energy 20 MeV
lower than that of the ground state (qgs = 0) defines the
scission point to be at qsc = 14.2 fm. The solid curve in
Fig. 7 shows the Kramers-modified statistical-model mean
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FIG. 6. Parabolic potential energy as a function of deformation
q for a system with Bf = 3 MeV, ωgs = ωsp = 1021 s−1, and µ =
50 amu.
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FIG. 7. Kramers-modified statistical-model mean fission time
(solid curve) as function of β, for a system with T = 1 MeV, and the
potential shown in Fig. 6. The solid circles show the corresponding
Langevin calculations of the mean time spent inside the fission saddle
point.

fission time obtained using Eq. (20) as a function of β, for
a system with T = 1 MeV, and the potential shown in Fig. 6.
The symbols in Fig. 7 show Langevin calculations of the mean
time spent inside the fission saddle point, for the same system.
The slight increase in the Langevin calculated fission time
relative to the statistical model beyond β ∼ 3 × 1021 s−1 is
associated with numerical convergence issues.

After a hot nucleus is formed, it takes a finite time period for
the collective motion to equilibrate with the thermal degrees
of freedom. During this equilibration time, the fission decay
width will be lower than the Kramers-modified statistical
value. This is why the dynamically calculated fission lifetimes
shown in Fig. 7 are longer than the corresponding Kramers-
modified statistical values below β ∼ 0.5 × 1021 s−1. The time
for the fission decay width to reach 90% of its asymptotic value
defines the transient fission delay time [46,47]

τf ∼ τ ln(10Bf /T ), (23)

where τ ∼ 1/β if β � 2ωsp and τ ∼ β/(2ω2
sp) if β � 2ωsp.

For modest to high values of β (>2 × 1021 s−1) the ratio of the
Kramers-modified statistical fission lifetime to the transient
delay is given by

tf

τf

∼ 4π ωsp

ωgs

exp(Bf /T )

ln(10Bf /T )
. (24)

Therefore, as long as the barrier is larger than the temperature,
the Kramers-modified statistical fission lifetime will be more
than ∼4π · e/ln(10) ∼15 times longer than the transient delay,
and the transient delay can be neglected. If β ∼ 3 × 1021 s−1,
ωsp ∼ 1021 s−1, and Bf /T is in the range from 0.5 to 3, then the
corresponding transient delays will range from ∼2.5 × 10−21

to ∼5 × 10−21 s. These transient delays are short compared
to the corresponding mean fission times. The only way the
transient delay can be made important is if the viscosity is low,
if the barrier is much smaller than the temperature, or if the
mean fission time is made artificially small through the use of
an inadequate model.

The symbols in Fig. 8 show Langevin calculations for the
mean time spent between the saddle point and the scission
point τssc for a system with the potential shown in Fig. 6 with
T = 1 MeV, as a function of β. Analytical expressions for
the mean time spent beyond the saddle point can be obtained.

FIG. 8. Langevin model calculations for the mean time spent
between the saddle point and the scission point τssc (symbols) as
a function of β, for a system with T = 1 MeV, ωsp = 1021 s−1, and
a potential drop from the saddle point to the scission point of �V =
23 MeV. The solid line shows the corresponding calculation using
Eq. (26).

For example, it is easy to show that for parabolic barriers the
transit time from the saddle point to the scission point with no
dissipation (γ = 0) can be written as

τssc(γ = 0) = f (�V, T )
ln(4�V/T )

2ωsp
, (25)

where �V is the potential energy drop from the saddle point to
the scission point. For a range of realistic combinations of �V

and T it can be shown that f (�V, T ) is within 5% of 1.13.
Using this result and the well-known result for the viscosity
dependence of the saddle-to-scission time [48], we obtain

τssc(γ ) ∼ 1.13 × ln(4�V/T )

2ωsp
× (

√
1 + γ 2 + γ ). (26)

The solid curve in Fig. 8 shows the saddle-to-scission time
obtained using Eq. (26) as a function of β for a system with
T = 1 MeV, �V = 23 MeV, and ωsp = 1021 s−1. These simple
estimates are in excellent agreement with the corresponding
Langevin calculations.

The total mean lifetime of the system is the sum of the
mean time spent inside the saddle point and the mean saddle-
to-scission time. For modest and large values of β, the ratio
of the mean time spent inside the fission barrier to the mean
saddle-to-scission time is

tf

τssc
∼ 2π

ωeq
exp(B/T )

2ωsp

ln(4�V/T )
. (27)

For typical fission reactions, the logarithm in Eq. (27) is
between 3 and 5, and ωsp/ωgs ∼ 1. Therefore, if the fission
barrier is larger than the temperature, then the mean time
spent inside the fission barrier will be more than a factor of
∼π · e = 8 larger than the mean saddle-to-scission time, and
the saddle-to-scission time can be neglected.

Figure 9 compares various model calculations of the mean
fission time for the potential shown in Fig. 6, with µ =
50 amu and β = 1021 s−1 as a function of the temperature
T . The solid curve shows results obtained by applying the
Kramers-modified statistical model via Eq. (20). These results
are in reasonable agreement with the Langevin calculations
of the mean time spent inside the saddle point shown by the
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FIG. 9. Model calculations of the fission lifetime for the potential
shown in Fig. 6, with µ = 50 amu and β = 1021 s−1 as a function of
the temperature T . The solid and dashed lines show results obtained
using Eq. (20) (Strutinsky) and the standard Kramers-modified Bohr-
Wheeler formula (see text). The symbols show the corresponding
Langevin calculations.

circles. When the temperature is higher than the fission barrier,
Eq. (20) overestimates the fission time because the integral
over the collective coordinate in Eq. (15) is over all space.
This approximation is valid if the temperature is smaller than
Bf and is made to obtain a simple analytical expression for
the fission lifetime. At higher temperatures the transition to
Vsp(q) beyond q = 2.41 fm should be taken into account and
the integral over q should be from −∞ to qsp. However, from
Fig. 9 we see that Eq. (20) fails gracefully and is only off
by ∼20% at Bf /T = 0.5. Results obtained using Eq. (6)
multiplied by the Kramers’ reduction factor are shown by
the dashed curve. These mean fission times are incorrect and
off by a factor of ∼T/(h̄ωgs) and thus have a dependence on
temperature (excitation energy) that is incorrect. This problem
with the standard statistical model has been addressed by some.
For example, Gontchar, Fröbrich, and Pischasov [25] multiply
the standard statistical fission rate by h̄ωgs/T . However, many
authors in the field continue to ignore this correction. This
has been partially justified because the h̄ωgs/T correction
is of the order of one [14] and generally expected to be of
little importance given the uncertainty and the number of
adjustable parameters in the statistical model of nuclear reac-
tions. However, the standard techniques for estimating fission
lifetimes use multiple approximations, and several of these
approximations each cause the fission lifetime in heavy-ion
fusion-fission reactions to be increasingly underestimated with
increasing excitation energy. It is important to address each of
these issues because their cumulative effect is significant in
heavy-ion reactions.

E. Potentials for real nuclei

From the preceding sections, it is clear that the mean fission
time does not just depend on the excitation energy, the nuclear
dissipation, and the height of the fission barrier, but is also
sensitive to the shape of the potential-energy surface. However,
many authors in the field continue to use the Bohr-Wheeler
fission decay width as expressed in Eqs. (5)–(7) multiplied
by the Kramers’ reduction factor with the level density as
or similar to that given in Eq. (2). This is, in part, because
only the fission barriers and ground-state energies have been

determined via the finite-range liquid-drop model (FRLDM)
[31] as a function of Z,A, and total spin J . These barrier
heights and ground-state energies have been parametrized, and
the corresponding fits made available via the subroutine BARFIT

written by Sierk [31].
No parametrization of the shape of FRLDM potential-

energy surfaces exists. However, a method for estimating
finite-range-corrected potential-energy surfaces by an empiri-
cal modification of the liquid-drop model has been proposed
[49]. This method is referred to as the modified liquid-drop
model (MLDM). In the MLDM, the potential energy of a
nucleus, relative to its spin-zero ground state, is written as
[27,49]

V (q,Z,A, J,K)

= (S ′(q) − 1)E◦
S(Z,A) + (C(q) − 1)0.7053

Z2

A1/3
MeV

+ (J (J + 1) − K2) h̄2

I⊥(q) 4
5MR2

o + 8Ma2
+ K2h̄2

I||(q) 4
5MR2

o + 8Ma2
, (28)

where E◦
S(Z,A) is the LDM surface energy of spherical

nuclei as determined by Myers and Swiatecki [50,51], M

is the mass of the system, Ro = 1.2249 fm × A1/3, and a =
0.6 fm. C(q), I⊥(q), and I||(q), are the Coulomb energy and the
moments of inertia perpendicular to and about the symmetry
axis of a sharp surfaced 208Pb (J = 0) liquid-drop nucleus as
a function of the distance between mass centers q in units
of the corresponding spherical values. S ′(q) is an empirically
adjusted surface energy in units of the corresponding spherical
value.

Unfortunately, when the MLDM was originally published
[49], the S ′(q), C(q), I⊥(q), and I||(q) were only tabulated
in steps of q/Ro = 0.05. The nuclear potential energy is a
delicate balance between surface and Coulomb energies and
poor results can be obtained by a simple interpolation of the
S ′(q), C(q), I⊥(q), and I||(q) values published in Ref. [49].
To obtain an accurate potential-energy surface, one must use
a spacing in q/Ro of, or smaller than, ∼0.01. The recom-
mended values of S ′(q), C(q), I⊥(q), and I||(q) are available in
Ref. [43] in steps of q/Ro = 0.01. With these values, the
nuclear potential energy can be easily estimated using Eq. (28)
as a function of deformation q,Z,A, the total spin J , and the
spin about the elongation axis K . The present version of the
MLDM is only recommended for systems with A > 160. A
retuning of S ′(q), C(q), I⊥(q), and I||(q) could be performed
to obtain a version of the MLDM that is valid at A < 160.

Figure 10 shows the MLDM potential energy of 210Po
(K = 0) as a function of deformation for various total spins
J . The deformation is expressed as a distance between mass
centers in units of the radius of the corresponding spherical
system. q/Ro = 0.75 corresponds to a sphere. The MLDM
and FRLDM 210Po fission barriers are compared in Fig. 11.
The rms difference between the 210Po MLDM and FRLDM
fission barriers is ∼0.06 MeV. The corresponding value for
the ground-state energies is ∼0.4 MeV. Model calculations
are very sensitive to fission barriers and thus the MLDM
was tuned to give an excellent match to the FRLDM fission
barriers at the expense of the match to the spin dependence of
the ground-state energies. The statistical-model code JOANNE4
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FIG. 10. The MLDM potential energy of 210Po (K = 0) as a
function of deformation for various total spins J .

(discussed further in Sec. III) only uses the MLDM to
determine the deformation dependence of the potential energy.
When calculating the excitation energy and temperature at
the ground-state position, the FRLDM ground-state energy is
estimated using BARFIT.

A method by which MLDM potential-energy surfaces can
be used to estimate the angular frequencies at ground state
and saddle points, ωgs and ωsp, is outlined in Ref. [49].
Figure 12 shows estimates of ωgs and ωsp for 210Po as a function
of spin J (assuming K = 0).

F. Free energy and effective potentials

The Bohr-Wheeler fission decay width given by Eq. (6) was
obtained assuming that the Fermi-gas level-density parameter
a is independent of the nuclear shape. However, for real nuclei,
the level-density parameter is expected to have a dependence
on nuclear shape. Using the Thomas-Fermi Approximation
(TFA) [32] or the Local Density Approximation (LDA)
[33,34], it is relatively easy to show that the level-density
parameter of a sharp-surfaced nucleus is only dependent on
the nuclear volume and is a ∼ A/15 MeV−1 and independent
of nuclear shape. If the assumption of a sharp surface is
replaced by a realistic diffuse surface, then the level-density
parameter will be ∼A/9 MeV−1 for spherical systems and
will increase with increasing deformation. The volume and
shape dependence of the level-density parameter can be

FIG. 11. The MLDM and FRLDM fission barriers of 210Po
(K = 0) as a function of the total spin J .

FIG. 12. MLDM estimates of ground-state and saddle-point
curvatures ωgs and ωsp for 210Po as a function of spin J (assuming
K = 0).

estimated using the TFA, the LDA, and/or quantum mechanical
calculations [35]. These results can be approximated by the
expression [32,36,37]

a(q) ∼ cV A + cSA
2/3S ′(q), (29)

where cV and cS are constants that control the volume and
shape dependence of the level-density parameter and S ′(q)
is the surface energy relative to that of a spherical system
with the same volume. The values of the constants cV and cS

depend sensitively on the nuclear radius, the effective mass of
nucleons in nuclear matter, and the properties of the nuclear
surface [34].

When taking into account the deformation dependence of
the level density, most existing statistical-model codes assume
the location of the fission transition point is independent of
excitation energy and given by the saddle point in the T = 0
potential-energy surface. Using this approximation, Eq. (6)
can be rewritten as

�BW
f ∼ Tsp exp(2

√
asp(E − Vgs − Bf ))

2π exp(2
√

aeq(E − Vgs))

∼ T

2π
exp(−Beff/T ), (30)

where the effective barrier height is given by

Beff = Bf − �a T 2, (31)

where �a is equal to (asp − ags). If asp is larger than ags then,
at a high enough excitation energy, one obtains the unphysical
result where the level density at the transition point is larger
than the level density at the ground-state position. For example,
if we assume ags = 23 MeV−1, asp/ags = 1.04, and Bf =
3 MeV, then the level density at the saddle point, as given
in Eq. (30), becomes larger than the level density at the
ground-state position at an excitation energy of ∼80 MeV.
At higher excitation energies, the effective barrier is negative.
This unphysical result alerts us that Eq. (30) becomes invalid
at high excitation energy.

The reason that Eq. (30) becomes invalid at high excitation
energy (separate from the issues discussed in Secs. II B and
II C) is because, at finite temperature, the generalization of the
potential-energy function that determines the driving force is
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the free energy [28, p. 371]

F = Etot − T S(q,E), (32)

where S is the entropy. If the level-density parameter is
a function of nuclear deformation, then the locations of
equilibrium points will be a function of excitation energy
and defined by the equilibrium points in the entropy (or level
density) as a function of deformation(

∂S(q)

∂q

)
E

∼
(

∂(2
√

a(q)U (q))

∂q

)
E

= 0, (33)

and not by the equilibrium points in the potential energy V (q).
It is easy to show that searching for equilibrium points in the
entropy is the same as searching for the equilibrium points in
an effective temperature-dependent potential energy defined
by [25]

Veff(q, T ) = V (q) − �a(q)T 2. (34)

Only the derivative of the effective potential energy is of any
importance, and thus a constant shift can be applied to the
effective potential without any change to model calculations.
Given this, we choose to define �a(q) to be the difference
between a(q) and the corresponding value for the spherical
system. The temperature dependence of both equilibrium
points can be determined by finding the minima and maxima
in the effective potential.

If the deformation dependence of the level-density param-
eter and the corresponding excitation-energy dependencies of
the ground state and fission transition point (tp) are taken into
account, then the Bohr-Wheeler decay width can be expressed
as

�BW
f ∼ Ttp exp(2

√
atp(E − Vtp))

2π exp(2
√

ags(E − Vgs))
. (35)

In Eq. (35), Vgs and Vtp are the real potential energies at
the location of the ground state and fission transition points
determined by the equilibrium positions in the effective
potential. Equation (35) can be rewritten in terms of the
effective potential as

�BW
f ∼ T exp(2

√
ao(E − Vgs(T ) − Bf (T )))

2π exp(2
√

ao(E − Vgs(T )))

∼ T

2π
exp(−Bf (T )/T ), (36)

where Vgs(T ) and Bf (T ) are the effective potential energy
of the ground-state position and the effective barrier height
determined using the effective potential. Notice that the decay
width can be determined using the real potential with the
real deformation dependence of the level-density parameter
or the effective potential with the level-density parameter
of the spherical system. However, one must never use the
effective potential with the real deformation dependence of
the level-density parameter.

If the effects of the collective motion about the ground-
state position and the finite width of the fission barrier are
taken into account as discussed in the previous sections,
then the Kramers-modified statistical-model result for a one-
dimensional fission model (with K = 0) with a deformation

dependence of the level-density parameter can be written as

�f = (
√

1 + γ 2(T ) − γ (T )) × h̄ωgs(T )

2π
exp(−Bf (T )/T ),

(37)

where γ (T ) = β/(2ωtp(T )), ωgs(T ), and Bf (T ) are all func-
tions of temperature and determined using the effective
potential Veff(q, T ) given by Eq. (34). Equation (37) assumes
that the excitation energy is high enough that the temperature
is independent of the deformation. This is a reasonable
approximation if the effective barrier height is small compared
to the thermal excitation energy at the ground-state position. In
the limit of high excitation energy, the temperature in Eq. (37)
can be assumed to be independent of deformation and equal to
the value at the ground-state position. At low excitation energy
the temperature dependence of the effective potential is small
and thus it is also reasonable to determine ωtp(T ), ωgs(T ), and
Bf (T ) assuming a deformation-independent temperature set
to the value at the ground-state position. However, to obtain
an accurate estimate of the excitation-energy dependence
of the fission lifetime at low excitation energy, the thermal
excitation-energy dependence of the temperature must be
taken into account when calculating the ratio of the level
densities at the ground state and transition point. Given these
considerations, we rewrite Eq. (37) as

�f =
(√

1 + γ 2(Tgs) − γ (Tgs)

)

× h̄ωgs(Tgs)

2π
exp

(−2Bf (Tgs)

Tgs + Ttp

)
. (38)

If the shape dependence of the level-density parameter is
assumed to be as given in Eq. (29), then the effective potential
energy is given by

Veff(q,Z,A, J,K, T )

= V (q,Z,A, J,K) − cSA
2/3(S ′(q) − 1)T 2. (39)

Substituting in the MLDM potential energy [see Eq. (28)]
gives

Veff(q,Z,A, J,K, T )
= (S ′(q) − 1)E◦

S(Z,A) (1 − α T 2)

+ (C(q) − 1) 0.7053
Z2

A1/3
MeV

+ (J (J + 1) − K2) h̄2

I⊥(q) 4
5MR2

o + 8Ma2
+ K2h̄2

I||(q) 4
5MR2

o + 8Ma2
, (40)

where

α = cSA
2/3

E◦
S

= cS × 0.059 MeV−1 for A ∼ 200. (41)

For a particular model, Töke and Swiatecki [32] obtained
cS ∼ 0.27 MeV−1. This gives an estimate for the value of
α in Eq. (40) of ∼0.016 MeV−2. However, cS is known to
be very sensitive to the assumed properties of nuclear matter
and to the different types of approximations used to estimate
it. Other estimates of cS [33–37] give values of α that range
from 0.007 to 0.022 MeV−2. For the remainder of Sec. II we
shall assume α = 0.016 MeV−2. For systems with A ∼ 200,
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FIG. 13. The MLDM potential energy V (q) as a function of defor-
mation for 210Po with J = 50, K = 0, along with the corresponding
effective potential energies Veff (q, T ) at T = 1 and 2 MeV assuming
α = 0.016 MeV−2. Also shown is the deformation dependence of
the corresponding entropies S(q,E). The dashed vertical lines are to
guide the eye (see text).

the deformation dependence of the level density associated
with α = 0.016 MeV−2 corresponds roughly to asp/ags (or
af /an) ∼ 1.05. In Sec. III, α will be adjusted to reproduce
experimental data.

It is of interest to note that the deformation dependence of
the level-density parameter can be mapped into a temperature
dependence of the surface energy. The TFA can be used to
calculate the temperature dependence of the LDM surface
energy. For example, Campi and Stringari [38] used the TFA
and obtained α ∼ 0.012 MeV−2. It is important to realize that
the deformation dependence of the level-density parameter and
the temperature dependence of the surface energy are different
ways of representing the same physics associated with the
diffuse nuclear surface. One should never use the deformation
dependence of the level-density parameter in conjunction with
a temperature-dependent surface energy, as this would be
counting the same physical effect twice.

Figure 13 shows the MLDM potential energy V (q) as a
function of deformation for 210Po with J = 50 and K = 0,
along with the corresponding effective potential energies
Veff(q, T ) at T = 1 and 2 MeV assuming α = 0.016 MeV−2,
and the deformation dependence of the corresponding en-
tropies S(q,E). The thermal excitation-energy dependence of
the level density is assumed here to be of the form

ρ(U ) ∝ exp(2
√

aU )

Un
, (42)

with n = 2. This is the excitation-energy dependence of
the level density assumed by many statistical-model codes
[15,18,21,23] and is based on the theoretical result for a spher-
ical symmetric system [41]. The corresponding relationship
between thermal excitation energy and temperature is

T = U√
aU − n

. (43)

This approaches (U/a)1/2 at high excitation energy. Assuming
a static axially symmetric shape changes n to 3/2, and a static
shape with no rotational symmetries changes n to 5/4 [28].
The inclusion of collective motion could further reduce n.
However, in the remainder of the present work we shall assume

FIG. 14. The effective fission-barrier height for 210Po with J =
50, K = 0, and α = 0.016 MeV−2 obtained by incorrectly assuming
the transition point is independent of temperature via Eq. (31) (dashed
line) and those obtained using the turning points in the effective
potential Veff (q, T ) (solid curve).

n = 2. One’s choice for n in the range from 0 to 2 makes little
difference to the overall properties of hot systems with thermal
excitation energies larger than a few tens of MeV.

From Fig. 13 we can see that the location of the transition
point does not change much up to a temperature of ∼1 MeV.
However, there is a dramatic change in the location of the
fission transition point from T = 1 MeV (U ∼ 30 MeV) to
T = 2 MeV (U ∼ 100 MeV). The dashed vertical lines are
to guide the eye and show that the equilibrium positions in
the effective potential correspond to equilibrium positions
in the entropy. From Fig. 13 we can also deduce that if
the transition point is incorrectly assumed to equal the T =
0 value (independent of temperature) then the entropy of
the transition point will be increasingly overestimated with
increasing temperature. This would cause the mean fission
lifetime to be increasingly underestimated with increasing
temperature. To further illustrate this, Fig. 14 compares the
effective fission-barrier height for 210Po with J = 50, K = 0,
and α = 0.016 MeV−2 obtained by incorrectly assuming the
transition point is independent of temperature via Eq. (31) and
those obtained using the equilibrium points in the effective
potential Veff(q, T ). There is little difference between these
two methods below T ∼ 1 MeV. Above T ∼ 1 MeV the
incorrect approach increasingly underestimates the height of
the effective fission barrier.

To confirm that Eq. (38) adequately describes the fission de-
cay width for systems with MLDM potential-energy surfaces
with a deformation dependence of the level-density parameter,
we calculate mean fission times by numerical means using the
Langevin equation [42]. In obtaining Eq. (12) it was assumed
that the Fermi-gas level-density parameter is a constant,
independent of the nuclear shape. However, for real nuclei,
the level-density parameter is expected to have a dependence
on nuclear shape, as discussed above. The driving force on
the collective degree of freedom should be determined using
the derivative of the free energy [28, p. 371] and Eq. (12)
should be modified by replacing the real potential V (q)
with the effective potential Veff(q, T ) [25]. As discussed
above, it is a reasonably good approximation to estimate
the effective potential as a function of deformation, using
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FIG. 15. The deformation dependence of the surface-plus-
window dissipation coefficient with kS = 0.27, for a J = 50 195Pb
system [54]. The dashed lines guide the eye (see text).

the temperature at the ground-state position independent of
deformation. However, to allow for total energy conserva-
tion, the temperature in the last term of Eq. (12) must be
calculated taking into account the thermal energy converted
into collective energy. By including this effect, if the total
collective energy becomes large compared to the total available
energy then the temperature becomes low and the random
acceleration is reduced. If this were not done then the random
acceleration governed by the last term in Eq. (12) would violate
the conservation of energy and could drive the total collective
energy of the system (while still in the ground-state well)
to a value larger than the available excitation energy at the
ground-state position.

Before proceeding with calculations of fission lifetimes
using realistic nuclear potential energies, it is important to
introduce a realistic model to guide the expected values of
the nuclear dissipation coefficient β. We believe the nuclear
dissipation has been well constrained by the surface-plus-
window dissipation model [30], using the mean kinetic energy
of fission fragments and the widths of isoscalar giant reso-
nances. The surface-plus-window dissipation model contains
a single dimensionless parameter, kS , that controls the way
nucleons interact with the nuclear surface. A value of kS = 1
corresponds to wall [52,53] plus window dissipation. The
surface-plus-window dissipation model with a value of kS =
0.27 reproduces the mean kinetic energy of fission fragments
and the widths of isoscalar giant resonances over a wide range
of nuclear masses [30]. The deformation dependence of the
surface-plus-window dissipation coefficient with kS = 0.27,
for a J = 50 195Pb system [54], is shown in Fig. 15.

The surface-plus-window model dissipation coefficient is
very insensitive to Z,A, and J ; has no dependence on
nuclear temperature; and is relatively flat over a wide range
of saddle-point deformations. The dashed vertical lines in
Fig. 15 span the range of typical fission saddle-point de-
formations encountered in heavy-ion fusion-fission reactions
with compound nuclei mass numbers from A ∼ 170 to 220.
The horizontal dashed lines show that over this range of
fission saddle-point deformations, the dissipation coefficient
is within 10% of 3 × 1021 s−1. Recently, theoretical studies of
the kinetic energy of fission fragments [55] have confirmed
the work of Nix and Sierk [30]. For the remainder of this
article we assume that the nuclear dissipation coefficient in

FIG. 16. Estimates of the fission lifetime of J = 50 and K = 0
210Po systems as a function of the thermal excitation energy, assuming
β = 3 × 1021 s−1, a = A/8.6 MeV−1, and α = 0.016 MeV−2. The
dashed curve shows the results for the “standard” Kramers-modified
Bohr-Wheeler fission decay width. The dashed-dotted curve is the
corresponding lifetime multiplied by T/h̄ωgs. The solid curve shows
the corresponding result where the deformation dependence of the
level-density parameter is taken into account via Eq. (38). The
symbols show corresponding Langevin calculations.

the region of all fission transition points is β = 3 × 1021 s−1

and is independent of temperature.
Figure 16 compares several estimates of the mean time

spent inside the fission transition point of a 210Po system
with J = 50 and K = 0, as a function of the thermal
excitation energy, assuming β = 3 × 1021 s−1, and a level-
density parameter as a function of shape as estimated by
Töke and Swiatecki [32]. As discussed above, the results of
Ref. [32] correspond to α = 0.016 MeV−2. The dashed
curve in Fig. 16 shows the results of a Kramers-modified
“standard” Bohr-Wheeler fission decay width. This is the
standard method used in many statistical-model codes.
The properties of a MLDM 210Po system with J = 50,
K = 0, and α = 0.016 MeV−2 include a fission-barrier
height Bf (T = 0) = 4.84 MeV, ags = 24.44 MeV−1, asp =
25.74 MeV−1 (asp/ags = 1.053), and ωsp(T = 0) = 0.915 ×
1021 s−1. The dash-dotted curve in Fig. 16 shows the mean
fission time if the Kramers-modified standard Bohr-Wheeler
decay width is further modified by the h̄ωgs/T factor to account
for the collective motion about the ground-state position.
The solid curve shows the corresponding mean fission times
determined by the Kramers-modified statistical model where
the deformation dependence of the level-density parameter
is taken into account in a more accurate way via Eq. (38).
These mean fission times are in good agreement with Langevin
calculations shown by the circles. The Langevin calculations
presented here assume that all compound systems start at the
bottom of the ground-state well at t = 0 and thus include
a transient delay in the buildup of the fission decay width
as a function of time. The good agreement between the
dynamical and statistical-model fission lifetimes confirms
that the transient delay has little effect for the excitation-
energy range and reaction class considered here. The standard
Kramers-modified Bohr-Wheeler decay width increasingly
underestimates the fission lifetimes with increasing excitation
energy relative to more correct model calculations obtained
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via both statistical and dynamical means [see Eqs. (38) and
(12)].

G. Orientation (K state) degree of freedom

The MLDM uses a family of axially symmetric and
mass symmetric shapes. These shapes define the Coulomb,
surface, and rotational energies of nuclei as a function of a
single deformation (elongation) parameter q/Ro. Within the
framework of this simple model where the nuclear shape is
defined by a single parameter, the motion of a rotating system
must be defined by a minimum of two degrees of freedom.
These are the shape and the orientation of the shape relative
to the total spin. The statistical model of the fission of rotating
systems must determine the total level density and the number
of fission transition states, taking into account the phase space
associated with both the shape and orientation degrees of
freedom. JOANNE4 [27] is presently the only statistical-model
code that takes the orientation degree of freedom into account
when estimating the fission lifetimes of hot rotating systems.

The level density of a compound nucleus as a function of
the total excitation energy E, the total spin J , and the spin
about a symmetry axis rotating with the system K is [41]

ρsph(E, J,K) ∝ exp(2
√

aU )

U 2
, (44)

where the thermal excitation energy is

U = E − J (J + 1)h̄2

2I⊥(q)
− K2h̄2

2Ieff(q)
. (45)

The effective moment of inertia is

Ieff(q) =
(

1

I||(q)
− 1

I⊥(q)

)−1

, (46)

whereI||(q) and I⊥(q) are the rigid body moments of inertia
about and perpendicular to the symmetry axis. For the
spherically symmetric case the rotational energy is obviously
independent of K , and the level density as a function of E and
J is the well-known result [41]

ρsph(E, J ) =
J∑

K=−J

ρsph(E, J,K) ∝ 2J + 1
exp(2

√
aU )

U 2
.

(47)

The 2J + 1 factor in Eq. (47) is associated with the com-
plete freedom of the orientation degree of freedom in the
case of a spherical system. For an arbitrary deformation, the
multiplication factor associated with the orientation degree of
freedom is

f =
J∑

K=−J

exp

( −K2

2K2
o (q)

)
∼ Ko

√
2π erf

(
2J + 1

2
√

2 Ko(q)

)
,

(48)

where K2
o (q) = T · I eff(q)/h̄2. The factor f decreases with

increasing deformation because the symmetry axis of spinning
systems becomes increasingly confined to the plane perpen-
dicular to the total spin as the deformation is increased. This

decrease in f with increasing deformation must be taken
into account when calculating fission lifetimes in heavy-ion
fusion-fission reactions.

Including the orientation degree of freedom, the statistical-
model fission decay width for a rotating system can be obtained
using Eq. (1) with the number of transition states and the total
level-density given by [24,28]

NTS =
∑
K

∫
ρtp(E − Vtp(K, T ) − ε) dε, (49)

and

ρ =
∑
K

∫ ∫
ρgs

(
E − Vgs(K, T )

− µgs(K, T ) ω2
gs(K, T ) (q − qgs)2

2 T

− p2

2 µgs(K, T ) T

)
dq dp

h
. (50)

These expressions give

�f =
∑

K P (K) �f (K)∑
K P (K)

, (51)

where P (K) is the probability that the system is in a given K

state,

P (K) = Tgs(K)

h̄ωgs(K, T )
ρgs(E − Vgs(K, T )). (52)

�f (K) is the fission decay width if the system could be
restricted to a given K state. To correct for the finite barrier
width, the fission decay width as a function of K should be
determined using Eq. (38) but with ωtp, ωgs, and Bf obtained
using the effective potential as a function of both T and K .

As done in the previous sections, we wish to confirm
the validity of the Kramers-modified statistical model by
comparing results obtained using Eq. (51) to Langevin
calculations. To perform Langevin calculations of a rotating
system, we must have a model of the microscopic coupling
between the orientation degree of freedom (K states) and the
thermal degrees of freedom. Langevin calculations performed
by others do not include a coupling between the orientation
degree of freedom and the heat bath and, therefore, do not
allow the K states to equilibrate. The Langevin calculations
of others underestimate the fission lifetime because only the
K = 0 fission barrier is sampled, instead of an equilibrated
distribution containing higher K �= 0 barriers.

The details of the coupling between the orientation degree
of freedom and the heat bath remain an open question,
especially for systems moving about in a ground-state well.
From the success of the transition state model of fission
fragment angular distributions [56] for most fusion-fission
reactions, it is known that the time spent inside typical fission
transition points is generally much longer than the K-state
equilibration time, while saddle-to-scission transit times are
much shorter than the K-state equilibration time for systems
beyond the fission transition point. This is the same as saying
that, for typical fission reactions, the K states are fully
equilibrated inside the fission transition point, while K is
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FIG. 17. Estimates of the mean fission lifetime of 210Po systems
formed by the reaction 18O + 192Os, as a function of the initial excita-
tion energy Ei . The solid curve shows statistical-model calculations
obtained using JOANNE4, as discussed in the text. The corresponding
two-dimensional Langevin calculations are shown by the solid circles.
The dash-dotted curve shows the corresponding calculations if the
system is forced to always be in the K = 0 state. The dashed curve
shows results using Eq. (30) with asp/aeq = 1.04 and without any
Kramers’ modification.

almost a constant of the motion for highly deformed systems
beyond typical fission transition points.

The dynamical evolution of the symmetry axis of a system
consisting of two nuclei connected by a neck (a dinucleus) has
been studied by Døssing and Randrup [57]. Using expressions
obtained by them, and Eq. (A.17) contained within Ref. [58],
one can show that, if a dinucleus is initially in the K = 0 state,
the variance of K a short time later, δt can be expressed as

σ 2
K ∼ J 2 T δt

2π3noC2q2

(
I|| Ieff IR

I 3
⊥

)
, (53)

where IR = Aq2/4 (assuming a mass symmetric system), q

is the distance between the centers of mass of the two nuclei
that make up the dinucleus, no is the bulk flux in standard
nuclear matter (0.263 MeV · 10−22 s · fm−4) [58], and C is
the neck radius. Based on the J, T , and δt dependence of
the variance of K given in Eq. (53), we choose to treat K as
a thermodynamically fluctuating overdamped coordinate and
express the changes in K over a small time interval δt as

�K = −γ 2
KJ 2

2

∂V (K)

∂K
δt + �KγKJ

√
T δt, (54)

where γK is a parameter that controls the coupling between K

and the thermal degrees of freedom. �K is a random number
from a normal distribution with unit variance.

In this section, we present two-dimensional (shape and
orientation) dynamical calculations where the motion of the K

degree of freedom is estimated (see Fig. 17) with γK = 0.077
(MeV 10−21 s)−1/2 for all deformations q < Ro [59]. It is
possible that this estimate for an effective γK is incorrect by
a factor of two or more because the fission model used to
extract it was very simplistic and does not include several of
the concepts discussed in the present work. For deformation
beyond q = Ro, we assume γK = 0. The compound nuclei
are assumed to be formed with a uniform K-state distribution.
The fission time scales obtained by dynamical means shown

TABLE I. Various properties of the 18O + 192Os → 210Po reac-
tion, including an estimate of the relationship between the initial
excitation energy of the compound systems, Ei , and the mean spin
of the fissioning systems, Jf . All energies and cross sections are in
units of MeV and mb, respectively. The measured cross sections are
from Ref. [61] or have been interpolated from the same reference.

Elab Ec.m. Ei σfus σER J fus
max J ER

max Jf

80 73.1 41.7 201 195 19.3 19.0 19.1
90 82.3 50.9 553 487 33.9 31.8 32.9

100 91.4 60.0 880 640 45.1 38.4 41.8
110 100.6 69.1 1140 640 53.8 40.3 47.4
120 109.7 78.3 1380 580 61.8 40.1 51.7
130 118.9 87.4 1620 525 69.7 39.7 56.1

in Fig. 17 are much longer than the K equilibrium time
inside the fission transition points for all but the result at
the highest excitation energies, and thus these fission lifetimes
are insensitive to the initial K-state distribution and our choice
for γK .

In the previous section, we ignored the fact that an increase
in the initial excitation energy of compound nuclei formed in
heavy-ion fusion reactions is associated with a corresponding
increase in the mean spin of the systems. A reasonable estimate
of the mean spin associated with a given fusion-fission reaction
can be obtained from measured fusion and evaporation cross
sections by assuming the fusion and evaporation residue spin
distribution have a triangular form with a sharp cutoff. Table I
contains various properties of the 18O + 192Os → 210Po re-
action, including an estimate of the relationship between
the initial excitation energy of the compound systems and
the mean spin of the fissioning systems. The initial excita-
tion energies are relative to the 210Po LDM J = 0 ground
state.

Figure 17 shows estimates of the mean fission lifetime of
210Po systems formed by the reaction 18O + 192Os, as a func-
tion of the initial excitation energy. The relationship between
initial excitation energy and spin is assumed to be as given in
Table I. The solid curve shows statistical-model calculations
including the K states via Eq. (51), with the fission decay width
as a function of K determined using Eq. (38) with ωtp, ωgs,
and Bf obtained using the effective potential as a function
of both T and K (as performed by JOANNE4). The assumed
model parameters are a = A/8.6 MeV−1, β = 3 × 1021 s−1,
and α = 0.016 MeV−2. These calculations are consistent with
the corresponding two-dimensional (shape and orientation)
Langevin calculations shown by the solid circles. We assume
the same temperature-dependent effective potential Veff(q, T ),
the same dissipation coefficient, and the same inertia [60] for
both our statistical and Langevin calculations. The Langevin
calculations are performed using Eqs. (12) and (54) with
γK = 0.077 (MeV 10−21 s)−1/2 for all deformations q < Ro

and γK = 0 for q > Ro (as discussed earlier). Table II contains
key properties of the assumed 210Po temperature-dependent
K = 0 effective potential-energy surfaces as a function of the
initial excitation energy. Our calculated fission lifetimes are
dependent on the properties of the potential-energy surfaces
as a function of K . However, tabulating these properties as a
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function of K would be excessive. To give the reader a feel for
the K dependence of the potential-energy surface, we show
the potential-energy surface for 210Po with T = 0 and J = 50
as a function of both deformation and K in Fig. 18. Notice that
the potential energy in the ground-state well is relatively flat
as a function of K . This produces an approximately 2J + 1
multiplication of the system’s total level density when the
orientation degree of freedom is included. The fission saddle
ridge increases in height with increasing K . This produces a
multiplication in the number of transition states that is less than
2J + 1. This reduction in the number of fission transition states
relative to the total level density depends on a combination of
the total spin and the deformation of the saddle point. It is well
known that the reduction in the number of transition states
with increasing K controls the angular distribution of fission
fragments [56]. Unfortunately, the corresponding reduction in
the number of fission transition states has not been included
in standard statistical-model calculations of the mean fission
lifetime. The dash-dotted curve in Fig. 17 shows the calculated
mean fission times for 210Po if the system is forced to always
be in the K = 0 state.

Many statistical-model codes estimate the mean fission
lifetime using the Kramers-modified Bohr-Wheeler fission
decay width. Strictly speaking, the Bohr-Wheeler fission decay
width is given by Eq. (1). However, it is often associated
with expressions similar to Eq. (30), where the total level
density and the corresponding number of transition states
have been incorrectly determined. Equation (30) does not
include the collective motion about the ground-state well when
determining the total level density; it is used in a fashion
where the fission transition point is assumed to be independent
of temperature and does not account for the level density
associated with the orientation degree of freedom. On top
of these approximations, many authors further assume that
asp/ags is a constant independent of the system spin. For
example, Dioszegi et al. [15] assume asp/aeq = 1.04 when
estimating the nuclear viscosity of hot rotating 224Th nuclei.
The dashed line in Fig. 17 shows estimates of the standard
Bohr-Wheeler fission lifetime of 210Po obtained using Eq. (30)
with asp/ags = 1.04 and without any Kramers’ modification.
These calculations are a factor of two lower compared with

FIG. 18. The potential-energy surface for 210Po with T = 0 and
J = 50 as a function of both deformation and the spin about the
fission axis K . The dashed curves show the ground-state valley and
the fission saddle ridge. The contour labels are in units of MeV.

the more complete calculations shown by the solid curve and
circles at Ei ∼ 40 MeV, and they are more than a factor of
20 lower at Ei ∼ 90 MeV.

It is well known that the standard Bohr-Wheeler fission
decay width, with asp/ags much larger than one, fails to
give a satisfactory reproduction of experimental data [14–17].
If the nuclear viscosity is treated as a free parameter as a
function of excitation energy then data can be reproduced. As
discussed in this article, the standard Bohr-Wheeler fission
decay width does not include several key physical effects
and thus nuclear viscosity estimates obtained via a Kramers-
modified standard Bohr-Wheeler model should be viewed with
caution. It is our view that, when previous authors adjusted the
nuclear viscosity to reproduce fusion-fission cross sections and
prescission emission data, they were incorrectly compensating
for inadequacies in their underlying model of fission lifetimes.
The solid line in Fig. 19 shows the nuclear viscosity as a
function of excitation energy needed to force the Kramers-
modified standard Bohr-Wheeler model with asp/ags = 1.04 to
be in agreement with the calculations shown by the solid curve
in Fig. 17. This artificial excitation-energy dependence of the
nuclear viscosity is similar to the corresponding excitation-
energy dependence deduced by Dioszegi et al. [15]. This result
suggests that the strong excitation-energy dependence of the
nuclear viscosity deduced in Ref. [15] and the rapid onset of
the dissipation at nuclear excitation energies above ∼40 MeV
inferred in Ref. [14] are artifacts generated by an incomplete
model of the fission process.

Fission cross-section and prescission neutron multiplicity
data from heavy-ion-induced fusion-fission reactions with
initial compound nuclear excitation energies less than about
50 MeV have been reproduced using a standard Bohr-Wheeler
statistical model with asp/ags ∼ 1.0 without any Kramers’
modification. However, at higher energies, the prescission
neutron multiplicity data are underestimated by these model
calculations [12]. Agreement with the high-energy data can be
obtained if a long fission delay of many 10−20 s is added to the
model. If the standard Bohr-wheeler model is used without any
Kramers’ modification then the excitation-energy dependence
of the more detailed calculations shown by the solid curve
and circles in Fig. 17 can be approximately reproduced from

FIG. 19. The solid line shows the nuclear viscosity as a function
of excitation energy needed to force the Kramers-modified standard
Bohr-Wheeler model with asp/aeq = 1.04 to be in agreement with the
calculations shown by the solid curve in Fig. 17. The symbols show
the excitation-energy dependence of the nuclear viscosity inferred by
Dioszegi et al. [15].
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Ei ∼ 50 to 90 MeV with asp/ags = 0.995 and a fission delay
time of ∼5 × 10−20 s. This result suggests that the long fission
delay times inferred by others [12] in heavy-ion fusion-fission
reactions are possibly an artifact generated by an incomplete
model of the fission process.

H. Heavy-ion fusion

To model the competition between fission and emission pro-
cesses in heavy-ion fusion reactions, it is necessary to define
both the initial excitation energy and the spin distribution of
the compound systems following fusion. The initial excitation
energy is defined by the kinetic energy of the projectile and the
fusion Q value. Information about the spin distribution can be
inferred from measured fusion cross sections. A method that
has been commonly used is to assume that the fusion cross
section is given by [7,12]

σfus = π λ-2
∞∑

J=0

(2J + 1)TJ , (55)

where λ- is the reduced wavelength of the projectile-
target system. The fusion transmission coefficients are often
parametrized as [7,12]

TJ =
[

1 + exp

(
J − Jo

δJ

)]−1

. (56)

The diffuseness parameter δJ is generally fixed to a value from
2 to 5 based on theoretical considerations [61,62], while the
spin cutoff parameter Jo is often adjusted as a function of beam
energy to reproduce measured fusion cross sections [12].

In the present article, we use a model of the fusion process
and adjust the size and the shape of the target nucleus to obtain a
fit to fusion excitation functions. The corresponding calculated
fusion spin distributions are used as input into statistical-model
calculations of the competition between fission and emission
processes. To estimate the fusion of spherical projectile and
target nuclei, we use the nucleus-nucleus potential inferred
from the elastic scattering of heavy ions by various targets [63],

V (r) = Vo

1 + exp
(

r−rp−rt

δ

) + ZpZte
2

4π εo r
+ J (J + 1)h̄

2 µr2
, (57)

where the effective radii of the projectile rp and target rt are
given by

ri = 1.233 fm × A
1/3
i − 0.978 fm

/
A

1/3
i . (58)

The potential diffuseness is δ = 0.63 fm and the depth of the
nuclear potential is

Vo = −rp rt

rp + rt

× 50 MeV. (59)

This potential can be used to estimate the fusion-barrier height
EB(J ) and the angular frequency of the inverted potential
about the barrier location ωfus(J ) as functions of J . These
values can, in turn, be used to estimate the fusion transmission
coefficients TJ . To obtain a match to the fusion excitation
functions well above the classical fusion barrier, the effective

TABLE II. Properties of the 210Po MLDM (α = 0.016 MeV−2)
temperature-dependent K = 0 effective potential-energy surfaces
using the relationship between initial excitation energy, Ei , and mean
spin of the fissioning systems, Jf , as listed in Table I. All energies
and temperatures are in units of MeV. The potential curvatures are in
units of 1021 s−1.

Ei Jf Ugs Tgs Erot Bf ωgs ωsp Tsp

41.7 19.1 40.0 1.37 1.7 7.07 1.73 0.99 1.25
50.9 32.9 46.3 1.46 4.6 5.23 1.59 0.94 1.38
60.0 41.8 52.6 1.55 7.4 3.57 1.47 0.89 1.50
69.1 47.4 59.4 1.65 9.7 2.42 1.35 0.83 1.61
78.3 51.7 67.0 1.74 11.3 1.58 1.27 0.79 1.72
87.4 56.1 73.9 1.83 13.5 0.72 1.22 0.70 1.82

radius of the target nucleus is scaled by the model parameter
rfus. We have made fits to 12 fusion excitation functions and
the corresponding model parameters are given in Table III. The
values of rfus close to 1.00 indicate that the nucleus-nucleus
potentials needed to reproduce elastic scattering data [63] are
close to those needed to reproduce fusion data.

It is well known that, if the projectile and target nuclei are
both assumed to be spherical, then fusion model calculations
significantly underestimate near- and sub-barrier fusion cross
sections. We therefore introduce an effective static deformation
of the target nuclei to reproduce the gross features of the near-
and sub-barrier fusion cross sections. To estimate the effect of
a static deformation of the target nuclei we assume

σfus ∼
∫ π/2

θ=0
w(θ ) π λ-2

∞∑
J=0

(2J + 1)TJ (θ ) dθ, (60)

where θ is the angle between the symmetry axis and a vector
from the center of mass of the target to an area element on the
target’s surface. We assume the target is prolate with a shape
defined by a single parameter β2,

rt (θ ) = C(β2)

{
1 + β2

√
5

16π
(3 cos2(θ ) − 1)

}
, (61)

TABLE III. Model parameters rfus and β2 that reproduce
fusion cross-section data for a range of reactions.

Reaction Zt rfus β2

19F + 139La [61] 57 0.99 0.41
18O + 150Sm [61] 62 0.98 0.50
19F + 159Tb [61] 65 0.98 0.32
28Si + 170Er [69] 68 0.99 0.39
28Si + 164Er [69] 68 0.99 0.41
19F + 169Tm [61] 69 0.98 0.50
19F + 181Ta [68] 73 0.99 0.45
18O + 192Os [61] 76 0.98 0.50
16O + 197Au [12] 79 1.01 0.38
16O + 208Pb [67] 82 1.01 0.20
12C, 16O + 232Th [59,70] 90 1.01 0.30
12C + 238U [71] 92 1.01 0.29
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FIG. 20. Measured fusion cross sections for some reactions
involving 16O and 19F projectiles on various non-actinide target
nuclei [12,61,67,68]. The curves show model calculations where the
radius scaling parameter rfus and shape parameter β2 are adjusted to
fit the data (see Table III).

where C(β2) is determined assuming a constant nuclear vol-
ume as a function of β2. The fusion transmission coefficients
are a function of spin and the effective interaction point on
the target nucleus. We estimate these transmission coefficients
by determining EB(J, θ ) and ωfus(J, θ ) using the potential
energy along the line defined by the center of mass of the
target and the effective fusion point on the surface of the target
nucleus. The Coulomb potential energy about the deformed
target is determined using the results presented in Ref. [64].
To determine the weights w(θ ) we invoke the known result in
the classical limit for projectiles traveling in straight line paths

σfus =
∫ π/2

θ=0
w(θ ) π r2(θ ) dθ = As

4
, (62)

where AS in the surface area of the prolate target. From
Eq. (62) we see that the weight function in Eq. (60) must
be

w(θ ) = 1

2π r2(θ )

dA

dθ
. (63)

Significant advancements were made in the understanding
of sub-barrier fusion during the 1990s [65,66]. It is now well
known that other effects can enhance sub-barrier fusion. If
the target and/or projectile are soft then sub-barrier fusion
is enhanced because the nuclei can vibrate or change shape
during the fusion process. If the nucleon transfer Q values
are small or positive then sub-barrier fusion is enhanced by
the exchange of nucleons during the fusion process. Instead
of explicitly adding these additional complex processes, we
choose to use an effective static deformation for the target
nuclei that is larger than the known static deformation.
The size of this effective static deformation is determined
by fitting experimental fusion excitation functions with the
deformed-target fusion model discussed above. Although
this prescription could be made more complete, it is an
improvement on the methods commonly used by others
when inferring the properties of the nuclear viscosity from
fusion-fission data [7].

Figure 20 shows measured fusion cross sections for some
reactions involving 16O and 19F projectiles on various target
nuclei [12,61,67,68]. The curves show model calculations
where the fusion potential radius scaling parameter rfus and the

FIG. 21. The effective fusion β2 values tabulated in Table III
versus the atomic number of the target nucleus Zt (solid circles).
The known static deformations [72] are shown by the open circles.
Inferred effective fusion β2 values are displayed by the crosses (see
text).

shape parameter β2 are adjusted to fit the fusion data. Table III
contains the parameters rfus and β2 that reproduce fusion
cross-section data for a range of reactions. The β2 values listed
in Table III are displayed by the solid circles in Fig. 21. The
effective β2 obtained from fitting the fusion cross sections are
either close to or larger than the known static deformations [72]
shown by the open circles in Fig. 21. This is expected as per
the above discussion on vibrational and transfer degrees of
freedom.

In Sec. III, experimental data for many reactions are
analyzed using the statistical-model code JOANNE4. Emphasis
is placed on several reactions for which both the fission
and evaporation residue cross sections (and thus fusion cross
sections) and prescission neutron multiplicities have been
measured. The spin distributions for these reactions are
calculated as a function of beam energy using the parameters
rfus and β2 given in Table III. For reactions involving targets
not listed in Table III the fusion cross sections and the
corresponding spin distributions are calculated as a function
of beam energy assuming rfus = 1.00 and β2 obtained from
the fusion data with neighboring targets (see the crosses in
Fig. 21).

I. Particle evaporation

Modeling the evaporation of small particles from hot
compound systems is much simpler than the modeling of
fission as described above. This is because, in the case of small
particle evaporation, the transition states can be viewed as a
small perturbation of the parent configuration. The transition
states consist of the evaporated particle plus a daughter
compound nucleus. The daughter can be assumed to be very
similar to the parent, except for the energy, nucleons, and
angular momentum removed by the evaporated particle. The
decay width for particle evaporation can be estimated using
the Bohr-Wheeler expression, Eq. (1). For evaporation from
an equilibrated system, the deformations of the parent and
daughter are generally not large and not very different from
each other. The level density associated with collective motion
and the orientation degree of freedom can be neglected because
their effect on the transition state density of the daughter is
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canceled by their corresponding effect on the total level density
of the parent. No Kramer’s reduction factor is needed for
the emission of small particles because, when small particles
reach their emission barriers, the motion of the system is well
approximated by two-body motion with the small particle
moving in a conservative potential. This is not the case in
fission, where the shape, motion, and internal energy of the
nascent fragments are not locked in at the fission transition
point.

The statistical-model code JOANNE4 uses a method to model
the evaporation of particles from hot compound nuclei that is
similar to those commonly used by other codes. Assuming
the total initial spin of the system Ji is much larger than the
intrinsic spin of the evaporated particle s and that the emission
is from a nearly spherical system, JOANNE4 assumes that the
decay width for the emission of a particle with a center-of-mass
kinetic energy range from εp − 1/2 MeV to εp + 1/2 MeV,
with orbital angular momentum L, from a parent system with
excitation energy Ei , leaving a daughter system with final spin
Jf , can be approximated by

�x(Ei, Ji, εp, L, Jf ) ∼ 2s + 1

2π

×
∫ εp+1/2
εp−1/2 ρ

(
E − Bx − ε − ED

rot(Jf )
)
TL(εp) dε

ρ
(
E − EP

rot(Ji)
) . (64)

The particle binding energies Bx are determined using the
experimental mass of the evaporated particle and the liquid-
drop model (LDM) masses [50,51] of the parent and daughter
systems. This is done because JOANNE4 contains no shell
corrections and thus the excitation energies of the hot parent
and daughter systems are relative to their LDM ground
states. The rotational energies of the parent and daughter
systems Erot(J ) are determined using the FRLDM ground-
state energies [31] obtained via the subroutine BARFIT written
by Sierk. As done in other codes, we use neutron and proton
transmission coefficients TL(εp), calculated using the optical-
model potentials of Perey and Perey [73], and α-particle
transmission coefficients determined using the potential of
Huizenga and Igo [74]. The level density as a function
of thermal excitation energy is assumed to be as given in
Eq. (42) with n = 2. The total decay width for the evaporation
of a given particle type is determined within JOANNE4 using

�x(Ei, Ji) ∼
∞∑
i=0

∞∑
L=0

Ji+L∑
Jf =|Ji−L|

×�x(Ei, Ji, εp = i + 1/2 MeV, L, Jf ). (65)

Hot compound nuclei are not spherical, but rather ex-
perience an ensemble of shapes about their ground-state
positions. Fortunately, the dominant cooling process in heavy-
ion fusion-fission reactions is the evaporation of neutrons
whose emission properties are relatively insensitive to the
nuclear shape. Due to Coulomb forces, the properties of
the charged-particle emission are sensitive to the assumed
nuclear shape. However, charged-particle emission is, in
general, more than two orders of magnitude weaker than
the neutron emission for all but very neutron-deficient sys-
tems, and inadequacies in the charged-particle emission do

not significantly affect calculated fission cross sections and
prescission neutron multiplicities. In the analysis presented
in the present article, only fission and evaporation-residue
cross-section and prescission neutron multiplicity data are
used. An analysis of the available prescission charged-particle
data from heavy-ion fusion-fission reactions [23,75,76] would
require a more detailed model incorporating the effects of
nuclear shape on the charged-particle emission process.

J. γ -ray emission

If the thermal excitation energy of a compound system
falls below the neutron binding energy, and if the fission
barrier is lower than the neutron binding energy, then the
fission probability at this low excitation is governed by the
competition between γ -ray emission and fission. For heavy-
ion fusion-fission reactions involving compound systems with
A < 220, most fissions occur at excitation energies well
in excess of the neutron binding energy, and thus model
calculations of fission and evaporation residue cross sections
and prescission neutron emission are very insensitive to the
assumed properties for the γ -ray emission. By including a
simple estimate of the γ -ray emission, one can test that model
results of interest are not sensitive to one’s assumed properties
for the γ -ray emission. Of course, if the γ -ray emission is,
itself, a topic of interest, then a more complete model would
be required.

The γ -ray decay width is [15]

�γ (Ei, Ji) = 1

2π ρi(Ei, Ji)
×

∫ ∞

εγ =0

∑
L

fL(εγ ) ε2L+1
γ

×
Ji+L∑

Jf =|Ji−L|
ρf (Ef , Jf ) dεγ . (66)

The statistical-model code JOANNE4 was written to calculate
heavy-ion fusion-fission cross sections and to calculate the
corresponding properties of the prescission particle emission.
JOANNE4 is not intended for detailed modeling of high-energy
γ -rays from heavy-ion reactions. For simplicity, JOANNE4

assumes only L = 1 photons and that fL(εγ ) is independent
of the photon energy and proportional to A2/3 [77], and it
estimates the γ -ray decay widths using

�γ (Ei,Ji) = 1

2π ρ(Ei − Erot(Ji))

∞∑
i=0

3 Cγ A2/3(i + 1/2 MeV)3

×
∫ i+1

ε=i

ρ(Ei − Erot(Ji) − ε)dε. (67)

A value of Cγ = 6.4 × 10−9 MeV−3 gives the best fit to
measured decay widths just above the neutron binding energy
of 40 nuclei, spanning the compound nuclear mass range
from A ∼ 150 to 250 [77]. Typical differences between the
modeled and experimental decay widths are less than a factor
of two [43]. The simplicity of the γ -ray emission model
contained within JOANNE4 is justified because an increase or
decrease of Cγ by a factor of ten does not significantly change
the JOANNE4 model calculations presented in Sec. III.
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III. MODELING FUSION-FISSION REACTIONS
WITH JOANNE4

The statistical-model code JOANNE4 [27] was written to
model fission and residue cross sections and prescission
particle emission from heavy-ion fusion-fission reactions.
The methods used to calculate the fusion spin distribution
and the widths of the decay processes are described in Sec. II.
The code inputs are the number of cascades in the simulation;
the atomic and mass numbers of the projectile and target; the
laboratory beam energy of the projectile; the inverse level-
density parameter for spherical systems k = A/a; the scaling
parameter rfus and the shape of the target β2 used to calculate
the fusion cross section and the fusion spin distribution;
the parameters α and rS , which control the temperature and
deformation dependence of the effective potential energy of
the compound nuclei; and a logical switch that controls the
assumed fission decay width for systems with no fission barrier
(discussed later in this section). The parameter rS is a scaling
of the MLDM default radii used to calculate the surface and
Coulomb energies and is described in greater detail later in
this section.

JOANNE4 is a Monte-Carlo code. The initial total excitation
energy is defined by the kinetic energy in the center of
mass and the fusion Q value. For each cascade, an initial
compound nucleus spin is randomly sampled from the fusion
spin distribution, and the fission decay width and the partial
decay widths for all the possible ways neutrons, protons,
α particles, and γ rays can be emitted are calculated. The
first-chance fission probability is the ratio of the fission decay
width to the total decay width. The energy, angular momentum,
and nucleons associated with a randomly chosen emission
mode are then removed from the compound nucleus. All decay
modes are then recalculated for the new daughter compound
nucleus, and the fission probability and tallies associated with
prescission emission are updated. The cascade is allowed to
continue until the fission decay width drops below 10−6 of the
total decay width and the system is then assumed to form an
evaporation residue. By simulating a large number of randomly
chosen cascades, the fission and residue cross sections and the
properties of the emission preceding fission are determined.

In heavy-ion fusion-fission reactions involving fissile nuclei
with masses ACN > 220, the residue probability becomes very
small, difficult to measure, and influenced by decay processes
at low excitation energy at the end of emission cascades where
shell corrections, γ -ray emission strengths, and other quantum
effects are of importance. To avoid complexities associated
with these effects, we here restrict the use of JOANNE4

to compound nuclei with ACN < 220, where the decision
to fission is being predominately made at high excitation
energies. For light compound systems (ACN < 175), fission is
increasingly restricted to high spins in the tail of the fusion spin
distribution. This makes calculated fission cross sections very
sensitive to the assumed spin distributions, and we therefore
restrict the analysis presented here to ACN > 175.

A. Analysis of cross-section and neutron-emission data

When reliable measured fusion cross sections exist, the
JOANNE4 inputs rfus and β2 are adjusted to reproduce the fusion

FIG. 22. JOANNE4 model predictions (solid curves) for the pro-
jectile energy dependence of fission and residue cross sections and
prescission neutron multiplicities for five reactions. The experimental
data are from Refs. [12,61,78–81]. The fission and residue cross
sections are shown by solid and open symbols, respectively.

excitation function as described in Sec. II H. This procedure
assumes complete fusion. We are, therefore, restricted to
projectile energies less than ∼8 MeV per nucleon. JOANNE4

assumes fully equilibrated systems and should only be used
to model prescission emission data from reactions where
emission is predominantly from systems with a fission barrier.
Projectiles with masses larger than Ap ∼ 26 bring in enough
angular momentum that the contribution from fast-fission
reactions becomes significant before the excitation energy
can get high. We therefore restrict ourselves to projectile
masses Ap � 26. Given these restrictions, we focus on an
impressive data set measured by the Australian National
University (ANU) nuclear reactions group in the 1980s where
fission/residue/fusion cross-section and prescission neutron-
emission data were obtained as a function of oxygen and
fluorine projectile energy for a wide range of compound
nuclear masses. The ACN = 175–220 data from this systematic
experimental investigation [12,61,78,79] are displayed in
Fig. 22, along with some additional data for the same reactions
obtained by others [80,81].

With earlier statistical-model codes, many authors have
used a scaling of the FRLDM barrier heights fB and the
ratio of the level density for fission and neutron emission,
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af /an, as adjustable parameters [79]. The adjustment of these
parameters generally leads to a reasonable reproduction of
fission and residue cross sections. Fission probabilities define
a range of correlated values for the parameters fB and af /an.
Given a reasonable model for fission decay widths and a choice
for fB(∼1.0), one can generally find a value of af /an to
reproduce cross-section data. If fB is increased, then fission
slows and the fission cross sections decrease. This can be
compensated for by increasing af /an, which speeds fission
up. In this way, a variety of models with different dissipation
strengths can be made to reproduce cross-section data. If only
cross-section data are available for a given reaction, then
the properties of the nuclear viscosity can only be obtained
if the T = 0 potential-energy surfaces and the deformation
dependence of the level-density parameters are known to good
accuracy. This is not the case, and thus it is difficult to test a
specific model type with only cross-section data.

To test a given class of fission model, it is important
to measure emission processes in coincidence with fission.
This is because emission probabilities are sensitive to the
excitation-energy dependence of the fission width controlled
by af /an. If af /an is increased, then fB can be increased to
keep cross sections the same. Even though such an interplay
between af /an and fB keeps the fission probability the same,
the excitation-energy dependence of the fission decay width
is altered. If af /an andfB are both increased in a fashion
where the fission probability remains fixed, fission becomes
more likely at higher excitation energy and less likely at
lower excitation energy. This increases the probability of 1st
and 2nd chance fission and causes the amount of emission
in coincidence with fission to decrease. Therefore, if cross-
section and emission data are available then, for a given
specific model of fission decay widths, the parameters fB and
af /an can be constrained and the corresponding beam energy
dependence of the data is a test of the model. This has been
known since the 1980s [79] and is why experimental studies in
the 1980s and 1990s focused on emission in coincidence with
fission for reactions where the cross sections were known. On
the basis of this type of analysis, it has been determined that
in heavy-ion reactions, the standard Bohr-Wheeler model of
fission is inadequate.

We have shown in Sec. II that the standard methods used to
implement the Bohr-Wheeler statistical model are inadequate
in heavy-ion fusion-fission reactions with compound nuclear
temperatures larger than ∼1 MeV for reasons other then a
lack of understanding of the nuclear dissipation processes.
Fission in heavy-ion reactions cannot be accurately modeled
as a function of the excitation energy, using the J dependence
of the T = 0 fission barriers, and a fixed value of af /an.
Detailed modeling requires knowledge of the shape of the
potential-energy surface about the ground states and the fission
saddle points, the heights of the fission barriers, and the shape
dependence of the level-density parameter. The influence of a
shape dependence of the level density can be modeled via a
(1 − αT 2) dependence of the surface energy. The parameter
α in JOANNE4, therefore, performs a role similar to af /an

in earlier models. However, using an effective potential with
a (1 − αT 2) dependence of the surface energy is a more
complete approach. Within JOANNE4, for each Z,A, J,K ,

and T , the effective fission saddle point (transition point) is
found by looking for the unstable equilibrium point in the
effective potential energy. This means that, for a given system,
the location of the fission transition point is being determined
as a function of J,K , and T , and in the language of earlier
statistical-model codes, the deformation dependence and thus
the spin dependence of af /an are being taken into account.

In other statistical-model codes, the heights of fission
barriers are often uniformly scaled by a parameter fB . In
JOANNE4, we instead scale the MLDM radii from the default
values used to calculate the surface and Coulomb energies
with the parameter rS . The surface energy in Eq. (40) is
scaled by the square of rS , while the Coulomb energy is
scaled by the inverse of rS . A value of rS = 1 is the standard
MLDM [49] with fission-barrier heights in agreement with
the FRLDM [31]. Raising rS above one increases the surface
energy and decreases the Coulomb energy. This stabilizes the
systems and causes the fission barriers to increase. Figure 23
shows 210Po, T = 0 and K = 0 MLDM barrier heights as a
function of total spin J , with values of rS = 0.995, 1.000,
and 1.005. Notice that the barrier heights are not changed by
a constant scaling factor. The advantage of using rS instead
of a simple constant barrier height scaling is that the barrier
locations and heights and the angular frequencies at the ground
states and the fission transition points are all being determined
in a self-consistent manner as a function of J,K , and T . The
scaling parameter rS should not be confused with the parameter
rfus used to adjust the effective range of the target-projectile
nucleus-nucleus interaction to obtain a match to measured
fusion cross-section data (see Sec. II H).

All JOANNE4 calculations presented here assume k =
A/a = 8.6 MeV [32] and β = 3 × 1021 s−1 [30] as discussed
in Sec. II. The only parameters available to fit fission and
residue cross-section and neutron-emission data are α and rS .
For each reaction with data displayed in Fig. 22, the parameters
α and rS are adjusted to reproduce a single fission cross section
and a single prescission neutron multiplicity at the same
projectile kinetic energy, corresponding to the second low-
est prescission neutron multiplicity measurement. Figure 24
shows how the Elab ∼ 103 MeV 18O + 192Os fission cross
section [61] and the prescission neutron multiplicity [12] con-
strain the adjustable parameters to α = 0.017 ± 0.006 MeV−2

and rS = 1.002 ± 0.002. The fission cross section at Elab ∼
103 MeV constrains α and rS to lie in the region between the
solid curves shown in Figure 24. As rS is increased the fission
barriers increase and thus the fission cross sections decrease.
This can be compensated for by increasing α, which decreases
the barriers at high excitation energy. The prescission neutron
multiplicity depends more strongly on α than on rS . As α is
increased, the effective fission barriers decrease more rapidly
with increasing excitation energy. This enhances the earlier
fission at the higher excitation energies and thus suppresses
the emission in coincidence with fission. The 18O + 192Os
prescission neutron multiplicity at Elab ∼ 103 MeV constrains
α and rS to lie in the region between the dashed curves shown
in Fig. 24.

Figure 25 shows how the neutron multiplicity at the
second lowest beam energy and the corresponding fission
cross sections constrain the parameters α and rS for each
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FIG. 23. 210Po, T = 0 and K = 0 MLDM barrier heights as a
function of total spin J , with values of the MLDM radius scaling
rs = 0.995, 1.000, and 1.005.

of the other four reactions displayed in Fig. 22. No single
combination of α and rS will reproduce the data for all five
reactions. The parameters α and rS are displayed as a function
of initial compound nucleus mass in Fig. 26. The inferred
values of α are in the range of theoretical estimates [32–38] but
appear to have a parabolic dependence on ACN. The rS values
scatter about 1.000, which suggests the T = 0 potential-energy
surfaces are close to those predicted by the FRLDM [31]. The
solid curves in Fig. 22 show the JOANNE4 model predictions
for the projectile energy dependence of fission and residue
cross sections and prescission neutron multiplicities, using
the α and rS values represented by the symbols in Fig. 26.
These predictions are consistent with the fission and residue
cross-section and prescission neutron multiplicity data. It
is important to remember that α and rS were adjusted to
reproduce data at a single beam energy for each reaction and
no adjustment was made to fit the beam energy dependencies
of the data shown in Fig. 22. To reproduce the data set
displayed in Fig. 22, the model calculations of others would
require either large fission dynamical delays [12] or strong
temperature dependencies of the nuclear viscosity as shown in
Fig. 19. It must be emphasized that the statistical-model results
presented here should not be used to support the assumed
value of β = 3 × 1021 s−1 at fission transition points. Equally
good reproductions of the data can be obtained by changing α

by ∼0.0025 MeV−2 for each change in β of 1021 s−1. For
example, if β is reduced to 1021 s−1, then the required α

would scatter about ∼0.011 MeV−2 instead of the value of

FIG. 24. The Elab ∼ 103 MeV 18O + 192Os fission cross section
[61] and neutron multiplicity [12] constrain the parameters α and rS
to the regions between the solid and dashed curves, respectively.

FIG. 25. The neutron multiplicities at the second lowest measured
beam energy and the corresponding fission cross sections [12,61]
constrain the parameters α and rS to the regions between the dashed
and solid curves, respectively.

∼0.016 MeV−2 as shown in Fig. 26. The required rS are very
insensitive to changes in the assumed value of β. The main
purpose of the present work is not to justify a specific choice
in β but to show that the data set considered here is consistent
with a temperature-independent dissipation coefficient.

In the present study, JOANNE4 is used in a mode where
no dynamical effects associated with transient delays or the
saddle-to-scission transit times are included. We are thus
assuming that most of the fission is proceeding through
systems with a finite barrier that is high enough that the
transient delay and the saddle-to-scission descent can be
ignored. This assumption will breakdown at high beam
energies where the combined effect of high angular momentum
and high temperature will lead to systems that are unstable
with respect to fission, i.e., systems where no fission barrier
exists. To determine when this transition to fast fission occurs,
JOANNE4 allows systems with no fission barriers to be treated
in two very different ways. In one of these methods Eqs. (51),
(52), and (38) are used even when the K = 0 barrier vanishes.
For K values for which no barrier exists, the barrier heights
are set to zero, and the angular frequencies at the equilibrium
positions are set to ωgs = ωsp = 1021 s−1. The probability of
being in the low K states with no fission barrier is estimated
by extrapolating from the higher K states for which barriers
exist. In the other approach, when the K = 0 barrier vanishes,

FIG. 26. Fit parameters α and rS for the five reactions displayed
in Fig. 22. The dashed lines show the values corresponding to the
model calculations of Refs. [31,32].
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it is assumed that fission is instantaneous and no prescission
emission is allowed. JOANNE4 model calculations are assumed
valid if calculations using these two very different and artificial
estimates for the time scale for fast fission yield results within
a few percent of each other.

Fission and residue cross sections are insensitive to the
transition to fast fission because, for those partial waves where
the barrier vanishes, the fission probability is very high and
thus unaffected by the time scale assigned to the fast-fission
reactions. However, the emission in coincidence with fission
at high beam energies is affected by the fast-fission time scale.
For the reactions shown in Fig. 22, the calculated neutron
emissions determined using the two different fast-fission
approaches discussed above start to deviate significantly
above beam energies from ∼120 to 125 MeV. The neutron
multiplicity calculations shown in Fig. 22 are terminated when
the effect of fast fission becomes significant. The calculation
of the prescission neutron emission above these beam energies
would require a model that couples statistical emission with a
dynamical treatment of the nuclear fluid motion from fusion
through to scission. This is beyond the scope of the present
study.

B. Analysis of fission cross-section data

The measurement of fission cross sections is a relatively
easy task compared to the measurement of evaporation-residue
cross-section and prescission emission data. Therefore, fission
cross-section data exist for dozens of reactions for which
there are presently no residue cross-section or prescission
emission data. The statistical-model analysis of only fission
cross-section data from a single reaction should carry less
weight than the analysis of a fission/residue/fusion cross-
section and prescission emission data set from a similar
reaction, because when using only fission cross-section data
additional assumptions are required to estimate the fusion spin
distributions and to constrain the model parameters α and rS .
Despite the added uncertainty associated with using reactions
with no fusion cross-section or prescission emission data,
the large volume of fission data warrants a statistical-model
analysis. For reactions involving targets not listed in Table III,
we estimate the fusion cross sections and spin distributions
assuming rfus = 1.00 and use a β2 for the target nucleus
obtained from fusion data with a neighboring target (see
Fig. 21). Given the uncertainties associated with this proce-
dure, we restrict the analysis of fission cross-section data to
projectile energies above the Coulomb barrier. In this section,
we assume the MLDM radius scaling rS is exactly one and
adjust α to obtain a match to the fission excitation function
below projectile energies of 8 MeV per nucleon.

The symbols in Fig. 27 show measured fission cross
sections for 23 fusion-fission reactions [61,68,81–86] with
compound nuclear atomic numbers spanning the range ZCN =
74 to 84. Plotting the fission cross sections versus the kinetic
energy in the center-of-mass relative to the corresponding
Coulomb barrier (estimated in units of MeV by the prod-
uct of the projectile and target atomic numbers divided
by the sum of corresponding mass numbers raised to the

FIG. 27. The symbols show measured fission cross sections for 23
fusion-fission reactions [61,68,81–86] with compound nuclear atomic
numbers spanning the range from ZCN = 74 to 84. The curves are
JOANNE4 model calculations described in the text.

power of 1/3) allows reactions with different projectiles to
be displayed together without overlapping data sets. The
measured fission excitation functions are reproduced by the
JOANNE4 model calculations shown by the solid curves.
The corresponding values for α are displayed in Fig. 28.
The inferred surface-energy temperature coefficients α scatter
about a value of ∼0.011 MeV−2. There appears to be a
maximum of α ∼ 0.017 MeV−2 at ZCN = 82 and a minimum
of α ∼ 0.006 MeV−2 at ZCN = 75. The possibility that the
peak at ZCN = 82 is associated with the corresponding proton
shell should be investigated further. However, it is possible
that the dependence of α on ZCN displayed in Fig. 28 could
disappear if accurate fusion cross sections were available for all
the reactions displayed in Fig. 27 and if a more detailed fusion
model were used. For example, three of the highest α values
displayed in Fig. 28 are for reactions involving 19F projectiles,
which contain a weakly bound proton. This suggests that it is
possible that the procedure used here to estimate fusion spin
distributions is failing in 19F-induced reactions in a way that is
being artificially compensated for by higher values of α. The
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FIG. 28. The values for α corresponding to the JOANNE4 model
calculations displayed by the solid curves in Fig. 27. The symbols are
the same as those for the corresponding reactions shown in Fig. 27.
Each projectile atomic number is represented by a different symbol:
crosses (Be), solid diamonds (B), solid squares (C), solid triangles
(N), open squares (O), open diamonds (F), open triangle (Ne), and
sidewards bar (Mg).

reader should also remember, as discussed in Sec. III A, that
the inferred α values are sensitive to the assumed value of the
dissipation coefficient β.

The dashed curve in Fig. 27 shows a JOANNE4 model
calculation for the 16O + 165Ho reactions with an unchanged
value of α = 0.006 MeV−2, and rfus changed from 1.00
to 0.98 and β2 from 0.45 to 0.39. Agreement with the
data can be reestablished by changing α to 0.011 MeV−2.
This highlights the sensitivity to the assumed fusion spin
distributions. Future work is needed to accurately determine
fusion spin distributions in heavy-ion reactions and how
these distributions vary based on the properties of the projectile
and target nuclei. Despite uncertainties associated with the
fusion spin distributions, we conclude that fusion-fission
excitation functions for a large number of reactions spanning
the compound nucleus mass ranging from 175 to 215 amu
are consistent with a Kramers-modified statistical model. If
the nuclear dissipation is assumed to be β = 3 × 1021 s−1

[30] (independent of temperature) and the T = 0 potential-
energy surfaces are estimated using the MLDM [49], then
the temperature dependence of the effective potential required
to reproduce fission excitation functions is in the range of
theoretical estimates [32–38].

IV. SUMMARY AND CONCLUSIONS

The main purpose of the present study is to illustrate
that the standard method for implementing the Bohr-Wheeler
statistical model of fission lifetimes is inadequate for heavy-ion
reactions, for reasons other than a lack of understanding of
the nature of nuclear dissipation. Three pieces of physics are
commonly not included in Bohr-Wheeler model calculations.
These are the determination of the total level density of the
compound system, taking into account the collective motion
of the system about the ground-state position; the calculation
of the location and height of fission saddle points as a function
of excitation energy using the derivative of the free energy;
and the incorporation of the orientation (K state) degree of

freedom. Each of these three pieces of physics slows calculated
fusion-fission lifetimes at high excitation energy, relative to
methods commonly used by others. The inadequacies in
commonly used fission models can be compensated for by
using an artificial rapid onset of the nuclear dissipation above
an excitation energy of ∼40 MeV. The strong increase in the
nuclear viscosity above a temperature of ∼1 MeV deduced by
others [14,15] is an artifact generated by an inadequate model
of the fission process.

Other authors have assumed that their ability to model
nuclear fission is complete enough that the properties of
a temperature-dependent nuclear viscosity can be extracted
from fission cross-section and prescission emission data.
Calculated fission lifetimes are very sensitive to the assumed
deformation dependence of the potential energy and the
Fermi-gas level-density parameter. We believe that this strong
sensitivity makes it difficult to extract the properties of the
nuclear viscosity from fission cross-section and prescission
emission data, even when an adequate model of fission is
used. Instead of trying to extract the nuclear viscosity from
fission cross-section and prescission emission data, we instead
assume that the nuclear dissipation near fission transition
points has been previously constrained to be β ∼ 3 × 1021 s−1

by the surface-plus-window dissipation model [30] using
the mean kinetic energy of fission fragments and the width
of giant isoscalar resonances. The MLDM potential-energy
surfaces and the deformation dependence of the level-density
parameter are adjusted to reproduce fission cross-section and
prescission neutron-emission data. The effects associated with
a deformation dependence of the level-density parameter are
modeled by using a (1 − αT 2) dependence of the surface
energy. A satisfactory reproduction of fusion-fission cross-
section and prescission neutron-emission data is obtained
over a wide range of excitation energies and compound
nucleus masses. These data suggest that T = 0 potential-
energy surfaces are close to those obtained by the FRLDM
[31] and that the surface-energy temperature coefficient is
α ∼ 0.016 MeV−2, close to the theoretical estimate of Töke
and Swiatecki [32]. Our estimate of α ∼ 0.016 MeV−2 may
be biased on the high side for several reasons, including the
small number of reactions involved in the analysis and/or
uncertainties associated with fusion spin distributions for
reactions involving 19F projectiles. The inferred α is mainly
constrained by the prescission neutron-emission data because
of its sensitivity to the excitation-energy dependence of
the fission decay widths. This may be altered if a temperature
dependence of the level-density parameter is added to the
model [34,81]. The analysis of a large volume of fission
cross-section data for a wide range of projectiles (assuming
rS = 1.000) suggests a lower value of α ∼ 0.011 MeV−2,
close to the theoretical estimate of Ignatyuk et al. [36] and
Reisdorf [37]. We find that the data provide no evidence to
indicate a need for a temperature dependence of the nuclear
dissipation.
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