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Ab initio many-body calculations of nucleon-nucleus scattering
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We develop a new ab initio many-body approach capable of describing simultaneously both bound and
scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions,
and a microscopic and consistent description of the nucleon clusters. This approach preserves translational
symmetry and the Pauli principle. We outline technical details and present phase-shift results for neutron scattering
on 3H, 4He, and 10Be and proton scattering on 3,4He, using realistic nucleon-nucleon (NN ) potentials. Our A = 4
scattering results are compared to earlier ab initio calculations. We find that the CD-Bonn NN potential in
particular provides an excellent description of nucleon-4He S-wave phase shifts. In contrast, the experimental
nucleon-4He P -wave phase shifts are not well reproduced by any NN potential we use. We demonstrate that a
proper treatment of the coupling to the n-10Be continuum is successful in explaining the parity-inverted ground
state in 11Be.
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I. INTRODUCTION

Nuclei are open quantum systems with bound states,
unbound resonances, and scattering states. A realistic ab
initio description of light nuclei with predictive power must
have the capability to describe all these classes of states
within a unified framework. Over the past decade, significant
progress has been made in our understanding of the properties
of the bound states of light nuclei starting from realistic
nucleon-nucleon (NN ) interactions (see, e.g., Ref. [1] and
references therein) and more recently also from NN plus
three-nucleon (NNN ) interactions [2–4]. The solution of the
nuclear many-body problem is even more complex when
scattering or nuclear reactions are considered. For A = 3 and
4 nucleon systems, the Faddeev [5] and Faddeev-Yakubovsky
[6] as well as the hyperspherical harmonics (HH) [7] or
the Alt, Grassberger, and Sandhas (AGS) [8] methods are
applicable and successful. However, ab initio calculations
for scattering processes involving more than four nucleons
overall are challenging and still a rare exception [9]. The
development of an ab initio theory of low-energy nuclear
reactions on light nuclei is key to further refining our under-
standing of the fundamental nuclear interactions among the
constituent nucleons and providing, at the same time, accurate
predictions of crucial reaction rates for nuclear astrophysics.

Recently, we combined the resonating-group method
(RGM) [10–15] and the ab initio no-core shell model
(NCSM) [16] into a new many-body approach [17] (ab initio
NCSM/RGM) capable of treating bound and scattering states
of light nuclei in a unified formalism, starting from the funda-
mental internucleon interactions. The RGM is a microscopic
cluster technique based on the use of A-nucleon Hamiltonians,
with fully antisymmetric many-body wave functions built by
assuming that the nucleons are grouped into clusters. Although
most of its applications are based on the use of binary-cluster
wave functions, the RGM can be formulated for three (and,
in principle, even more) clusters in relative motion [11]. The
NCSM is an ab initio approach to the microscopic calculation
of ground and low-lying excited states of light nuclei with
realistic two- and, in general, three-nucleon forces. The use

of the harmonic oscillator (HO) basis in the NCSM results in
an incorrect description of the wave-function asymptotic and
a lack of coupling to the continuum. The first applications of
the NCSM to the calculation of nuclear reactions required a
phenomenological correction of the asymptotic behavior of
the overlap functions [18]. In contrast, the present approach
is fully ab initio. We complement the ability of the RGM to
deal with scattering and reactions with the use of realistic
interactions and a consistent ab initio description of the
nucleon clusters, achieved via the NCSM. Presently, the
NCSM/RGM approach has been formulated for processes
involving binary-cluster systems only, and thus it is appropriate
for the description of low-energy reactions below three-body
breakup threshold. However, extensions of the approach to
include three-body cluster channels are feasible, also in view
of recent developments on the treatment of both three-body
bound and continuum states (see, e.g., Refs. [19–23]). Within
the ab initio NCSM/RGM approach we studied the n-3H,
n-4He, n-10Be, and p-3,4He scattering processes and addressed
the parity inversion of the 11Be ground state (g.s.), using
realistic NN potentials [17]. In this paper, we give the technical
details of these calculations, discuss results published in
Ref. [17] more extensively, and present additional results.

In Sec. II, we present technical details of our approach.
We give two independent derivations of the NCSM/RGM
kernels, discuss orthogonalization of the RGM equations,
and give illustrative examples of the kernels. Results of ab
initio NCSM/RGM applications to A = 4, A = 5, and A = 11
systems are given in Sec. III. Conclusions are drawn in Sec. IV
and some of the most complex derivations are summarized in
Appendix A.

II. FORMALISM

The wave function for a scattering process involving pairs
of nuclei can be cast in the form

|�Jπ T 〉 =
∑

ν

∫
dr r2 gJπ T

ν (r)

r
Âν

∣∣�Jπ T
νr

〉
, (1)
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through an expansion over binary-cluster channel states of total
angular momentum J , parity π , and isospin T ,∣∣�Jπ T

νr

〉 = [(∣∣A−a α1I
π1

1 T1
〉∣∣a α2I

π2
2 T2

〉)(sT )
Y�(r̂A−a,a)

](Jπ T )

× δ(r − rA−a,a)

rrA−a,a

. (2)

The internal wave functions of the colliding nuclei (which we
will often refer to as clusters), contain A − a and a nucleons
(a < A), respectively, are antisymmetric under exchange of
internal nucleons, and depend on translationally invariant
internal coordinates. They are eigenstates of H(A−a) and
H(a), the (A − a)- and a-nucleon intrinsic Hamiltonians,
respectively, with angular momentum quantum numbers I1

and I2 coupled together to form channel spin s. For their parity,
isospin, and additional quantum numbers we use, respectively,
the notations πi, Ti , and αi , with i = 1, 2. The channel states
[Eq. (2)] have relative angular momentum �. If we denote the
A single-particle coordinates with {�ri, i = 1, 2, . . . , A}, the
clusters’ centers of mass are separated by the relative vector

�rA−a,a = rA−a,a r̂A−a,a = 1

A − a

A−a∑
i=1

�ri − 1

a

A∑
j=A−a+1

�rj . (3)

The symbols Y� and δ denote a spherical harmonic and a
Dirac delta, respectively. The intercluster antisymmetrizer
for the (A − a, a) partition in Eq. (1) can be schematically
written as Âν = [(A − a)!a!/A!]1/2∑

P (−)pP , where P are
permutations among nucleons pertaining to different clusters,
and p is the number of interchanges characterizing them. The
coefficients of the expansion with respect to the channel index
ν = {A−a α1I

π1
1 T1; a α2I

π2
2 T2; s�} are the relative-motion

wave functions gJπ T
ν (r), which represent the unknowns of the

problem. They can be determined by solving the many-body
Schrödinger equation in the Hilbert space spanned by the basis
states Âν |�Jπ T

νr 〉:
∑

ν

∫
dr r2 [HJπ T

ν ′ν (r ′, r) − E N Jπ T
ν ′ν (r ′, r)

] gJπ T
ν (r)

r
= 0,

(4)

where

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′
∣∣ Âν ′H Âν

∣∣�Jπ T
νr

〉
, (5)

N Jπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′
∣∣ Âν ′Âν

∣∣�Jπ T
νr

〉
(6)

are called the Hamiltonian and norm kernels, respectively.
Here E is the total energy in the center-of-mass (c.m.) frame,
and H is the intrinsic A-nucleon microscopic Hamiltonian, for
which it is useful to use the decomposition

H = Trel(r) + Vrel + V̄C(r) + H(A−a) + H(a). (7)

Further, Trel(r) is the relative kinetic energy and Vrel is the sum
of all interactions between nucleons belonging to different
clusters after subtraction of the average Coulomb interaction
between them, explicitly singled out in the term V̄C(r) =
Z1νZ2νe

2/r , where Z1ν and Z2ν are the charge numbers of

the clusters in channel ν:

Vrel =
A−a∑
i=1

A∑
j=A−a+1

Vij + V3N
(A−a,a) − V̄C(r)

=
A−a∑
i=1

A∑
j=A−a+1

[
VN (�ri − �rj , σi, σj , τi, τj )

+ e2
(
1 + τ z

i

)(
1 + τ z

j

)
4|�ri − �rj | − 1

(A − a)a
V̄C(r)

]

+V3N
(A−a,a). (8)

In this expression we explicitly distinguished among
nucleon-nucleon, nuclear (VN ) plus Coulomb (point and
average), and three-nucleon (V3N

(A−a,a)) components of the
intercluster interaction. The contribution from the nuclear
interaction vanishes exponentially for increasing distances
between particles. Because of the subtraction of VC(r), the
overall Coulomb contribution presents a r−2 behavior, as the
distance r between the two clusters increases. Therefore, Vrel

is localized also in the presence of the Coulomb force. In
the present paper we will consider only the NN part of the
intercluster interaction and disregard, for the time being, the
term V3N

(A−a,a). The inclusion of the three-nucleon force into
the formalism, although more involved, is straightforward and
will be the matter of future investigations. Finally, although in
Eq. (8) the strong part of the NN force (VN ) is represented
as a local potential, this separation of the Hamiltonian as well
as the rest of the formalism presented throughout this paper is
valid also in the presence of a nonlocal potential.

A. Cluster eigenstate calculation

We obtain the cluster eigenstates entering Eq. (2) by
diagonalizing H(A−a) and H(a) in the model space spanned
by the NCSM basis. This is a complete HO basis, the size of
which is defined by the maximum number, Nmax, of HO quanta
above the lowest configuration shared by the nucleons. (The
definition of the model-space size coincides for eigenstates
of the same parity but differs by one unit for eigenstates of
opposite parity; the same HO frequency 
 is used for both
clusters.) If the NN (or NNN ) potential used in the calculation
generates strong short-range correlations, which is typical
for standard accurate NN potentials, the H(A−a) and H(a)

Hamiltonians are treated as NCSM effective Hamiltonians,
tailored to the Nmax truncation, obtained by employing the
usual NCSM effective interaction techniques [4,16]. The
effective interactions are derived from the underlying NN and,
in general, three-nucleon potential models (not included in the
present investigations) through a unitary transformation in a
way that guarantees convergence to the exact solution as the
model-space size increases. However, if low-momentum NN

potentials, which have high-momentum components already
transformed away by unitary transformations, are employed in
the calculations, the H(A−a) and H(a) Hamiltonians are taken
un-renormalized or “bare.”
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The unique properties of the HO basis allow us to make use
of Jacobi-coordinate wave functions [24,25] for both nuclei,
or only for the lightest of the pair (typically a � 4) referenced
further on as projectile, and still preserve the translational
invariance of the problem. In the second case we expand
the eigenstates of the heavier cluster (target) on a Slater-
determinant (SD) basis and remove completely the spurious
c.m. components in a similar fashion as in Refs. [18,26,27].
We exploited this dual approach to verify our results. The use
of the SD basis is computationally advantageous and allows
us to explore reactions involving p-shell nuclei.

B. Interaction between nucleons belonging to different clusters

In calculating Eqs. (5) and (6), all “direct” terms arising
from the identical permutations in both Âν and Âν ′ are treated
exactly (with respect to the separation r) with the exception of
〈�Jπ T

ν ′r ′ |Vrel|�Jπ T
νr 〉. The latter and all remaining terms are local-

ized and can be obtained by expanding the Dirac δ of Eq. (2) on
a set of HO radial wave functions with identical frequency 
,
and model-space size Nmax consistent with those used for the
two clusters. The rate of convergence of these terms is closely
related to the nuclear force model adopted in the Hamiltonian
[Eq. (7)]. For most nuclear interaction models that generate
strong short-range nucleon-nucleon correlations the large but
finite model spaces computationally achievable are insufficient
to reach the full convergence through a “bare” calculation. In
these cases it is crucial to utilize effective interactions tailored
to the truncated model spaces. In our approach the effective
interactions are derived from the underlying NN potential
through a unitary transformation, as already pointed out in
the previous section. The cluster eigenstates are obtained by
employing the usual NCSM effective interaction [16], whereas
in place of the bare NN nuclear potential VN entering Vrel

[Eq. (8)] we adopt a modified two-body effective interaction,
V ′

2eff , that avoids renormalizations related to the kinetic energy.
The kinetic-energy renormalizations are appropriate within
the standard NCSM, but they would compromise scattering
results obtained within the NCSM/RGM approach, in which
the relative kinetic energy and the average Coulomb interaction
between the clusters are treated exactly. More specifically, in
addition to the relevant two-nucleon Hamiltonian (see also
Refs. [16,25])

H

2 = H02 + V12 = �p 2

2m
+ 1

2
m
2 �x 2 + VN (

√
2�x) − m
2

A
�x 2,

(9)

where �x =
√

1
2 (�r1 − �r2) and �p =

√
1
2 ( �p1 − �p2), we introduce

here a second, modified two-nucleon Hamiltonian, deprived
of the nuclear interaction:

H ′

2 = H02 + V ′

12 = �p 2

2m
+ 1

2
m
2 �x 2 − m
2

A
�x 2. (10)

The modified two-body effective interaction is then determined
from the two-nucleon Hermitian effective Hamiltonians H̄2eff

and H̄ ′
2eff , obtained via the Lee-Suzuki similarity transforma-

tion method [28] starting from Eqs. (9) and (10), respectively:

V ′
2eff = H̄2eff − H̄ ′

2eff . (11)

We note that (i) V ′
2eff → VN in the limit Nmax → ∞ and (ii)

for each model space, the renormalizations related to the
kinetic energy and the HO potential introduced in H̄2eff are
compensated by the subtraction of H̄ ′

2eff .

C. Coordinates and basis states

We neglect the difference between proton and neutron
masses and denote the average nucleon mass with m. The
formalism presented in this paper is based both on the single-
particle Cartesian coordinates, {�ri, i = 1, 2, . . . , A}, and on
the following set of Jacobi coordinates:

�ξ0 =
√

1

A

A∑
i=1

�ri, (12)

the vector proportional to the center of mass (c.m.) coordinate
of the A-nucleon system (Rc.m. = 1√

A
�ξ0);

�ξ1 =
√

1

2
(�r1 − �r2),

(13)

�ξk =
√

k

k + 1

[
1

k

k∑
i=1

�ri − �rk+1

]
, 2 � k � A − a − 1 ;

the translationally invariant internal coordinates for the first
A − a nucleons;

�ηA−a =
√

(A − a)a

A

⎡
⎣ 1

A − a

A−a∑
i=1

�ri − 1

a

A∑
j=A−a+1

�rj

⎤
⎦ , (14)

the vector proportional to the relative position between the

c.m. of the two clusters (�rA−a,a =
√

A
(A−a)a �ηA−a); and, finally,

�ϑA−k =
√

k

k + 1

[
1

k

k∑
i=1

�rA−i+1 − �rA−k

]
, a − 1 � k � 2,

(15)

�ϑA−1 =
√

1

2
(�rA−1 − �rA),

the translationally invariant internal coordinates for the last a

nucleons.

1. Jacobi basis

Nuclei are translationally invariant systems. Therefore, the
use of Jacobi coordinates and translationally invariant basis
states represents a “natural” choice for the solution of the
many-nucleon problem.

In working with the Jacobi relative coordinates of Eqs. (13),
(14), and (16), it is convenient to introduce the (translationally
invariant) Jacobi channel states∣∣�Jπ T

νη

〉 = [(∣∣A−a α1I
π1

1 T1
〉∣∣a α2I

π2
2 T2

〉)(sT )
Y�(η̂A−a)

](Jπ T )

× δ(η − ηA−a)

ηηA−a

, (16)
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which are clearly proportional to the binary-cluster basis
presented in Eq. (2):

∣∣�Jπ T
νr

〉 = [ (A − a)a

A

]3/2 ∣∣�Jπ T
νη

〉
. (17)

The clusters’ intrinsic wave functions depend on their respec-
tive set of Jacobi, spin (σ ), and isospin (τ ) coordinates,〈�ξ1 · · · �ξA−a−1σ1 · · · σA−aτ1 · · · τA−a

∣∣A−a α1I
π1
1 T1

〉
, (18)〈�ϑA−a+1 · · · �ϑA−1σA−a+1 · · · σAτA−a+1 · · · τA

∣∣a α2I
π2
2 T2

〉
, (19)

and are obtained by diagonalizing the H(A−a) and H(a) intrinsic
Hamiltonians in the model spaces spanned by the NCSM
Jacobi-coordinate basis [25]. The same HO frequency 
 is
used for both clusters. The model-space size coincides for
eigenstates of the same parity and differs by one unit for
eigenstates of opposite parity.

In calculating the integral kernels of Eqs. (5) and (6),
〈�Jπ T

ν ′r ′ |Vrel|�Jπ T
νr 〉 and all “exchange” terms, arising from the

permutations in Aν or Aν ′ different from the identity, are
obtained by expanding the Dirac δ of Eq. (2) on a set of
HO radial wave functions with identical frequency 
 and
model-space size Nmax consistent with those used for the two
clusters:

∣∣�Jπ T
νr

〉 = [
(A − a)a

A

]3/2∑
n

Rn�(η, b0)
∣∣�Jπ T

νn,b0

〉
(20)

=
∑

n

Rn�(r, b)
∣∣�Jπ T

νn,b

〉
, (21)

where the HO Jacobi channel states are given by

∣∣�Jπ T
νn,b

〉 = [( ∣∣A−a α1I
π1

1 T1
〉 ∣∣a α2I

π2
2 T2

〉 )(sT )
Y� (η̂A−a)

](Jπ T )

×Rn�(rA−a,a, b) (22)

=
[√

(A − a)a

A

]3/2 ∣∣�Jπ T
νn,b0

〉
. (23)

Note that the HO basis states depending on the Jacobi
coordinates introduced in Sec. II C are all characterized by
the same oscillator-length parameter b0 = √

h̄/m
. However,
the oscillator-length parameter associated with the separation r

between the centers of mass of target and projectile is defined in
terms of the reduced mass µ = [(A − a)a m]/A of the channel
under consideration: b = √

h̄/µ
 = √
A/[(A − a)a]b0. In

the following we will drop the explicit reference to the HO
length parameter in the arguments of the HO radial wave
functions and in the HO Jacobi channel states |�Jπ T

νn 〉.

2. Single-particle Slater-determinant basis

The unique properties of the HO basis allow us to make
use of Jacobi-coordinate wave functions [24,25] for both
nuclei or only for the lighter of the pair (typically a � 4)
and still preserve the translational invariance of the problem
(see also the discussions in Refs. [26,27]). In the second case

we introduce the SD channel states∣∣�Jπ T
νn

〉
SD = [(∣∣A−a α1I1T1

〉
SD

∣∣a α2I2T2
〉)(sT )

Y�

(
R̂(a)

c.m.

)](Jπ T )

×Rn�

(
R(a)

c.m.

)
, (24)

in which the eigenstates of the (A − a)-nucleon fragment are
obtained in the SD basis,〈�r1 · · · �rA−aσ1 · · · σA−aτ1 · · · τA−a

∣∣A−a α1I
π1
1 T1

〉
SD, (25)

that is, by using a shell-model code (such as, e.g., ANTOINE [29]
or MFD [30]), and contain therefore the spurious motion of the
(A − a)-nucleon cluster c.m. The SD and Jacobi-coordinate
eigenstates are related by the expression

|A−a α1I1T1〉SD = |A−a α1I1T1〉 ϕ00
( �R(A−a)

c.m.

)
. (26)

The c.m. coordinates introduced in Eqs. (24) and (26),

�R(A−a)
c.m. =

√
1

A − a

A−a∑
i=1

�ri ; �R(a)
c.m. =

√
1

a

A∑
i=A−a+1

�ri, (27)

are an orthogonal transformation of the c.m. and relative
coordinates of the A-nucleon system, �ξ0 (12) and �ηA−a (14),
respectively:

�ηA−a =
√

a

A
�R(A−a)

c.m. −
√

A − a

A
�R(a)

c.m., (28)

�ξ0 =
√

A − a

A
�R(A−a)

c.m. +
√

a

A
�R(a)

c.m.. (29)

Therefore, in the SD basis of Eq. (24), the HO wave functions
depending on these coordinates transform according to(

ϕ00
( �R(A−a)

c.m.

)
ϕn�

( �R(a)
c.m.

))(�)

=
∑

nr�r ,NL

〈00n��|nr�rNL�〉 a
A−a

(
ϕnr�r

(�ηA−a) ϕNL(�ξ0)
)(�)

,

(30)

where the coefficients of the expansion are generalized HO
brackets for two particles with mass ratio d = a

A−a
that can be

calculated as described, for example, in Ref. [31]. As a result
the SD and Jacobi channel states are related by∣∣�Jπ T

νn

〉
SD =

∑
nr�r ,NL,Jr

�̂Ĵr (−1)(s+�r+L+J )

×
{

s �r Jr

L J �

}
〈nr�rNL�|00n��〉 a

A−a

× [∣∣�Jπr
r T

νrnr

〉
ϕNL(�ξ0)

](Jπ T )
, (31)

where νr = {A−a α1I1T1; a α2I2T2; s�r}. It is therefore possi-
ble to extract the translationally invariant matrix elements from
those calculated in the SD basis, which contain the spurious
c.m. motion, by inverting the following expression:

SD
〈
�Jπ T

ν ′n′ |Ôt.i.

∣∣�Jπ T
νn

〉
SD

=
∑

n′
r �

′
r ,nr �r ,Jr

〈
�

Jπr
r T

ν ′
r n

′
r

∣∣Ôt.i.

∣∣�Jπr
r T

νrnr

〉
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×
∑
NL

�̂�̂′Ĵ 2
r (−1)(s+�−s ′−�′)

{
s �r Jr

L J �

}{
s ′ �′

r Jr

L J �′

}

×〈nr�rNL�|00n��〉 a
A−a

〈n′
r�

′
rNL�|00n′�′�′〉 a

A−a
, (32)

where Ôt.i. is any scalar and parity-conserving translational-
invariant operator (Ôt.i. = Â, ÂH Â, etc.).

We exploited this dual approach to verify our results. The
use of the SD basis is computationally advantageous and
allows us to explore reactions involving p-shell nuclei.

D. Translational invariant kernels in the
single-nucleon-projectile basis

All calculations in the present paper were carried out
in the single-nucleon projectile (SNP) basis, that is, using
binary-cluster channels [Eq. (2)] with a = 1. In this case, the ϑ

coordinates are not defined, the channel index reduces to ν =
{A−1 α1I

π1
1 T1; 1 1

2
1
2 ; s�}, and the intercluster antisymmetrizer

is simply given by

Âν ≡ Â = 1√
A

[
1 −

A−1∑
i=1

P̂iA

]
. (33)

In calculating Eqs. (5) and (6), it is convenient to isolate the
“direct” terms arising from the identical permutation in Â.
Considering that the full A-nucleon Hamiltonian commutes
with the intercluster antisymmetrizer ([Â,H ] = 0), and that

Â2
∣∣�Jπ T

νr

〉 =
[

1 −
A−1∑
i=1

P̂iA

] ∣∣�Jπ T
νr

〉
, (34)

we can write the following expression for the norm kernel in
the SNP basis:

N Jπ T
ν ′ν (r ′, r) = δν ′ ν

δ(r ′ − r)

r ′ r
+ N ex

ν ′ν(r ′, r). (35)

Here, we have singled out the nonlocal exchange part of the
matrix elements in the term

N ex
ν ′ν(r ′, r) = − 〈�Jπ T

ν ′r ′
∣∣ A−1∑

i=1

P̂iA

∣∣�Jπ T
νr

〉
(36)

= −(A − 1)
∑
n′n

Rn′�′(r ′)Rn�(r)

× 〈�Jπ T
ν ′n′
∣∣ P̂A−1,A

∣∣�Jπ T
νn

〉
(37)

(and have dropped for simplicity the JπT superscript). In
the schematic representation of the norm kernel of Fig. 1,
diagram (a) and (b) correspond to the first and second terms,
respectively, of the right hand side of Eq. (35).

In deriving Eq. (37) we used the expansion given by
Eq. (21) and took advantage of the internal symmetry
properties of the (A − 1)-cluster wave function. A similar
decomposition can be performed also for the Hamiltonian
kernel,

HJπ T
ν ′ν (r ′, r) = 〈

�Jπ T
ν ′r ′
∣∣H
[

1 −
A−1∑
i=1

P̂iA

] ∣∣�Jπ T
νr

〉
(38)

ν, r

ν , r

1

1

2

2

A -2

A -2

A -1

A -1

A

A

· · ·

· · ·

· · ·· · ·

(a) (b)

FIG. 1. (Color online) Diagrammatic representation of the
“direct” (a) and “exchange” (b) components of the norm kernel. The
first group of circled black lines represents the first cluster, the bound
state of A − 1 nucleons. The separate red line represents the second
cluster, in the specific case of a single nucleon. The lower and upper
parts of the diagram represent initial and final states, respectively.

= [
T̂rel(r

′) + V̄C(r ′) + E
I

′π ′
1

1 T ′
1

α′
1

]
N Jπ T

ν ′ν (r ′, r)

+VD
ν ′ν(r ′, r) + V ex

ν ′ν(r ′, r), (39)

where we divided 〈�Jπ T
ν ′r ′ |Vrel Â2|�Jπ T

νr 〉 into “direct” and
“exchange” potential kernels according to

VD
ν ′ν(r ′, r) = (A − 1)

∑
n′n

Rn′�′(r ′)Rn�(r)

× 〈�Jπ T
ν ′n′
∣∣VA−1,A(1 − P̂A−1,A)

∣∣�Jπ T
νn

〉
,

(40)

Vex
ν ′ν(r ′, r) = −(A − 1)(A − 2)

∑
n′n

Rn′�′(r ′)Rn�(r)

× 〈�Jπ T
ν ′n′
∣∣ P̂A−1,A VA−2,A−1

∣∣�Jπ T
νn

〉
. (41)

Diagrams (c) and (d) of Fig. 2 give a schematic view of
Eq. (40), whereas Eq. (41) corresponds to diagram (e). As
pointed out in Sec. II, the channel states [Eq. (2)] are not
antisymmetric with respect to the exchange of nucleons
pertaining to different clusters (fully antisymmetric states
are recovered through the action of the operator Âν). As a
consequence, the Hamiltonian kernel as defined in Eq. (38)
is explicitly non-Hermitian. Using ÂH Â = 1

2 (Â2H + H Â2),
we introduce the Hermitized Hamiltonian kernel H̄Jπ T

ν ′ν in the
form

H̄Jπ T
ν ′ν (r ′, r) = 〈�Jπ T

ν ′r ′
∣∣H − 1

2

A−1∑
i=1

(HP̂iA + P̂iAH )
∣∣�Jπ T

νr

〉
.

(42)

Finally, we note that, according to Eqs. (7) and (8) and Eqs. (35)
and (37), the contribution of the average Coulomb potential to
the Hermitian Hamiltonian kernel [Eq. (42)] amounts overall
to

1

2
δν ′ν[V̄C(r ′) + V̄C(r)]

[
δ(r ′ − r)

r ′r
−
∑

n

Rn�(r ′)Rn�(r)

]
.

(43)
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· · ·· · · · · ·

(c) (d) (e)

FIG. 2. (Color online) Diagrammatic representation of “direct” (c and d) and “exchange” (e) components of the potential kernel (see also
the caption of Fig. 1).

1. Jacobi-coordinate derivation

The main technical as well as computational challenge of
the NCSM/RGM approach lies in the evaluation of norm and
Hamiltonian kernels. The analytical expressions for the inte-
gral kernels of Eqs. (37), (40), and (41) assume a particularly
involved aspect in the model space spanned by the HO Jacobi
channel states of Eq. (22). Here we discuss the exchange
part of the norm kernel for the A = 3 system (a = 1), which
is representative of the Jacobi-coordinate formalism without
requiring overly tedious manipulations. Interested readers can
find a compilation of all Jacobi-coordinate formulas, along
with an outline of their derivation, in Appendix A.

The HO Jacobi channel state of Eq. (22) for the (2, 1)
partition can be written as∣∣�Jπ T

ν,n

〉 = ∑
n1�1s1

〈
n1�1s1I1T1

∣∣2 α1I
π1
1 T1

〉

×
∣∣∣∣
[(

n1�1s1I1T1;
1

2

1

2

)
sT ; n�

]
JπT

〉
, (44)

where we have expanded the two-nucleon target wave function
onto HO basis states depending on the Jacobi coordinate �ξ1

defined in Eq. (13),

〈�ξ1σ1σ2τ1τ2|n1�1s1I1T1〉, (45)

and 〈n1�1s1I1T1|2 α1I
π1
1 T1〉 are the coefficients of the expan-

sion. Here n1 and �1 are the HO quantum numbers correspond-
ing to the harmonic oscillator associated with �ξ1, and s1, I1,
and T1 are the spin, total angular momentum, and isospin of the
two-nucleon channel formed by nucleons 1 and 2, respectively.
Note that the basis [Eq. (45)] is antisymmetric with respect to
the exchange of the two nucleons: (−)�1+s1+T1 = −1.

According to Eq. (37), to obtain the exchange part of
the norm kernel we need to evaluate matrix elements of the
permutation corresponding to the exchange of the last two
particles, in this case P̂23. This task can be accomplished by,
for example., switching to a more convenient coupling of the
three-nucleon quantum numbers,∣∣∣∣
[(

n1�1s1I1T1;
1

2

1

2

)
sT ; n�

]
JπT

〉

=
∑
Z

ẐÎ1(−)�1+s1+ 1
2 +s

{
�1 s1 I1
1
2 s Z

}

×
∑
�

�̂ŝ(−)Z+�+s+�

{
Z �1 s

� J �

}

×
∣∣∣∣
[

(n1�1, n�)�;

(
s1

1

2

)
Z

]
Jπ

〉 ∣∣∣∣
(

T1
1

2

)
T

〉
, (46)

and observing that, as a result of the action of P̂23, the HO
state 〈�ξ1 �η2|(n1�1, n�)�〉 is changed into 〈�ξ ′

1 �η ′
2|(n1�1, n�)�〉.

The new set of Jacobi coordinates �ξ ′
1 and �η ′

2 (obtained from �ξ1

and �η2, respectively, by exchanging the single-nucleon indexes
2 and 3) can be expressed as an orthogonal transformation of
the unprimed ones. Consequently, the HO states depending on
them are related by the orthogonal transformation

〈�ξ ′
1 �η ′

2|(n1�1, n�)�〉
=

∑
NL,N1L1

(−)L+L1−�〈NL,N1L1,�|n1�1, n�,�〉3

×〈�ξ1 �η2|(N1L1, NL)�〉, (47)

where the elements of the transformation are the general HO
brackets for two particles with mass ratio d = 3.

After taking care of the action of P̂23 also on the spin and
isospin states, one can complete the derivation and write the
following expression for the A = 3 exchange part of the norm
kernel in the SNP basis:

N ex
ν ′ν(r ′, r) = −2

∑
n′n

Rn′�′(r ′)Rn�(r)

×
∑

n′
1�

′
1s

′
1

〈n′
1�

′
1s

′
1I

′
1T

′
1|2 α′

1I
′π ′

1
1 T ′

1〉

×
∑

n1�1s1

〈n1�1s1I1T1|2 α1I
π1
1 T1〉

× T̂ ′
1T̂1(−)T

′
1+T1

{
1
2

1
2 T1

1
2 T T ′

1

}
ŝ ′

1ŝ1Î
′
1Î1ŝ

′ŝ (−)�1+�

×
∑
�,Z

�̂2Ẑ2(−)�
{

1
2

1
2 s1

1
2 Z s ′

1

}{
�′

1 Z s ′

J �′ �

}

×
{

�′
1 Z s ′

1
2 I ′

1 s ′
1

}{
�1 Z s

J � �

}{
�1 Z s

1
2 I1 s1

}

×〈n′�′, n′
1�

′
1,�|n1�1, n�,�〉3. (48)
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Here we recall that the index ν stands for the collection of
quantum numbers {A−1 α1I

π1
1 T1; 1 1

2
1
2 ; s�}, whereas ν ′ is an

analogous index containing the primed quantum numbers.
The derivation of “direct” and “exchange” potential

kernels, although complicated by the need for additional
orthogonal transformations and the presence of the two-
body matrix elements of the interaction, proceeds along the
same lines presented here (see Appendix A1). As a final
remark, we note that the exchange part of the norm kernel
[Eq. (48)] and the direct potential kernel [Eq. (A4)] are
symmetric under exchange of prime and unprimed indexes,
and primed and unprimed coordinates, whereas the same is not
true of the exchange part of the potential kernel [Eq. (A5)].
Indeed, as anticipated in Sec. II D, the Hamiltonian kernel
defined in Eq. (38) is explicitly non-Hermitian.

2. Single-particle Slater-determinant derivation

The matrix elements of the operators P̂A−1,A, VA−1,A(1 −
P̂A−1,A), and P̂A−1,AVA−2,A−1 can be more intuitively derived
by working within the SD basis of Eq. (24). Using the
second-quantization formalism, they can be related to linear
combinations of matrix elements of creation and annihilation

operators between (A − 1)-nucleon SD states. These quantities
can be easily calculated by shell-model codes. Here we outline
the main stages of the derivation.

The SD basis [Eq. (24)] simplifies in the case of a single-
nucleon projectile to∣∣�Jπ T

νn

〉
SD

=
[(

|A−1 α1I1T1〉SD

∣∣∣∣1 1

2

1

2

〉)(sT )

Y�(r̂A)

](Jπ T )

Rn�(rA)

=
∑

j

(−1)I1+J+j

{
I1

1
2 s

� J j

}
ŝĵ

× [|A−1 α1I1T1〉SD ϕn�j 1
2
(�rAσAτA)](Jπ T ), (49)

with ν = {A−1 α1I
π1
1 T1; 1 1

2
1
2 ; s�} and the HO single-

particle wave function ϕn�jm 1
2 mt

(�rAσAτA) = Rn�(rA)(
Y�(r̂A)χ 1

2
(σA)

)(j )
m

χ 1
2 mt

(τA). To obtain the exchange
part of the norm kernel [Eq. (37)] we first calculate
the permutation operator matrix elements within the
basis of Eq. (49). By expressing the position state of
the nucleon (A − 1) as |�rA−1σA−1τA−1〉 =∑n�jm 1

2 mt

ϕ∗
n�jm 1

2 mt
(�rA−1σA−1τA−1) a

†
n�jm 1

2 mt
|0〉 we arrive at

SD
〈
�Jπ T

ν ′ n′
∣∣P̂A,A−1

∣∣�Jπ T
ν n

〉
SD = 1

A − 1

∑
jj ′Kτ

ŝŝ ′ĵ ĵ ′K̂τ̂ (−1)I
′
1+j ′+J (−1)T1+ 1

2 +T

{
I1

1
2 s

� J j

}{
I ′

1
1
2 s ′

�′ J j ′

}{
I1 K I ′

1

j ′ J j

}{
T1 τ T ′

1

1
2 T 1

2

}

× SD
〈
A−1 α′

1I
′
1T

′
1

∣∣∣∣∣∣(a†
n�j 1

2
ãn′�′j ′ 1

2
)(Kτ )

∣∣∣∣∣∣A−1 α1 I1T1
〉
SD. (50)

Here, SD〈A−1 α′
1 I ′

1T
′

1|||(a†
n�j 1

2
ãn′�′j ′ 1

2
)(Kτ )|||A−1 α1 I1T1〉SD

are one-body density matrix elements (OBDME) of the target
nucleus and ãn′�′j ′m′ 1

2 m′
t
= (−1)j

′−m′+ 1
2 −m′

t an′�′j ′−m′ 1
2 −m′

t
. Next

we extract the corresponding translationally invariant ma-
trix elements, 〈�(A−1,1)Jπr

r T

ν ′
r n′

r
|P̂A,A−1|�(A−1,1)Jπr

r T
νr nr

〉, by inverting

Eq. (32) for a = 1 and Ôt.i. = P̂A−1,A. The final step follows
easily from Eq. (37).

The same procedure is applied also for calculating “direct”
and “exchange” potential kernels. In this case the transition
matrix elements on the SD basis are, respectively,

SD
〈
�Jπ T

ν ′ n′
∣∣VA−1,A(1 − P̂A,A−1)

∣∣�Jπ T
ν n

〉
SD

= 1

A − 1

∑
jj ′Kτ

∑
nalaja

∑
nblbjb

∑
J0T0

ŝ ŝ ′ĵ ĵ ′K̂τ̂ Ĵ 2
0 T̂ 2

0 (−1)I
′
1+j ′+J (−1)T1− 1

2 +T

{
I1

1
2 s

� J j

}{
I ′

1
1
2 s ′

�′ J j ′

}{
I1 K I ′

1

j ′ J j

}{
jb ja K

j ′ j J0

}{
T1 τ T ′

1

1
2 T 1

2

}

×
{

τ 1
2

1
2

T0
1
2

1
2

}√
1 + δ(nalaja ),(n′�′j ′)

√
1 + δ(nblbjb),(n�j )

〈(
nalaja

1

2

)(
n′�′j ′ 1

2

)
J0T0

∣∣∣∣V
∣∣∣∣
(

n�j
1

2

) (
nblbjb

1

2

)
J0T0

〉

× SD
〈
A−1 α′

1I
′
1T

′
1

∣∣∣∣∣∣(a†
nalaja

1
2
ãnblbjb

1
2

)(Kτ )∣∣∣∣∣∣A−1 α1I1T1
〉
SD (51)
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and

SD
〈
�Jπ T

ν ′ n′
∣∣P̂A,A−1VA−2,A−1

∣∣�Jπ T
ν n

〉
SD

= 1

2(A − 1)(A − 2)

∑
jj ′Kτ

∑
nalaja

∑
nblbjb

∑
nclcjc

∑
nd ld jd

∑
KaτaKcdτcd

ŝŝ ′ĵ ĵ ′K̂τ̂ K̂aτ̂aK̂cd τ̂cd (−1)I
′
1+j ′+J+K+j+ja+jc+jd (−1)T1+ 1

2 +τ+T

×
{

I1
1
2 s

� J j

}{
I ′

1
1
2 s ′

�′ J j ′

}{
I1 K I ′

1

j ′ J j

}{
Ka Kcd K

j ′ j ja

}{
T1 τ T ′

1

1
2 T 1

2

}{
τ τa τcd

1
2

1
2

1
2

}√
1 + δ(nalaja ),(n′�′j ′)

√
1 + δ(nclcjc),(nd ld jd )

×
〈(

n′�′j ′ 1
2

)(
nalaja

1

2

)
Kcdτcd

∣∣∣∣V
∣∣∣∣
(

ndldjd

1

2

)(
nclcjc

1

2

)
Kcdτcd

〉

× SD
〈
A−1 α′

1I
′
1T

′
1

∣∣∣∣∣∣((a†
n�j 1

2
a
†
nalaja

1
2

)(Kaτa )(
ãnclcjc

1
2
ãnd ld jd

1
2

)(Kcdτcd ))(Kτ )∣∣∣∣∣∣A−1 α1I1T1
〉
SD. (52)

The “direct” matrix element [Eq. (51)] depends on the
OBDME, whereas the “exchange” matrix element [Eq. (52)]
depends on two-body density matrix elements (TBDME) of
the target nucleus. This is easily understandable as the former
involves only a single nucleon of the target, whereas the
latter involves two nucleons of the target (see also Fig. 2).
We note that the two-body matrix elements of the interaction
V are evaluated by using just the first two terms of Eq. (8);

that is, Vij = VN (ij ) + e2(1+τ z
i )(1+τ z

j )

4|�ri−�rj | as the average Coulomb
interaction is taken care of with the help of Eq. (43). We also
note that, as a consistency check, it is possible to recover the
Eq. (50) from either Eq. (51) or Eq. (52) by setting the NN

interaction operator V to the identity opertor.

3. Illustrative examples

The n-α system provides a convenient ground to explore
the characteristic features of the integral kernels obtained
by applying the NCSM/RGM approach within the SNP
formalism. Because of the tightly bound structure of 4He, an
expansion in n-α channel states allows us to describe fairly
well the low-energy properties of the 5He system. The latter
(likewise 5Li) is an unbound system, its ground state being a
narrow P -wave resonance in the 3

2
− 1

2 channel.
Figures 3–7 and Table I present results of single-channel

calculations carried out using n-α cluster channels with the α

particle in its g.s. (Note that throughout this section the index
ν = {4 g.s. 0+0; 1 1

2
+ 1

2 ; 1
2�} can and will be simply replaced by

the quantum number �.) The interaction models adopted are the
next-to-next-to-next-to-leading order (N3LO) NN potential
[32] derived within chiral effective-field theory (χEFT) at the
N3LO and the Vlow k NN potential [33] derived from AV18
with cutoff � = 2.1 fm−1. Although χEFT forces are known
to present a relatively soft core, the large but finite model spaces
computationally achievable are still insufficient to reach a full
convergence through a “bare” calculation. Therefore, for this
potential we utilize two-body effective interactions tailored to

the truncated model spaces as outlined in Sec. II B. Results for
the Vlow k potential are obtained using the “bare” interaction.

The overall convergence behavior of the integral kernels
is influenced by both the convergence of the eigenstates
entering the binary-cluster basis, in the specific case the
4He g.s., and the convergence of the radial expansion of
Eq. (21). As an example, Fig. 3 presents the behavior of
the exchange part of the norm kernel with respect to the
increase of the model-space size obtained for the JπT = 1

2
+ 1

2

and 3
2

− 1
2 five-nucleon channels, using the N3LO potential.

TABLE I. The three largest negative eigenvalues of the
“exchange” part of the norm kernel [Eq. (37)] for the n-4He(g.s.)
J πT = 1

2

+ 1
2 channel. Convergence is with respect to the model-

space size Nmax of the NCSM/RGM results obtained using the
Vlow k [33] and N3LO NN potentials at h̄
 = 18 and 19 MeV,
respectively. The calculated values for the AV14 NN potential of
Ref. [35] are multiplied by −1 to adhere to the definition of the
norm kernel adopted in the present paper.

Nmax γ1 γ2 γ3

Vlow k

9 −0.9547 −0.06609 −0.00310
11 −0.9539 −0.06600 −0.00288
13 −0.9530 −0.06616 −0.00290
15 −0.9526 −0.06617 −0.00292
17 −0.9524 −0.06616 −0.00293

N3LO
9 −0.954 −0.0633 −0.00346

11 −0.945 −0.0641 −0.00452
13 −0.938 −0.0643 −0.00524
15 −0.933 −0.0646 −0.00599
17 −0.929 −0.0645 −0.00636
19 −0.927 −0.0644 −0.00661
21 −0.926 −0.0645 −0.00684

AV14
FY [35] −0.937 −0.0663 −0.00753
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FIG. 3. (Color online) Dependence on Nmax of the “exchange”
part of the diagonal norm kernel for the n-4He(g.s.) 1

2

+ 1
2 (2S1/2), and

3
2

− 1
2 (2P3/2) channels as a function of the relative coordinate r at

r ′ = 1 fm, using the N3LO NN potential [32] at h̄
 = 19 MeV. The
inset shows the convergence pattern of the energy of the 4He g.s.,
used to build the binary-cluster basis. The green dashed line indicates
the previous NCSM evaluation of Eg.s. = −25.39(1) MeV [34].

The corresponding convergence pattern for the α-particle g.s.
energy is shown in the inset. To allow for the calculation
of both positive- and negative-parity five-nucleon channels,
for a given truncation Nmax in the I

π1
1 T1 = 0+0 model space

used to expand the g.s., a complete calculation of Eq. (37)
requires an expansion over n-αJπT states up to Nmax + 1.
This is the origin of the odd Nmax values in the legend of
Fig. 3 (and following). As we can see from the figure, the
HO frequency h̄
 = 19 MeV enables a quite satisfactory
convergence of both 4He g.s. and n-α radial expansion and
hence of the integral kernel. As an example, for the 2S1/2

channel the Nmax = 17 result is already within 3% or less off
the converged (Nmax = 21) curve in the whole r range up to
4.5 fm. An analogous analysis of the 2P3/2 kernels yields a
somewhat larger relative difference (less than 10%) between
Nmax = 17 and 21 in the range between 1 and 4 fm, whereas
the discrepancy increases toward the origin. In this regard,
we note that the 3

2
− 1

2 kernel overall is an order of magnitude

smaller than the 1
2

+ 1
2 one.

The convergence rate for Vlow k (see upper panel of Fig. 4)
is clearly much faster. Here the 2P3/2 results for the two largest
model spaces (Nmax = 15 and 17) are within 0.5% or less in
the whole region up to 5 fm.

Despite the mild differences in magnitude and strength
distribution for small r, r ′ values, the 2S1/2 and 2P3/2 results of
Figs. 3 and 4 present essentially the same shape and the same
range of about 5 fm. This can be observed also in Fig. 5, which
shows once again the 2S1/2 partial wave, in terms of contour
plots. (Note that the 2S1/2 curves of Figs. 3 and 4 correspond
to slices of the current plot along the r ′ = 1 fm line.) In
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FIG. 4. (Color online) “Exchange” part of the diagonal norm
kernel for the n-4He(g.s.) 1

2

± 1
2 and 3

2

± 1
2 channels as a function of the

relative coordinate r at r ′ = 1 fm, using the Vlow k NN potential [33] at
h̄
 = 18 MeV. The upper panel shows the model-space dependence
of the 2P3/2 component.

particular, it is clear that the 2S1/2 kernels for the two different
NN potentials assume almost-identical values starting from
r, r ′ = 2 fm, the N3LO results being much shallower near the
origin and overall less symmetric than those obtained with
Vlow k . The latter features reveal differences in the structure
of the α particle obtained within the N3LO and Vlow k NN

interactions. We note that the g.s. energy and point-proton
root-mean-square radius of the α particle are −25.39(1) MeV
and 1.515(2) fm and −27.77(1) MeV and 1.4239(2) fm with
the N3LO and Vlow k potentials, respectively. In Fig. 4 (bottom
panel), we compare the components of the “exchange” norm
kernel up to � = 2. Contributions of higher relative angular
momenta are of the same order or smaller than the 2D3/2

partial wave. It is apparent that the 2S1/2 channel dominates
over the others and is negative. This is an effect of the Pauli
exclusion principle, which forbids more than four nucleons in
the s shell of a nuclear system. The four nucleons forming
the 4He g.s. sit mostly in the 0h̄
 shell. Accordingly, in
the 2S1/2 channel the “exchange” part of the norm kernel
suppresses the (dominant) 0h̄
 contribution to the δ function
of Eq. (35) (and, consequently, to the S-wave relative-motion
wave function g

1
2

+ 1
2

�=0 ) coming from the fifth nucleon in the
s-shell configuration. More precisely, the diagonalization of
the “exchange” part of the norm kernel reveals the presence

of an eigenvector g
1
2

+ 1
2

0,� with eigenvalue γ� 
 −1 (i.e., a
Pauli-forbidden state):

∫
dr N ex

00 (r ′, r)g
1
2

+ 1
2

0,� (r) = γ� g
1
2

+ 1
2

0,� (r ′). (53)

Table I presents the three largest-negative eigenvalues for the
adopted NN potentials along with their dependence upon the
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FIG. 5. (Color online) “Exchange”
part of the diagonal norm kernel for the
n-4He(g.s.) 1

2

+ 1
2 channel as a function of

the relative coordinates r and r ′, using the
N3LO [32] (left) and Vlow k [33] (right)
NN potentials at h̄
 = 19 and 18 MeV,
respectively.

model-space size. For both interactions the first eigenvalue
clearly corresponds to a Pauli-forbidden state. Once again, the
rate of convergence for Vlow k is visibly faster than for N3LO,
and, despite the differences noted in the integral kernels, the
overall results for the eigenvalues are very close. The present
results are also in good agreement (especially for N3LO)
with the eigenvalues obtained in Ref. [35] from a Faddeev-
Yakubovsky calculation of the five-nucleon “exchange” norm,
using the AV14 NN potential.

The presence of a forbidden state affects also the potential
kernels. The surface plots of Figs. 6 and 7 present “direct”
and “exchange” potentials for the 1

2
+ 1

2 and 3
2

− 1
2 channels,

respectively. In the 2S1/2 partial wave the Pauli-exclusion
principle manifests itself again in the short-range repul-
sive action of the “exchange” potential, which effectively
suppresses the interaction between one of the nucleons
inside the α particle and the fifth nucleon, both in the
s-shell configuration. The situation is different in the 2P3/2

channel, where the “exchange” kernel represents a ∼15%
correction to the “direct” potential and generates additional
attraction.

In the five-nucleon system the 1
2

+ 1
2 is the only forbidden

state (which is also the reason why the five-nucleon g.s. occurs
in the P wave). For all other partial waves, the “exchange” part
of the integral kernels introduces only a small deviation from
orthogonality in the case of the norm, or small corrections to
the “effective” n-α interaction, in the case of the potential.
These many-body corrections induced by the nonidentical
permutations in the intercluster antisymmetrizers become less
and less important with increasing relative angular momentum
� and have a limited range of about 5 fm.

E. Orthogonalization

The appearance of the norm kernel N Jπ T
ν ′ν (r ′, r) in Eq. (4)

reflects the fact that the many-body wave function �Jπ T is
expanded in terms of a nonorthogonal basis. Therefore, Eq. (4)
does not represent a system of multichannel Schrödinger
equations, and gJπ T

ν (r) do not represent Schrödinger wave
functions. However, as we have seen in Sec. II D3, the
nonorthogonality is short-ranged, as it originates from the
nonidentical permutations in the intercluster antisymmetrizers.
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Vlowk

1
2

+ 1
2 ( 2S 1/ 2)

 0
 1

 2
 3

 4
 5  0

 1
 2

 3
 4

 5

-140

-120

-100

-80

-60

-40

-20

 0

 20

r [fm] r [fm]

VD
(r

,r
)

[M
eV

fm
3
]

 0
 1

 2
 3

 4
 5  0

 1
 2

 3
 4

 5

 0

 10

 20

 30

 40

 50

 60

 70

r [fm] r [fm]

V
ex

(r
,r

)
[M

eV
fm

3
]

FIG. 6. (Color online) Diagonal n-4He(g.s.) 1
2

+ 1
2 (2S1/2) potential kernels as a function of the relative coordinates r and r ′, using the

Vlow k [33] NN interaction. The model space and HO frequency are Nmax = 17 and h̄
 = 18 MeV, respectively.
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FIG. 7. (Color online) Diagonal n-4He(g.s.) 3
2

− 1
2 (2P3/2) potential kernels as a function of the relative coordinates r and r ′, using the

Vlow k [33] NN interaction. The model space and HO frequency are Nmax = 17 and h̄
 = 18 MeV, respectively.

Thus, asymptotically one has

N Jπ T
ν ′ν (r ′, r) → δν ′ν

δ(r ′ − r)

r ′r
. (54)

As a consequence the relative wave functions gJπ T
ν (r) obey

the same asymptotic boundary conditions as the relative wave
functions in a conventional multichannel collision theory, and
it is possible to define physically important quantities, such as,
for example, the scattering matrix or the energy eigenvalues.
The internal part of the relative wave functions, however, is
still affected by the short-range nonorthogonality. Therefore,
attention has to be paid when the latter wave functions are
used to calculate further observables, such as, for example,
radiative capture cross sections or, more in general, transition
matrix elements.

Alternatively, one can introduce an orthogonalized version
of Eq. (4), such as

∑
ν

∫
drr2

[
H

Jπ T
ν ′ν (r ′, r) − Eδν ′ν

δ(r ′ − r)

r ′r

]
χJπ T

ν (r)

r
= 0,

(55)

where H
Jπ T
ν ′ν (r ′, r) is the Hermitian energy-independent non-

local Hamiltonian defined by

H
Jπ T
ν ′ν (r ′, r) =

∑
γ ′

∫
dy ′y ′ 2

∑
γ

∫
dy y2

×N− 1
2

ν ′γ ′(r ′, y ′) H̄Jπ T
γ ′γ (y ′, y)N− 1

2
γ ν (y, r), (56)

and the Schrödinger wave functions χJπ T
ν (r) are the new

unknowns of the problem, related to gJπ T
ν (r) through

χJπ T
ν (r)

r
=
∑

γ

∫
dy y2N

1
2

νγ (r, y)
gJπ T

γ (y)

y
. (57)

Here, N
1
2

κ ′κ (x ′, x) and N− 1
2

κ ′κ (x ′, x) represent the square root
and the inverse-square root of the norm kernel, respectively.
To perform these two operations, we add and subtract from the

norm kernel the identity in the HO model space,

N Jπ T
ν ′ν (r ′, r) = δν ′ν

[
δ(r ′ − r)

r ′r
−
∑

n

Rn�(r ′)Rn�(r)

]

+
∑
n′n

Rn′�′(r ′) �Jπ T
ν ′n′,νn Rn�(r). (58)

The matrix �Jπ T is the norm kernel within the truncated model
space spanned by the HO Jacobi-channel states of Eq. (22). We
give here the expression in the SNP basis [see also Eq. (37)]:

�Jπ T
ν ′n′,νn = δν ′νδn′n − (A − 1)

〈
�Jπ T

ν ′n′
∣∣P̂A−1,A

∣∣�Jπ T
νn

〉
. (59)

The generalization to the case of binary clusters with a > 1 is
straightforward.

The square root and the inverse-square root of N Jπ T
ν ′ν (r ′, r)

are then obtained by (i) finding eigenvalues λ� and eigenvec-
tors |ϕJπ T

� 〉 of the matrix �Jπ T ; (ii) calculating

�
± 1

2
ν ′n′,νn =

∑
�

〈
�Jπ T

ν ′n′
∣∣ϕJπ T

�

〉
λ

± 1
2

�

〈
ϕJπ T

�

∣∣�Jπ T
νn

〉
; (60)

and, finally, (iii) replacing the model-space norm �Jπ T
ν ′n′,νn in

Eq. (58) with �
1
2
ν ′n′,νn and �

− 1
2

ν ′n′,νn, respectively, that is,

N± 1
2

ν ′ν (r ′, r) = δν ′ν

[
δ(r ′ − r)

r ′r
−
∑

n

Rn�(r ′)Rn�(r)

]

+
∑
n′n

Rn′�′(r ′) �
± 1

2
ν ′n′,νn Rn�(r). (61)

For the inverse operation to be permissible in Eq. (60) one has
to exclude the subspace of (fully) Pauli-forbidden states for
which λ� = 0. (We note here that in the example of Sec. II D3,
the eigenvalues of the norm kernel in the 2S1/2 are related via
λ� = 1 + γ� .)
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Both systems of coupled differential equations [Eqs. (4)
and (55)] can be cast in the form

[
T̂rel(r

′) + V̄C(r ′) − (E − E
I

′π ′
1

1 T ′
1

α′
1

)] uJπ T
ν ′ (r ′)

r ′

+
∑

ν

∫
dr r2 WJπ T

ν ′ν (r ′, r)
uJπ T

ν (r)

r
= 0, (62)

where uJπ T
ν (r) stands for either gJπ T

ν (r) (in the nonorthog-
onalized case) or χJπ T

ν (r) (in the orthogonalized case), and
WJπ T

ν ′ν (r ′, r) is the potential collecting all nonlocal terms
present in the original equation. Obviously, in the (nonorthog-
onalized) case of Eq. (4) this nonlocal potential depends upon
the energy.

To provide some illustrative examples of nonlocal potentials
corresponding to the orthogonalized case of Eq. (55), we turn
again to the n-α system, for which, as in Sec. II D3, we will
present here results of single-channel calculations with the
α particle in its g.s. Figure 8 shows the three partial waves
2S1/2,

2P1/2, and 2P3/2 obtained using the N3LO NN potential
[32]. The nonlocal potentials for the three different spin-parity
channels all rapidly vanish to zero beyond about 5 fm (as
already observed in the nonorthogonalized integral kernels),
while presenting substantially diverse structures at short range.
We note in particular the strong repulsion between nucleon and
α particle induced by the Pauli-exclusion principle in the 1

2
+ 1

2
channel and the potential well leading to the 5He resonance in
the 3

2
− 1

2 channel.

F. Solution of the radial equation

In solving Eq. (62) we assume that V̄C(r) is the only inter-
action experienced by the clusters beyond a finite separation
r0, thus dividing the configuration space into an internal region
and an external region. The radial wave function in the external
region is approximated by its asymptotic form for large r ,

uJπ T
ν (r) = i

2
v−1/2

ν

[
δνiH

−
� (ην, κνr) − SJπ T

νi H+
� (ην, κνr)

]
,

(63)

for scattering states, or

uJπ T
ν (r) = CJπ T

ν W�(ην, κνr), (64)

for bound states. Here H∓
� (ην, κνr) = G�(ην, κνr) ∓

iF�(ην, κνr) are incoming and outgoing Coulomb functions,
whereas W�(ην, κνr) are Whittaker functions. They depend
on the channel state relative angular momentum �, wave
number κν , and Sommerfeld parameter ην . The corresponding
velocity is denoted as vν . The scattering matrix SJπ T

νi

(i being the initial channel) in Eq. (63), or binding energy
and asymptotic normalization constant CJπ T

ν in Eq. (64),
together with the radial wave function in the internal
region are obtained by applying to Eq. (4) or to Eq. (55)
the coupled-channel R-matrix method on a Lagrange
mesh [36]. For the bound-state calculation κν depends on the
studied binding energy. Therefore, the determination of the
bound-state energy is achieved iteratively starting from an

FIG. 8. (Color online) Orthogonalized nonlocal potentials for the
n-α(g.s.) J πT = 1

2

+ 1
2 , 1

2

− 1
2 , and 3

2

− 1
2 channels as functions of

the relative coordinates r and r ′, using the N3LO NN potential [32].
The index ν = {4 g.s. 0+0; 1 1

2

+ 1
2 ; 1

2 �} is replaced by the quantum
number � for simplicity.

initial guess for the value of the logarithmic derivative of the
wave function at the matching radius r0.

Finally, the accuracy of the R-matrix method on a Lagrange
mesh is such that for a matching radius of r0 = 15 fm, N = 25
mesh points are usually enough to determine a phase shift
within the sixth significant digit. The typical matching radius
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TABLE II. Calculated 3H g.s. energy (in MeV) and n-3H phase shifts (in degrees) and total cross section (in barns) for increasing Nmax at
h̄
 = 18 MeV, obtained using the Vlow k NN potential [33]. The scattering results were obtained in a coupled-channel calculation including
only the g.s. of the 3H nucleus (i.e., the channels ν = {3 g.s. 1

2

+ 1
2 ; 1 1

2

+ 1
2 ; s �}).

Nmax
3H n-3H (Ekin = 0.40 MeV)

Eg.s. 0+(1S0) 0−(3P0) 1+(3S1) 1−(1P1) 1−(3P1) 1−(ε) 2−(3P2) σt

9 −7.80 −20.2 0.93 −18.9 0.85 1.96 −18.0 3.01 0.99
11 −7.96 −22.9 0.97 −20.4 1.04 2.36 −13.0 2.58 1.15
13 −8.02 −23.7 0.87 −21.0 1.24 2.47 −9.0 2.30 1.22
15 −8.11 −24.4 1.00 −21.8 1.40 2.44 −9.1 2.41 1.31
17 −8.12 −25.1 1.06 −22.6 1.52 2.52 −10.4 2.45 1.39
19 −8.16 −25.6 1.01 −22.9 1.64 2.60 −9.7 2.37 1.43

n-3H (Ekin = 0.75 MeV)

0+(1S0) 0−(3P0) 1+(3S1) 1−(1P1) 1−(3P1) 1−(ε) 2−(3P2) σt

9 −27.8 2.30 −26.2 2.19 4.96 −17.5 7.51 1.06
11 −31.3 2.39 −28.1 2.63 5.93 −12.7 6.42 1.20
13 −32.4 2.15 −28.8 3.10 6.17 −9.1 5.75 1.25
15 −33.2 2.45 −29.9 3.46 6.12 −9.5 6.08 1.33
17 −34.2 2.60 −30.9 3.74 6.30 −10.7 6.19 1.41
19 −34.8 2.49 −31.3 4.00 6.49 −10.1 6.02 1.44

and number of mesh points adopted for the present calculations
are r0 = 18 fm and N = 40.

III. RESULTS

A. A = 4

The four-nucleon scattering problem, with its complicated
interplay of low-energy thresholds and resonances, represents
a serious theoretical challenge, only recently addressed by
means of accurate ab initio calculations. Important develop-
ments in the numerical solution of the four-nucleon scattering
equations in momentum space [8] and in the treatment of the
long-range Coulomb interaction [37] have led to very accurate
ab initio calculations of scattering observables in the energy
region below the three-body breakup threshold.

In this section we use the four-nucleon system as a test-
ground to study the performances of our newly developed
NCSM/RGM approach within the SNP basis. In particular,
we present here results of coupled-channel calculations re-
stricted to basis channel states with the three-nucleon target
in its g.s. (corresponding to channel indexes of the type
ν = {3 g.s. 1

2
+ 1

2 ; 1 1
2

+ 1
2 ; s �}). Indeed, we are interested to the

energy region below the breakup threshold of the A = 3 target.
We start by studying the convergence of our calculations

with respect to the HO model-space size (Nmax) for the simplest
of the A = 4 scattering channels (i.e., the n-3H). This is a
purely T = 1 system, with no Coulomb interaction between
target and projectile. As the overall convergence behavior
strongly depends on the model of NN interaction adopted, we
first consider results obtained using the “bare” Vlow k potential
[33]. These are summarized in Table II. Both 3H g.s. energy
and n-3H scattering data present a rather weak dependence
on Nmax. However, a sudden worsening in convergence rate

is noticeable in the higher model spaces, especially for the
phase shifts of small magnitude. This is in part a reflection
of the sharp cutoff function used to derive the Vlow k potential
(where here we use the version derived from AV18 with cutoff
� = 2.1 fm−1).

Next we present n-3H phase shifts obtained using the N3LO
NN interaction [32]. The convergence behavior shown in
Fig. 9 was achieved using two-body effective interactions
tailored to the model-space truncation, as outlined in Sec. II B.
For the 1S0,

1P1, and 3S1 partial waves, the increase in
model-space size produces gradually smaller deviations with
a clear convergence toward the Nmax = 19 results. The rest of
the phase shifts, particularly the 3P0, show a more irregular
pattern. Nevertheless, in the whole energy-range we find less
than a 2◦ absolute difference between the phases obtained in the
largest and next-to-largest model spaces. The agreement within
1.5◦ of the Nmax = 19 results obtained with two different HO
frequencies, h̄
 = 19 and h̄
 = 22 MeV (see Fig. 10), is a
further indication of the fairly good degree of convergence of
our calculation.

To verify our approach, in Fig. 10 we compare our n-3H
results to earlier ab initio calculations performed in the
framework of the AGS equations [8,38], using the same
N3LO NN potential. We note that in general the agreement
between the two calculations worsens as the relative kinetic
energy in the c.m. frame, Ekin, increases. For the P waves in
particular we can reasonably reproduce the AGS calculation
for energies within 1 MeV whereas we can find differences as
large as 17◦(3P2) at Ekin = 2.6 MeV. In Fig. 11 an analogous
comparison performed for a second realistic NN interaction,
the CD-Bonn potential [39], leads to a similar picture. (Note
that, as for N3LO, the NCSM/RGM results for CD-Bonn were
also obtained by using two-body effective interactions.) These
discrepancies are due to the influence, increasing with energy,
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FIG. 9. (Color online) Calculated n-3H phase shifts as a function of the relative kinetic energy in the c.m. frame, Ekin, using the N3LO NN

potential [32] in the model spaces Nmax = 11–19, at h̄
 = 22 MeV. All results were obtained in a coupled-channel calculation including only
the g.s. of the 3H nucleus (i.e., the channels ν = {3 g.s. 1

2

+ 1
2 ; 1 1

2

+ 1
2 ; s �}).

played by closed channels not included in our calculations,
such as those with the A − 1 = 3 eigenstates above the I

π1
1 =

1
2

+
g.s. and (A − a = 2, a = 2) configurations, present in the

AGS results. As an indication, in Ref. [8] it was shown that
the omission of three-nucleon partial waves with 1

2 < I1 � 5
2

leads to effects of comparable magnitude on the AGS results,
especially for the 3S1,

3P1, and 3P2.
All A − 1 = 3 states but the I

π1
1 = 1

2
+

g.s. are in the contin-
uum and correspond to a breakup of the three-nucleon target.
Therefore, the corresponding (A − a = 3, a = 1) channels do
not represent “open” rearrangement channels in the energy
range considered here. However, it is clear from the previous
analysis that the virtual excitation of the A − 1 = 3 target

has an important influence on the n-3H elastic phase shifts
and should be included in the NCSM/RGM approach to
reach full convergence, and hence agreement with the AGS
calculation. Obviously, considering the localized nature of
the NCSM wave functions, for each I

π1
1 �= 1

2
+

one obtains a
large series of positive-energy eigenstates corresponding to a
denser and denser discretization of the A − 1 = 3 continuum,
as the HO model space increases. Consequently, it would not
be conceptually sound to try and include these states in the
NCSM/RGM SNP basis, nor would it be computationally
feasible. However, the A = 4 low-lying spectrum contains
a finite number of fairly narrow resonances, which can
be reasonably reproduced by diagonalizing the four-body
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FIG. 10. (Color online) Calculated n-3H
phase shifts using the N3LO NN potential
[32] for Nmax = 19 and h̄
 = 19 and 22 MeV,
compared to AGS results of Refs. [8,38].
All NCSM/RGM results were obtained in a
coupled-channel calculation including only the
g.s. of the 3H nucleus (i.e., the channels ν =
{3 g.s. 1
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+ 1
2 ; s �}).
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TABLE III. Calculated 3He g.s. energy (in MeV) and p-3He phase shifts (in degrees) for increasing Nmax at h̄
 = 18 MeV, obtained using
the Vlow k NN potential [33]. The scattering results were obtained in a coupled-channel calculation including only the g.s. of the 3He nucleus
(i.e., the channels ν = {3 g.s. 1

2

+ 1
2 ; 1 1

2

+ 1
2 ; s �}).

Nmax
3He p-3He (Ekin = 0.40 MeV)

Eg.s. 0+(1S0) 0−(3P0) 1+(3S1) 1−(1P1) 1−(3P1) 1−(ε) 2−(3P2)

9 −7.05 −5.88 0.304 −5.88 0.264 0.59 −17.7 0.884
11 −7.22 −7.71 0.350 −6.48 0.350 0.74 −12.8 0.808
13 −7.29 −7.72 0.364 −6.61 0.460 0.83 −8.7 0.778
15 −7.37 −8.15 0.449 −6.87 0.561 0.87 −8.2 0.851
17 −7.39 −8.24 0.525 −7.11 0.662 0.96 −9.8 0.926
19 −7.42 −8.48 0.554 −7.08 0.758 1.04 −8.9 0.950

p-3He (Ekin = 0.75 MeV)

0+(1S0) 0−(3P0) 1+(3S1) 1−(1P1) 1−(3P1) 1−(ε) 2−(3P2)

9 −12.6 1.14 −12.5 1.04 2.29 −17.2 3.38
11 −15.9 1.30 −13.6 1.35 2.83 −12.5 3.05
13 −16.0 1.34 −13.9 1.73 3.15 −8.6 2.93
15 −16.8 1.63 −14.4 2.07 3.28 −8.4 3.20
17 −17.0 1.87 −14.9 2.41 3.56 −10.0 3.46
19 −17.4 1.95 −14.9 2.71 3.83 −9.16 3.51

Hamiltonian in the NCSM model space. Therefore, it is clear
that the most efficient way of tackling the A = 4 scattering
problem would be for us to use an over-complete model
space formed by both traditional NCSM four-body states and
NCSM/RGM cluster states. Although it is in our intention to
pursue this approach, we leave it for future investigation.

In the remaining part of this section we will discuss the
scattering of protons on 3He targets. This is once again a purely
T = 1 system, but it differs from the n-3H case because of
the presence of the Coulomb interaction between the clusters,
both of which are charged. The treatment of the Coulomb
interaction between target and projectile, as explained in
Sec. II, does not represent a major obstacle in the NCSM/RGM

approach. In particular, in the following we will show that the
p-3He phase shifts present a similar convergence trend as the
one observed in their neutral counterparts.

To perform a direct comparison with the n-3H data, in
Table III we present 3He g.s. energy and p-3He scattering
phase shifts for the same (“bare”) Vlow k NN potential [33]
and relative kinetic-energy values as in Table II. As expected,
the growth of the nuclear phase shifts from zero energy is
slower in the presence of the Coulomb repulsion between the
clusters. This is especially visible at the very low energies
considered here (Ekin = 0.4 and 0.75 MeV). As the scattering
data, particularly in the P waves, are very small in magnitude,
the somewhat slower convergence rate in the biggest model
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FIG. 11. (Color online) Calculated n-3H
phase shifts using the CD-Bonn NN potential
[39] for Nmax = 19 and h̄
 = 19 MeV, compared
to AGS results of Refs. [8,38]. All NCSM/RGM
results were obtained in a coupled-channel cal-
culation including only the g.s. of the 3H nucleus
(i.e., the channels ν = {3 g.s. 1
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+ 1
2 ; s �}).
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FIG. 12. (Color online) Calculated p-3He
phase shifts for the N3LO NN potential [32]
in the model spaces Nmax = 17–19, at h̄
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All NCSM/RGM results were obtained in a
coupled-channel calculation including only the
g.s. of the 3He nucleus (i.e., the channels ν =
{3 g.s. 1

2

+ 1
2 ; 1 1

2

+ 1
2 ; s �}).

spaces already noticed in the n-3H case is emphasized even
more here. This feature, partly related to the sharp cutoff of
the Vlow k potential, results in differences of a few tenths of a
degree between the Nmax = 17 and Nmax = 19 phase shifts.

Figure 12 shows the results of this work (solid and dashed
lines) along with those of AGS calculations [38] (+ symbols)
for the p-3He phase shifts obtained using the N3LO NN

potential. The use of two-body effective interactions tailored to
the size of the adopted model spaces guarantees also in this case
a fairly good agreement (of the same order as in Fig. 9) between
the Nmax = 17 and Nmax = 19 calculations. The comparison
to the AGS results shows that the NCSM/RGM SNP basis
with the 3He nucleus in its g.s. provides the bulk of the p-3He
elastic phase shifts, confirming the observations made for the
n-3H scattering.

B. A = 5

Driven by wider efforts to develop a predictive ab initio
theory of low-energy reactions on light nuclei, ab initio
calculations for scattering processes involving five nucleons
are beginning to be realized in the past couple of years,
but they are still a rare exception. First, the n-α low-lying
Jπ = 3/2− and 1/2−P -wave resonances as well as the 1/2+
S-wave nonresonant scattering below 5 MeV c.m. energy were
obtained using the AV18 NN potential with and without the
three-nucleon force, chosen to be either the Urbana IX or
the Illinois-2 model [9]. The results of these Green’s function
Monte Carlo (GFMC) calculations revealed sensitivity to the
internucleon interaction, and in particular to the strength of the
spin-orbit force. Soon after, the development of the ab initio
NCSM/RGM approach allowed us to calculate both n-α and
(for the first time) p-α scattering phase shifts for energies up
to the inelastic threshold, using realistic NN potentials [17].
Indeed, nucleon-α scattering provides one of the best-case
scenario for the application of the NCSM/RGM approach
within the SNP basis. This process is characterized by a single
open channel up to the 4He breakup threshold, which is fairly

high in energy. In addition, the low-lying resonances of the
4He nucleus are narrow enough to be reasonably reproduced
by diagonalizing the four-body Hamiltonian in the NCSM
model space. Therefore, they can be consistently included as
closed channels in the NCSM/RGM SNP model space. In
the following we give a detailed description of previously
published [17] and new results for nucleon-α scattering.

First we present single-channel calculations carried out
using n-α channel states with the α particle in its g.s., that is,
characterized by the channel index ν = {4 g.s. 0+0; 1 1

2
+ 1

2 ; 1
2�}

(or simply by the angular quantum number �). In particular,
Table IV shows the good degree of convergence with respect

TABLE IV. Calculated 4He g.s. energy (in MeV) and n-4He phase
shifts (in degrees) and total cross sections (in barns) for increasing
Nmax at h̄
 = 18 MeV, obtained using the Vlow k NN potential [33].
The scattering results were obtained in a single-channel calculation
including only the g.s. of the 4He nucleus (i.e., the channel ν =
{4 g.s. 0+0; 1 1

2

+ 1
2 ; 1

2 �}).

Nmax
4He n-4He (Ekin = 2.5 MeV)

Eg.s.
1
2

+
(2S1/2) 1

2

−
(2P1/2) 3

2

−
(2P3/2) σt

9 −27.00 −40.0 15.6 59.9 2.59
11 −27.41 −41.2 16.5 54.8 2.41
13 −27.57 −41.8 16.4 54.5 2.41
15 −27.75 −42.2 16.6 55.3 2.46
17 −27.77 −42.5 16.6 55.2 2.46

n-4He (Ekin = 5.0 MeV)
1
2

+
(2S1/2) 1

2

−
(2P1/2) 3

2

−
(2P3/2) σt

9 −57.9 33.5 81.8 1.95
11 −58.6 33.7 86.1 1.98
13 −58.7 34.0 85.7 1.98
15 −58.7 33.9 84.6 1.97
17 −58.6 33.9 84.8 1.97
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TABLE V. Calculated p-4He phase shifts (in degrees) for increas-
ing Nmax at h̄
 = 18 MeV, using the Vlow k NN potential [33]. Results
were obtained in a single-channel calculation including only the g.s.
of the 4He nucleus (i.e., the channel ν = {4 g.s. 0+0; 1 1

2

+ 1
2 ; 1

2 �}).

Nmax p-4He (Ekin = 2.5 MeV)

1
2

+
(2S1/2) 1

2

−
(2P1/2) 3

2

−
(2P3/2)

9 −26.4 12.7 44.9
11 −27.2 14.2 38.9
13 −27.3 15.0 39.1
15 −27.2 15.7 39.9
17 −27.3 16.1 40.0

p-4He (Ekin = 5.0 MeV)
1
2

+
(2S1/2) 1

2

−
(2P1/2) 3

2

−
(2P3/2)

9 −45.8 31.3 76.5
11 −46.4 31.9 80.2
13 −46.6 32.0 80.0
15 −46.6 32.1 79.9
17 −46.5 32.0 79.9

to Nmax obtained for the 4He g.s., and for the n-α (2S1/2,
2P1/2,

and 2P3/2) phase shifts and total cross section at Ekin = 2.5
and 5 MeV, using the (bare) Vlow k NN interaction.

The corresponding p-α scattering phase shifts can be found
in Table V.

The HO model-space dependence of the Vlow k n-α phase
shifts is presented also in the left panel of Fig. 13, where it
is explored for a wider range of energies, and compared to an
analogous plot for the N3LO NN interaction (central panel).
Despite the use of two-body effective interaction as outlined
in Sec. II B, the convergence rate is visibly much slower
for N3LO. This gives a measure of the stronger short-range
correlations generated by this potential. The 2P3/2 phase shifts
present the largest (up to 5◦ in the energy range between
1 and 4 MeV) differences between the Nmax = 15 and 17
calculations, which are otherwise no more than 2◦ apart. The
third (right) panel of Fig. 13 compares the Nmax = 17 results

for the previously discussed Vlow k and N3LO NN interactions
and those obtained with the CD-Bonn NN potential [39].
The NCSM/RGM calculations for the latter potential were
carried out using two-body effective interactions and present a
convergence pattern similar to the one observed for N3LO.
Clearly, the 2P1/2 and 2P3/2 phase shifts are sensitive to
the interaction models and, in particular, to the strength of
the spin-orbit force. This observation is in agreement with
what was found in the earlier study of Ref. [9]. Following a
behavior already observed in the structure of p-shell nuclei,
CD-Bonn and N3LO interactions yield about the same spin-
orbit splitting. In contrast, the larger separation between the
Vlow k 3/2− and 1/2− resonant phase shifts is direct evidence
for a stronger spin-orbit interaction.

Because the 1/2+ channel is dominated by the repulsion
between the neutron and the α particle induced by the Pauli
exclusion principle (see also Sec. II D3), the short-range details
of the nuclear interaction play a minor role on the 2S1/2 phase
shifts. As a consequence, we find very similar results for all
of the three adopted NN potential models. Noteworthy is the
different behavior of the CD-Bonn results close to zero energy,
which appears also in the P waves.

Next we explore the effect of the inclusion of excited states
of the 4He on the n-α scattering phase shifts obtained with
the N3LO NN interaction. In contrast to the A = 4 scattering,
discussed in the previous section, binary channels of the type
(A − 2, 2) have here a much suppressed effect owing to the
large binding energy of the 4He nucleus. However, to reach full
convergence it is still necessary to take into account the virtual
excitations of the A − 1 = 4 target. To this aim we extend the
NCSM/RGM SNP model space to include closed channels of
the type ν = {4 1st ex. I

π1
1 T1; 1 1

2
+ 1

2 ; s �} with I
π1
1 T1 = 0+0,

0−0, 1−1, 2−0, and 2−1, and “1st ex.” specifies that, for each
of these spin-parity and isospin combinations, we consider
only the first (low-lying) excited state.

In addition to these single-channel results (dotted line),
Figure 14 shows coupled-channel calculations for five different
combinations of 4He states: (i) g.s., 0+0 (dash-
dotted line), (ii) g.s., 0+0, 0−0 (dash-dot-dotted line),
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FIG. 13. (Color online) Dependence on Nmax of the n-α(g.s.) phase shifts with the Vlow k [33] (left panel) and N3LO [32] (central panel)
NN potentials at h̄
 = 18 and 19 MeV, respectively, along with the results obtained in the largest model space (Nmax = 17) (right panel). The
calculation for the CD-Bonn [39] NN interaction was performed at h̄
 = 19 MeV.
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SOFIA QUAGLIONI AND PETR NAVRÁTIL PHYSICAL REVIEW C 79, 044606 (2009)

0 4 8 12 16

-90

-60

-30

0

N 3LO

Ekin [MeV]

δ
[d

eg
]

n + α

g .s.
g .s., 0+ 0

h̄ Ω = 19 MeV

2S 1/ 2

α states

0 4 8 12 16
0

30

60

90

Ekin [MeV]

δ
[d

eg
]

g .s., 0+ 0, 0 0

g .s., 0+ 0, 0 0, 1 0, 1 1

2P 1/ 2

α states

0 4 8 12 16
0

30

60

90

Ekin [MeV]

δ
[d

eg
]

g .s., 0+ 0, 2 0

g .s., 0+ 0, 2 0, 2 1

2P 3/ 2

α states

FIG. 14. (Color online) Influence of the lowest six excited states (Iπ1
1 T1 = 0+0, 0−0, 1−0, 1−1, 2−0, 2−1) of the α particle on the n-α 2S1/2

(left panel), 2P1/2 (central panel), and 2P3/2 (right panel) phase-shift results for the N3LO NN potential [32] at h̄
 = 19 MeV. Dotted (g.s.) and
dash-dotted (g.s., 0+0) lines correspond to single- and coupled-channel calculations in an Nmax = 17 model space, respectively. The effects on
the 2P1/2 and 2P3/2 phase shifts of the further inclusion of, respectively, the 0−0, 1−0, 1−1, and 2−0, 2−1 states are investigated in an Nmax =
15 model space.

(iii) g.s., 0+0, 0−0, 1−0, 1−1 (dash-dash-dotted line), (iv) g.s.,
0+0, 2−0 (dashed line), and (v) g.s., 0+0, 2−0, 2−1 (solid
line). The 0+0 excited state has a minimal influence on all
three phase shifts. In addition, for 2S1/2 (left panel) no further
corrections are found in the four larger Hilbert spaces obtained
by including the low-lying negative-parity states of 4He (but
for clarity of the figure we omitted these latter 2S1/2 results).
In contrast, we find larger deviations on the 2P1/2 (central
panel) and 2P3/2 (right panel) phase shifts, after inclusion of
the 0−0, 1−0, and 1−1 states for the first and of the 2−0 and 2−1
states for the second. These negative-parity states influence the
P phase shifts, because they introduce couplings to the s wave
of relative motion. Though also I

π1
1 = 1− couples to � = 0

in the 3/2− channel, the coupling of the I
π1
1 = 2− states is

dominant for the 2P3/2 phase shifts.
Figure 15 provides further evidence that the NCSM/RGM

SNP model space formed by nucleon-α binary channels with
the α particle in its ground and first 0+0 excited states is
sufficient to reach full convergence of the 2S1/2 phase shifts,
also in presence of the Coulomb repulsion between proton
and α particle. In the left panel, both n- and p-α N3LO results
show negligible dependence on the HO frequency, when varied
from h̄
 = 19 to 22 MeV. In the right panel, the latter phase
shifts and the corresponding Vlow k and CD-Bonn 2S1/2 results
are compared to an accurate multichannel R-matrix analysis

of nucleon-α scattering. The overall best agreement with
experiment (which is quite remarkable for p-α) is obtained
for the CD-Bonn NN interaction, where the different behavior
of this potential near zero energy is favored by the data. The
N3LO phase shifts are not very dissimilar and reproduce the
R-matrix analysis starting from an energy of roughly 2 MeV.
The Vlow k interaction generates the largest deviation from
experiment. Although these are “residual” reflections of the
interaction details, otherwise masked by the Pauli exclusion
principle, it becomes evident that scattering calculations can
provide important additional constraints on the nuclear force.

A comparison to the R-matrix analysis of Ref. [40],
including 2P1/2,

2P3/2, and 2D3/2 partial waves, is presented in
Fig. 16. Here, the n-α (left panel) and p-α (right panel) phase
shifts were obtained with the N3LO NN potential, including
the first six 4He excited states, as shown in Fig. 14. The
magnitude of the 2D3/2 phase shifts, calculated (as the 2S1/2)
in a NCSM/RGM SNP model space with ground and first 0+0
excited states of the α particle, is qualitatively reproduced. In
contrast, the P phase shifts present both insufficient magnitude
and splitting with respect to the predictions of the R-matrix
analysis. Although the inclusion of two more 4He negative
excited states (first 0−1 and second 1−1) beyond the five
considered here could introduce small corrections, it is not
likely that they would explain the present discrepancy with
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FIG. 16. (Color online) Calculated n-α (left
panel) and p-α (right panel) phase shifts for
the N3LO NN potential [32] compared to
an R-matrix analysis of data (+) [40]. 2S1/2

results are as in Fig. 15. The 2P1/2 and
2P3/2 phase shifts correspond to the dash-dash-
dotted (g.s., 0+0, 0−0, 1−0, 1−1) and solid (g.s.,
0+0, 2−0, 2−1) lines of Fig. 14. The 2D3/2

phase shifts were obtained in a coupled-channel
calculation including ground and first 0+ excited
states of 4He, in an Nmax = 17 HO model space.

respect to experiment of the 2P1/2 and 2P3/2 results. However,
by considering the sensitivity of these phase shifts to the
strength of the spin-orbit force, the inclusion of the NNN

terms of the chiral interaction would probably lead to an
enhanced spin-orbit splitting and recover the predictions of
the R-matrix analysis.

C. A = 11

With the advent of experimental programs on exotic nuclei,
the description of weakly bound nuclei has become one
of the priorities of modern nuclear theory. As techniques
traditionally successful for well-bound nuclei struggle to
reproduce new phenomena observed in the radioactive-beam
facilities, the interplay of structure and reaction mechanisms
is now unanimously recognized as a prime element for a
successful description of weakly bound nuclei. Such interplay
is an intrinsic characteristic in the ab initio NCSM/RGM,
where bound and scattering states are treated in a unified
formalism. In this section we test the performance of our
formalism in the SNP basis for the description of one-nucleon
halo systems, and at the same time we show the versatility and
promise of the NCSM/RGM for the description of the structure
and reactions of p-shell nuclei.

Among light drip-line nuclei, 11Be provides a convenient
test of several important properties of neutron-rich nuclei. In
particular, the parity-inverted ground state of this nucleus, first
observed by Talmi and Unna in the early 1960s [41], represents
one of the best examples of disappearance of the N = 8 magic
number with increasing N/Z ratio.

The only previous ab initio investigations of the 11Be
low-lying states, consisting of large-scale NCSM calculations
with realistic NN potentials, were unable to reproduce this
phenomenon [42]. This result was partly attributed to the size
of the HO basis, which was not large enough to reproduce the
correct asymptotic of the n-10Be component of the 11-body
wave function. At the same time the calculations performed
with the INOY (inside nonlocal outside Yukawa) NN potential
of Doleschall and co-workers [43] suggested that the use of a
realistic NNN force in a large NCSM basis might correct this
discrepancy with experiment.

The correct asymptotic behavior of the n-10Be wave
functions can be reproduced when working within microscopic
cluster techniques. Starting from a microscopic Hamiltonian
containing the Volkov NN potential [44], the Coulomb inter-
action, and a zero-range spin-orbit force [45], Descouvemont
was able to reproduce the inversion of the 1/2+ and 1/2− 11Be
bound states within the generator coordinate method (GCM)
[46]. However, the use of two different parametrizations of
the Volkov potential for positive- and negative-parity states
(chosen to reproduce, respectively, the experimental binding
energies of the 1/2+ g.s. and 1/2− first excited state) was key
to this result. With a single parametrization for both parities,
the lowest energy is obtained once again for the 1/2− state, in
contradiction with experiment. The introduction of the tensor
force (missing in Ref. [46]) and the use of a richer structure
for the 11Be wave function could probably cure this problem.

A more complete bibliography on the 11Be g.s. parity
inversion and the theoretical attempts to reproduce it can be
found in Refs. [42,46] and references therein.

Here, low-energy phase shifts for neutron scattering on
10Be and low-lying levels of 11Be are studied by means
of NCSM/RGM coupled-channel calculations with n-10Be
channel states including the 10Be ground and 2+

1 , 2+
2 ,

and 1+
1 excited states (corresponding to channel indexes

of the type ν = {11 α1 I
π1
1 T1; 1 1

2
+ 1

2 ; s �} with α1 I
π1
1 T1 =

g.s. 0+1, 1st ex. 2+1, 2nd ex. 2+1, and 1st ex. 1+1). The
NCSM 10Be eigenstates, calculated for the first time in
Ref. [47], are obtained here in a Nmax = 6 model space.
Correspondingly, the 11-body NCSM/RGM model space
is Nmax = 6 and 7 for negative- and positive-parity wave
functions, respectively. To perform a direct comparison to
the NCSM results for 11Be [42] obtained using the CD-Bonn
NN interaction [39], we adopt the same nuclear potential and
optimal HO frequency, h̄
 = 13 MeV.

In Table VI, we present energies of the lowest 1/2+
and 1/2− states of 11Be obtained in the NCSM and in the
NCSM/RGM calculations. Clearly, there is little difference
between the Nmax = 6/7 and Nmax = 8/9 NCSM results. The
1/2− state is the ground state and the excitation energy of
the 1/2+ state is about 3 MeV (or about 2.8 MeV above the
n-10Be threshold). The NCSM/RGM calculations that include
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TABLE VI. Calculated energies (in MeV) of the 10Be g.s. and of the lowest negative- and
positive-parity states in 11Be, obtained using the CD-Bonn NN potential [39] at h̄
 = 13 MeV. The
NCSM/RGM results were obtained using n + 10Be configurations with Nmax = 6 g.s., 2+

1 , 2+
2 , and

1+
1 states of 10Be.

Nmax
10Be 11Be( 1

2

−
) 11Be( 1

2

+
)

Eg.s. E Eth E Eth

NCSM [42,47] 8/9 −57.06 −56.95 0.11 −54.26 2.80
NCSM [42,47]a 6/7 −57.17 −57.51 −0.34 −54.39 2.78
NCSM/RGMa −57.59 −0.42 −57.85 −0.68
Expt. −64.98 −65.16 −0.18 −65.48 −0.50

aPresent calculation.

10Be g.s. and the three lowest calculated excited states (2+
1 , 2+

2 ,
and 1+

1 ) show little change for the energy of the 1/2− state.
However, we observe a dramatic decrease (∼3.5 MeV) of the
energy of the 1/2+ state. In the NCSM/RGM calculations,
both the 1/2− and 1/2+ states are bound and the 1/2+ state
becomes the ground state of 11Be. To understand the binding
mechanism of the 1/2+ state, we evaluated mean values of
the relative kinetic and potential energies as well as the mean
value of the 10Be energy. The results are given in Table VII
together with the corresponding values obtained by restricting
all the kernels to the model space [i.e., by replacing the delta
function of Eq. (35) with its representation in the HO model
space]. The model-space-restricted calculation is then similar,
although not identical, to the standard NCSM calculation. In
particular, as in the NCSM one loses the correct asymptotic
behavior of the wave functions, which is otherwise guaranteed
in the NCSM/RGM. Because of the rescaling of the relative
wave function in the internal region when the Whittaker tail
is recovered, in the full NCSM/RGM calculation we observe
that both relative kinetic and potential energies are smaller in
absolute value. The drop is significantly more substantial for
the relative kinetic energy than for the potential energy. This
is the main cause of the dramatic decrease of the energy of
the 1/2+ state, which makes it bound and even leads to a g.s.
parity inversion. Although we cannot exclude that the NNN

force plays a role in the inversion mechanism, it is clear that
a proper treatment of the coupling to the n-10Be continuum is
essential in explaining the g.s. parity inversion.

Our calculated 2S1/2 n-10Be phase shifts are displayed in
Fig. 17. We show results obtained with different number of
10Be states. The phase shift does not change significantly,
once the lowest 2+ state is taken into account. A bound state
was found, however, already by using just the 10Be ground
state. We also calculated the S-wave scattering length. With

TABLE VII. Mean values of the relative kinetic and potential
energy and of the internal 10Be energy in the 11Be 1/2+ ground state.
All energies in MeV. The NCSM/RGM calculation is as in Table VI.
See the text for further details.

NCSM/RGM 〈Trel〉 〈W 〉 E[10Be(g.s., ex.)] Etot

Model space 16.65 −15.02 −56.66 −55.03
Full 6.56 −7.39 −57.02 −57.85

all four 10Be states (g.s., 2+
1 , 2+

2 , and 1+
1 ) included we found

a 2S1/2 scattering length of +10.7 fm. This can be compared
to the value of +13.6 fm obtained in the GCM calculations of
Ref. [46]. In those calculations, the 11Be experimental binding
energy of 0.5 MeV was fitted. Our calculated binding energy
is slightly higher: 0.68 MeV. Correspondingly, our calculated
scattering length is smaller.

In Fig. 18, we show our calculated 2D5/2 n-10Be phase
shifts obtained using different number of 10Be states. In this
channel, we find a resonance below 3 MeV. To observe this
resonance, it is crucial to include at least the first 2+ excited
state of 10Be in the NCSM/RGM calculations. The restriction
to just the 10Be ground state results in a smooth slowly rising
phase shift with no resonance at low energy. We note that
a resonance has been experimentally observed at ∼1.8 MeV
with a tentative spin assignment (5/2, 3/2)+ [48].

The results presented in this section demonstrate the
promise of the NCSM/RGM approach for applications to the
p-shell nuclei. A significant improvement in the description
of halo nuclei is achieved in particular when comparing
to the standard NCSM calculations. The 11Be and n-10Be
calculations discussed here were obtained in a limited model
space. We will improve on this in the future by expanding
the model-space sizes similarly as we did for the A = 4
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FIG. 17. (Color online) Calculated 2S1/2 n-10Be phase shifts as a
function of Ekin, using the CD-Bonn NN potential. The NCSM/RGM
calculation is as in Table VI. The obtained scattering length is
+10.7 fm.
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FIG. 18. (Color online) Calculated 2D5/2 n-10Be phase shifts as a
function of Ekin, using the CD-Bonn NN potential. The NCSM/RGM
calculation is as in Table VI.

and A = 5 systems. This will also allow us to calculate
reliably, for example, the P -wave scattering length predicted
to have a very large value [49]. For light p-shell nuclei, it is
presently feasible to perform calculations with Nmax ∼ 12–16.
For heavy and mid-p-shell nuclei, it becomes possible to
employ the importance-truncated NCSM [50] to expand target
wave functions in large Nmax model spaces.

IV. CONCLUSIONS

We have presented in detail the NCSM/RGM formalism.
This is a new ab initio many-body approach capable of
describing simultaneously both bound and scattering states in
light nuclei, by combining the RGM with the use of realistic
interactions and a microscopic and consistent description of
the nucleon clusters, achieved via the ab initio NCSM. In
particular, we have derived the algebraic expressions for the
integral kernels for the case of a single-nucleon projectile,
working with both the Jacobi-coordinate and SD single-
particle coordinate bases. As the spurious c.m. components
present in the SD basis were removed exactly, in both
frameworks the calculated integral kernels are translationally
invariant and lead to identical results. Several analytical
as well as numerical tests were performed to verify the
approach, particularly by benchmarking independent Jacobi-
coordinate and SD calculations for systems with up to five
nucleons.

Among the applications, we presented results for neutron
scattering on 3H, 4He, and 10Be and proton scattering on 3,4He,
using realistic NN potentials. Our A = 4 scattering results
were compared to earlier ab initio calculations. We found that
the CD-Bonn NN potential in particular provides an excellent
description of nucleon-4He S-wave phase shifts. In contrast,
the P -wave phase shifts that we obtained with any of the
realistic NN potentials present both insufficient magnitude
and splitting with respect to the R-matrix analysis of the data. It
is anticipated that the inclusion of the NNN terms of the chiral
interaction would lead to an enhanced spin-orbit splitting, and

recover the predictions of the R-matrix analysis. An important
topic of this work has been the investigation of the parity
inversion of the 11Be nucleus. Although we cannot exclude
that, for example, the NNN force plays a role in the inversion
mechanism, we have demonstrated that a proper treatment
of the coupling to the n-10Be continuum leads to a dramatic
decrease of the energy of the 1

2
+

state, which makes it bound
and even leads to a g.s. parity inversion.

It is straightforward to extend the NCSM/RGM formal-
ism to include two-nucleon (deuteron), three-nucleon (triton
and 3He), and four-nucleon (4He) projectiles. Further, it is
possible and desirable to extend the binary-cluster (A − a, a)
NCSM/RGM basis by the standard A-nucleon NCSM basis
to unify the original ab initio NCSM and NCSM/RGM
approaches. This will lead to a much faster convergence of the
many-body calculations compared to the original approaches
and, most importantly, to an optimal and balanced unified
description of both bound and unbound states. Extensions
of the approach to include three-body cluster channels are
also among our future plans, and the feasibility of such a
project is supported by recent developments on the treatment
of both three-body bound and continuum states (see, e.g., Refs.
[19–23]). In the NCSM/RGM a large HO basis expansion is
needed not just for the convergence of the target and projectile
eigenstates but also for the convergence of the localized
parts of the integration kernels. The recently developed
importance-truncated NCSM [50] makes it possible to use
large Nmax model spaces even for heavy p-shell nuclei and
beyond. Using importance-truncated target wave functions
within the NCSM/RGM formalism will allow us to reach for
scattering calculations on heavier nuclei the same level of
convergence obtained here for the A = 4 and A = 5 systems.
The development of the two-to-four-nucleon projectile for-
malism, the unification of the NCSM/RGM with the standard
NCSM, which we name ab initio NCSM with continuum
(NCSMC), and applications of importance-truncated wave
functions within the NCSM/RGM are underway.
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APPENDIX A: JACOBI-COORDINATE DERIVATION

1. A = 3

Continuing from Sec. II D1, where we have discussed the
exchange part of the norm kernel, here we complete the
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Jacobi-coordinate derivation of the integral kernels for the
A = 3 (a = 1) system. For the notation we refer the interested
reader to Eqs. (44)–(46).

As shown in Eq. (40), in the case of the “direct” potential
kernel one needs to evaluate matrix elements of the interaction
between the last two nucleons, 〈V (�r2 − �r3, σ2σ3τ2τ3)(1 −
P̂23)〉. It is therefore convenient to introduce two new Jacobi
coordinates,

�ζ1 =
√

2

3

[
1

2

(�r2 + �r3
)− �r1

]
, (A1)

�ζ2 = 1√
2

(�r2 − �r3), (A2)

and switch to the HO basis states in which nucleons 2 and
3 are coupled together to form two-particle states of the
form

〈
ζ2σ2σ3τ2τ3|N2L2S2J2T2

〉
, where N2 and L2 are the HO

quantum numbers corresponding to the harmonic oscillator
associated with �ζ2, and S2, J2, and T2 are the two-nucleon
spin, total angular momentum, and isospin quantum numbers
of the (2,3)-nucleons couple, respectively. This task can be
achieved, for example, by continuing from the expansion of
Eq. (46):〈
�ξ1 �η2σ1σ2σ3

∣∣∣∣
[

(n1�1, n�)�;

(
s1

1

2

)
Z

]
Jπ

〉〈
τ1τ2τ3

∣∣∣∣
(

T1
1

2

)
T

〉

=
∑
T2

(−)
3
2 +T T̂1T̂2

{
1
2

1
2 T1

1
2 T T2

}∑
S2

(−)
3
2 +Zŝ1Ŝ2

×
{

1
2

1
2 s1

1
2 Z S2

} ∑
N2L2,NL

〈N2L2,NL,�|n�, n1�1,�〉3

×
∑
J ,J2

L̂ẐĴ Ĵ2

⎧⎪⎨
⎪⎩
L 1

2 J
L2 S2 J2

� Z J

⎫⎪⎬
⎪⎭

×〈�ζ1�ζ2σ1σ2σ3τ1τ2τ3|[NLJ ; N2L2S2J2T2]JπT 〉. (A3)

Here N ,L, and J are the HO quantum numbers corre-
sponding to the HO state associated with �ζ1 and the total
angular momentum of the first nucleon with respect to
the center of mass of the last two, respectively. Further,
〈N2L2,NL,�|n�, n1�1,�〉3 are the general HO brackets
for two particles with mass ratio 3, which are the elements
of the orthogonal transformation between the HO states
〈�ξ1 �η2|(n1�1, n�)�〉 and 〈�ζ1�ζ2|(NL, N2L2)�〉.

By combining the expansions of Eqs. (46) and (A3) it
is possible to write the following expression for the A = 3
“direct” potential kernel in the SNP basis:

VD
ν ′ν(r ′, r)

= 2
∑
n′n

Rn′�′(r ′, b)Rn�(r, b)
∑

n′
1�

′
1s

′
1

〈
n′

1�
′
1s

′
1I

′
1T

′
1

∣∣2 α′
1I

′π ′
1

1 T ′
1

〉

×
∑
n1�1s1

〈
n1�1s1I1T1

∣∣2 α1I
π1
1 T1

〉

× (−)s
′+s+I ′

1+I1+1ŝ ′
1ŝ1Î

′
1Î1T̂

′
1T̂1ŝ

′ŝ

×
∑

S2J2T2

Ŝ2
2 Ĵ 2

2 T̂ 2
2

{
1
2

1
2 T ′

1

1
2 T T2

}{
1
2

1
2 T1

1
2 T T2

}

×
∑

�′�K

�̂′ 2�̂2K̂2(−)�
′+�

⎧⎪⎪⎨
⎪⎪⎩

J 1
2 s ′

1 �′
1

K 1
2 I ′

1 �′

�′ S2
1
2 s ′

⎫⎪⎪⎬
⎪⎪⎭

×

⎧⎪⎪⎨
⎪⎪⎩

J 1
2 s1 �1

K 1
2 I1 �

� S2
1
2 s

⎫⎪⎪⎬
⎪⎪⎭
∑
N ′

2L
′
2

∑
N2L2

∑
NL

{
L′

2 S2 J2

K L �′

}

×
{

L2 S2 J2

K L �

}
〈N ′

2L
′
2,NL,�′|n′�′, n′

1�
′
1,�

′〉3

×〈N2L2,NL,�|n�, n1�1,�〉3[1 − (−)L2+S2+T2 ]

×〈N ′
2L

′
2S2J2T2|V (

√
2�ζ1 σ2σ3τ2τ3)|N2L2S2J2T2〉.

(A4)

Finally, for the A = 3 system, the “exchange” part of the
potential kernel resembles closely the exchange part of the
norm kernel and can be derived in a very similar way as
the latter. Indeed, besides different multiplicative factors,
Eqs. (37) and (41) differ only in the presence of the interaction
between the second-to-last and next-to-last nucleons (the target
nucleons in this case), the matrix elements of which can
be easily calculated using the basis (44). Therefore, A = 3
“exchange” potential in the SNP basis is given by

V ex
ν ′ν(r ′, r)

= −2
∑
n′n

Rn′�′(r ′)Rn�(r)
∑
n′

1�
′
1s

′
1

〈
n′

1�
′
1s

′
1I

′
1T

′
1

∣∣2 α′
1I

′π ′
1

1 T ′
1

〉

×
∑
n1�1s1

〈
n1�1s1I1T1

∣∣2 α1I
π1
1 T1

〉

× T̂ ′
1T̂1(−)T

′
1+T1

{
1
2

1
2 T1

1
2 T T ′

1

}
ŝ ′

1ŝ1Î
′
1Î1ŝ

′ŝ (−)�1+�

×
∑
�,Z

�̂2Ẑ2(−)�
{

1
2

1
2 s1

1
2 Z s ′

1

}{
�′

1 Z s ′

J �′ �

}

×
{

�′
1 Z s ′

1
2 I ′

1 s ′
1

}∑
N1L1

{
L1 Z s

J � �

}{
L1 Z s

1
2 I1 s1

}

×〈n′�′, n′
1�

′
1,�|N1L1, n�,�〉3

×〈N1L1s1I1T1|V (
√

2ξ1σ1σ2τ1τ2)|n1�1s1I1T1〉. (A5)

Note that this expression can be easily reduced to the exchange
part of the norm kernel by replacing V (

√
2ξ1σ1σ2τ1τ2) with 1.

2. A � 4

The expressions derived in this Appendix are valid for
systems with A � 4 (a = 1).
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We start by deriving the simplest of the integral kernels
[i.e., the exchange part of the norm kernel (37)]. To this aim,
it is convenient to expand the (A − 1)-nucleon eigenstates
|A−1 α1I

π1
1 T1〉 onto a HO basis containing antisymmetric

subclusters of A − 2 nucleons, that is,

|(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1〉. (A6)

Here, the antisymmetric states |NA−2iA−2JA−2TA−2〉 de-
pend on the first A − 3 Jacobi coordinates of Eq. (13)
(�ξ1, �ξ2, . . . , �ξA−3) and the first A − 2 spin and isospin co-
ordinates; they are characterized by the total number of

HO excitations, spin, isospin, and additional quantum num-
bers NA−2, JA−2, TA−2, and iA−2, respectively. The basis
states (A6) are not antisymmetrized with respect to the
next-to-last nucleon, which is represented by the HO state
〈�ξA−2σA−1τA−1|nA−1�A−1jA−1〉, where nA−1, �A−1 are the HO
quantum numbers corresponding to the harmonic oscillator
associated with �ξA−2, and jA−1 is the angular momentum of
the (A − 1)th nucleon relative to the c.m. of the first A − 2.
In terms of the basis states (A6), the HO Jacobi channel
state of Eq. (22) for the (A − 1, 1) system can be written
as

∣∣�Jπ T
νn

〉 = ∑〈
(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1

∣∣∣∣A − 1 α1I
π1
1 T1

〉

×
∣∣∣∣
[ (

(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1) I1T1;
1

2

1

2

)
sT ; n�

]
JπT

〉
, (A7)

where 〈(NA − 2iA − 2JA − 2TA− 2; nA − 1�A − 1jA −1)I1T1|A−1 α1

I
π1
1 T1〉 are the coefficients of the expansion [25] of

the (A − 1)-cluster eigenstates on the basis (A6),
and the sum runs over the quantum numbers
NA−2, iA−2, JA−2, TA−2, nA−1, �A−1, and jA−1.

According to Eq. (37), to obtain the exchange part of
the norm kernel we need to evaluate matrix elements of
the permutation corresponding to the exchange of the last
two particles, P̂A−1,A. The task can be accomplished by, for
example, switching to a more convenient coupling of the
nucleon quantum numbers:

∣∣∣∣
[(

(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1;
1

2

1

2

)
sT ; n�

]
JπT

〉

= (−)JA−2+I1+�− 1
2 +2J ĵA−1Î1ŝ

∑
K

K̂(−)K
∑
�,S2

�̂Ŝ2

⎧⎪⎪⎨
⎪⎪⎩

1
2 S2 K JA−2

1
2 � J I1

jA−1 �A−1 � s

⎫⎪⎪⎬
⎪⎪⎭

× |[NA−2iA−2JA−2; ((nA−1�A−1, n�)�S2)K]Jπ 〉
∣∣∣∣
((

TA−2
1

2

)
T1

1

2

)
T

〉
, (A8)

and observing that, as a result of the action of P̂A−1,A,
the HO state 〈�ξA−2 �ηA−1|(nA−1�A−1, n�)�〉 is changed into
〈�ξ ′

A−2 �η ′
A−1|(nA−1�A−1, n�)�〉. (For a definition of the 12-j

symbol see Appendix B.) The new set of Jacobi coordinates
�ξ ′
A−2 and �η ′

A−1 (obtained from �ξA−2 and �ηA−1, respectively,
by exchanging the single-nucleon indexes A − 1 and A) can
be expressed as an orthogonal transformation of the unprimed
ones. Consequently, the HO states depending on them are
related by the orthogonal transformation

〈�ξ ′
A−2 �η ′

A−1|(nA−1�A−1, n�)�〉

=
∑

NL,NA−1LA−1

〈NL,NA−1LA−1,�|nA−1�A−1, n�,�〉A(A−2)

×(−)L+LA−1−�〈�ξA−2 �ηA−1|(NA−1LA−1, NL)�〉, (A9)

where the elements of the transformation are the general HO
brackets for two particles with mass ratio d = A(A − 2). After
taking care of the action of P̂A−1,A also on the spin and isospin
coordinates, one can complete the derivation and write the
following expression for the A � 4 exchange part of the norm
kernel in the SNP basis:

N ex
ν ′ν(r ′, r)

= −(A − 1)
∑
n′n

Rn′�′(r ′)Rn�(r)
∑〈

(NA−2iA−2JA−2TA−2; n′
A−1�

′
A−1j

′
A−1)I ′

1T
′

1

∣∣A−1 α′
1I

′π ′
1

1 T ′
1

〉
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× 〈(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1

∣∣A−1 α1I
π1
1 T1

〉
× T̂ ′

1T̂1(−)1+T ′
1+T1

{
1
2 TA−2 T1

1
2 T T ′

1

}
ĵ ′
A−1ĵA−1Î

′
1Î1ŝ

′ŝ(−)s
′+s+�′

A−1+�
∑
�,Z

�̂2Ẑ2(−)�
{

j ′
A−1 JA−2 I ′

1

jA−1 Z I1

}

×
{

�′
A−1

1
2 j ′

A−1

I1 Z s

}{
�A−1

1
2 jA−1

I ′
1 Z s ′

}⎧⎪⎨
⎪⎩

� �′
A−1 �′

�A−1 Z s ′

� s J

⎫⎪⎬
⎪⎭ 〈n′�′, n′

A−1�
′
A−1,�|nA−1�A−1, n�,�〉A(A−2), (A10)

where the second sum runs over the quantum num-
bers NA−2, iA−2, JA−2, TA−2, n

′
A−1, �

′
A−1, j

′
A−1, nA−1, �A−1,

and jA−1. This expression was obtained by expanding the
12-j symbol of Eq. (A8) according to Eq. (B1) or (B1), and
summing over the quantum numbers S2 and K2. Note that
the norm kernel is symmetric under exchange of primed and
unprimed indexes and coordinates.

We turn now to the derivation of the “direct” potential kernel
of Eq. (40). As shown in Eq. (40), in this case one needs to
evaluate matrix elements of the interaction between the last
two nucleons, 〈V (�rA−1 − �rA, σA−1σAτA−1τA)(1 − P̂A−1,A)〉. It
is therefore useful to introduce two new Jacobi coordinates,

�ζA−2 =
√

2(A − 2)

A

[
1

2
(�rA−1 + �rA) − 1

A − 2

A−2∑
i=1

�ri

]
, (A11)

�ζA−1 = 1√
2

(�rA−1 − �rA), (A12)

and switch to the HO basis states in which nucleons A −
1 and A are coupled together to form two-particle states of
the form

〈
ζA−1σA−1σAτA−1τA|N2L2S2J2T2

〉
, where N2 and L2

are the HO quantum numbers corresponding to the harmonic
oscillator associated with �ζA−1, and S2, J2, and T2 are the two-
nucleon spin, total angular momentum, and isospin quantum
numbers of the (A − 1, A)-nucleons couple, respectively. This
task can be achieved, for example, by continuing from the
expansion of Eq. (A8):

〈�ξ1 · · · �ξA−2 �ηA−1σ1 · · · σA−1σA|[NA−2iA−2JA−2; ((nA−1�A−1, n�)�S2)K]Jπ 〉
〈
τ1 · · · τA−1τA

∣∣∣∣
((

TA−2
1

2

)
T1

1

2

)
T

〉

= (−)1+TA−2+T +S2+KT̂1�̂
∑
T2,J2

T̂2Ĵ2

{
TA−2

1
2 T1

1
2 T T2

} ∑
N2L2,NL

(−)L2+L

{
L L2 �

S2 K J2

}
〈N2L2,NL,�|n�, nA−1�A−1,�〉 A

A−2

×〈�ξ1 · · · �ζA−2�ζA−1σ1 · · · σA−1σAτ1 · · · τA−1τA|[NA−2iA−2JA−2TA−2;
(
NL; N2L2S2J2T2

)
KT2]JπT 〉. (A13)

At this point, the expression for the “direct” potential kernel
can be easily derived by combining Eqs. (A6) and (A13), and

observing that VA−1,A(1 − P̂A−1,A) is diagonal in the quantum
numbers NA−2iA−2JA−2TA−2,NL, and S2J2T2:

VD
ν ′ν(r ′, r)

= (A − 1)
∑
n′n

Rn′�′(r ′)Rn�(r)
∑〈

(NA−2iA−2JA−2TA−2; n′
A−1�

′
A−1j

′
A−1)I ′

1T
′

1

∣∣A−1 α′
1I

′π ′
1

1 T ′
1

〉
× 〈(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1

∣∣A−1 α1I
π1
1 T1

〉
(−)1+2J+I ′

1+I1+�′+�ĵ ′
A−1ĵA−1Î

′
1Î1T̂

′
1T̂1ŝ

′ŝ

×
∑

S2,J2,T2

Ŝ2
2 Ĵ 2

2 T̂ 2
2

{
TA−2

1
2 T ′

1

1
2 T T2

}{
TA−2

1
2 T1

1
2 T T2

}∑
K

K̂2
∑
�′,�

�̂′2�̂2

⎧⎪⎪⎨
⎪⎪⎩

1
2 S2 K JA−2

1
2 �′ J I ′

1

j ′
A−1 �′

A−1 �′ s ′

⎫⎪⎪⎬
⎪⎪⎭
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×

⎧⎪⎪⎨
⎪⎪⎩

1
2 S2 K JA−2

1
2 � J I1

jA−1 �A−1 � s

⎫⎪⎪⎬
⎪⎪⎭
∑
NL

∑
N ′

2L
′
2

∑
N2L2

〈N ′
2L

′
2,NL,�|n′�′, n′

A−1�
′
A−1,�

′〉 A
A−2

〈N2L2,NL,�|n�, nA−1�A−1,�〉 A
A−2

×
{
L L′

2 �′

S2 K J2

}{
L L2 �

S2 K J2

}
[1 − (−)L2+S2+T2 ]〈N ′

2L
′
2S2J2T2|V (

√
2�ζA−1σA−1σAτA−1τA)|N2L2S2J2T2〉, (A14)

where the summation runs over the quantum numbers
NA−2, iA−2, JA−2, TA−2, nA−1, �A−1, and jA−1, as well as over
the corresponding primed indexes.

Finally, we discuss the derivation of the “exchange”
potential kernel [Eq. (41)]. The latter is a function of the
matrix elements on the Jacobi channel states [Eq. (A7)]
of the product of the P̂A−1,A exchange operator and the
interaction between the (A − 2)th and (A − 1)th nucleons:
〈�Jπ T

ν ′n′ |P̂A−1,A VA−2,A−1|�Jπ T
νn 〉. Therefore one may proceed,

for example, by first evaluating the action of P̂A−1,A on the bra

〈�Jπ T
ν ′n′ |, and then the matrix elements of VA−2,A−1 between

the modified bra and the ket |�Jπ T
νn 〉. For the first step one

can utilize (as done before for the “exchange” norm kernel),
Eq. (A8). However, here, after the calculation of the action of
the exchange operator, it is convenient to perform the inverse of
the transformation of Eq. (A8) to return to the original coupling
scheme of Eq. (A7). Indeed, the interaction VA−2,A−1 acts
on the (A − 1)-cluster states and is diagonal in the quantum
numbers n, �, and s. The intermediate results resemble closely
the expression of the exchange norm kernel and read

V ex
ν ′ν(r ′, r)

= −(A − 1)(A − 2)
∑
n′n

Rn′�′(r ′)Rn�(r)
∑〈

(N ′
A−2i

′
A−2J

′
A−2T

′
A−2; n′

A−1�
′
A−1j

′
A−1)I ′

1T
′

1

∣∣A−1 α′
1I

′π ′
1

1 T ′
1

〉

×〈(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1

∣∣A−1 α1I
π1
1 T1

〉
T̂ ′

1T̂1(−)1+T ′
1+T1

{
1
2 T ′

A−2 T1

1
2 T T ′

1

}

×
∑

NA−1LA−1JA−1

ĵ ′
A−1ĴA−1Î

′
1Î1ŝ

′ŝ(−)s
′+s+�′

A−1+�
∑
�,Z

�̂2Ẑ2(−)�
{

j ′
A−1 J ′

A−2 I ′
1

JA−1 Z I1

}{
�′

A−1
1
2 j ′

A−1

I1 Z s

}{
LA−1

1
2 JA−1

I ′
1 Z s ′

}

×

⎧⎪⎨
⎪⎩

� �′
A−1 �′

LA−1 Z s ′

� s J

⎫⎪⎬
⎪⎭ 〈n�,NA−1LA−1,�|n′

A−1�
′
A−1, n

′�′,�〉A(A−2)

× 〈(N ′
A−2i

′
A−2J

′
A−2T

′
A−2;NA−1LA−1JA−1)I1T1

∣∣VA−2,A−1

∣∣(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1
〉
, (A15)

where the summation runs over both the primed and un-
primed sets of quantum numbers N ′

A−2, i
′
A−2, J

′
A−2, T

′
A−2,

n′
A−1, �

′
A−1, j

′
A−1 and NA−2, iA−2, JA−2, TA−2, nA−1, �A−1,

jA−1. Note that, by replacing VA−2,A−1 with 1, one correctly
recovers the exchange part of the norm kernel [Eq. (A10)]. For
the second step, that is, the evaluation of the matrix elements of
the interaction between the second- and next-to-last nucleons,
V (�rA−2 − �rA−1, σA−2σA−1τA−2τA−1), we introduce two new
Jacobi coordinates, namely

�ρA−3 =
√

2(A − 3)

A − 1

[
1

A − 3

A−3∑
i=1

�ri − 1

2
(�rA−2 + �rA−1)

]

(A16)

and

�ρA−2 = 1√
2

(�rA−2 − �rA−1), (A17)

and switch to the HO basis states in which nucleons A − 2 and
A − 1 are coupled together to form two-particle states of the
form

〈 �ρA−2σA−2σA−1τA−2τA−1|n2�2s2j2t2
〉
, where n2 and �2

are the HO quantum numbers corresponding to the harmonic
oscillator associated with �ρA−2, and s2, j2, and t2 are the two-
nucleon spin, total angular momentum, and isospin quantum
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numbers, respectively:

〈�ξ1 · · · �ξA−3�ξA−2σ1 · · · σA−3σA−2τ1 · · · τA−3τA−2|(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1〉
=
∑

〈NA−3iA−3JA−3TA−3; nA−2�A−2jA−2||NA−2iA−2JA−2TA−2〉(−)TA−3+T1 T̂A−2(−)jA−2+jA−1+JA−3+I1 ĴA−2ĵA−2ĵA−1

×
∑
Y

Ŷ

{
JA−3 jA−2 JA−2

jA−1 I1 Y

}∑
s2j2t2

ŝ2ĵ2 t̂2(−)j2+t2

{
TA−3

1
2 TA−2

1
2 T1 t2

}∑
λ

λ̂2

⎧⎪⎪⎨
⎪⎪⎩

�A−2
1
2 jA−2

�A−1
1
2 jA−1

λ s2 Y

⎫⎪⎪⎬
⎪⎪⎭

∑
n1�1,n2�2

{
�1 �2 λ

s2 Y j2

}

×〈n2�2, n1�1, λ|nA−1�A−1, nA−2�A−2, λ〉 A−1
A−3

×〈�ξ1 · · · �ρA−3 �ρA−2σ1 · · · σA−2σA−1τ1 · · · τA−2τA−1|(NA−3iA−3JA−3TA−3; (n1�1; n2�2s2j2t2)Y t2)I1T1〉. (A18)

In deriving this expression, we have expanded the
(A − 2)-nucleon antisymmetric states |NA−2iA−2JA−2TA−2〉
onto a basis containing an antisymmetric subcluster of
A − 3 nucleons, using the coefficient of fractional parentage
〈NA−3iA−3JA−3TA−3; nA−2�A−2jA−2||NA−2iA−2JA−2TA−2〉.
The summation is intended over the quantum numbers
NA−3, iA−3, JA−3, TA−3, nA−2, �A−2, and jA−2.

In this basis,which is not antisymmetric for exchanges of the
(A − 2)th nucleon, the antisymmetric |NA−3iA−3JA−3TA−3〉
states depend on the first A − 4 Jacobi coordinates of Eq. (13)
(�ξ1, �ξ2, · · · , �ξA−4) and the first A − 3 spin and isospin coordi-
nates. Here NA−3, JA−3, TA−3, and iA−3 are the total number
of HO excitations, spin, isospin, and additional quantum
number characterizing the (A − 3)-nucleon antisymmetric
basis states, respectively. The second-to-last nucleon is
represented by the HO state 〈�ξA−3σA−2τA−2|nA−2�A−2jA−2〉,

where nA−2 and �A−2 are the HO quantum numbers
corresponding to the harmonic oscillator associated with
�ξA−3, and jA−2 is the angular momentum of the (A − 2)th
nucleon relative to the c.m. of the first A − 3 nucleons.
The summation in Eq. (A18) runs over the quantum
numbers NA−3, JA−3, TA−3, iA−3, nA−2, �A−2, and jA−2.
Further, 〈n2�2, n1�1, λ|nA−2�A−2, nA−1�A−1, λ〉(A−1)/(A−3)

are the general HO brackets for two particles with
mass ratio d = (A − 1)/(A − 3), which are the
elements of the orthogonal transformation between
the HO states 〈�ξA−3�ξA−2|(nA−2�A−2, nA−1�A−1)λ〉 and
〈 �ρA−3 �ρA−2|(n1�1, n2�2)λ〉.

It is now trivial to complete the derivation of the “exchange”
potential kernel by complementing Eq. (A15) with the follow-
ing expression:

〈
(N ′

A−2i
′
A−2J

′
A−2T

′
A−2;NA−1LA−1JA−1)I1T1

∣∣VA−2,A−1

∣∣(NA−2iA−2JA−2TA−2; nA−1�A−1jA−1)I1T1
〉

=
∑

〈NA−3iA−3JA−3TA−3; n′
A−2�

′
A−2j

′
A−2||N ′

A−2i
′
A−2J

′
A−2T

′
A−2〉〈NA−3iA−3JA−3TA−3; nA−2�A−2jA−2||NA−2iA−2JA−2TA−2〉

× (−)j
′
A−2+jA−2+JA−1+jA−1 ĵ ′

A−2ĵA−2ĴA−1ĵA−1Ĵ
′
A−2ĴA−2T̂

′
A−2T̂A−2

∑
s2j2t2

ŝ2
2 ĵ

2
2 t̂2

2

{
TA−3

1
2 T ′

A−2

1
2 T1 t2

}{
TA−3

1
2 TA−2

1
2 T1 t2

}

×
∑
Y

Ŷ 2
∑
λ′,λ

λ̂′2λ̂2

{
JA−3 j ′

A−2 J ′
A−2

JA−1 I1 Y

}{
JA−3 jA−2 JA−2

jA−1 I1 Y

}⎧⎪⎪⎨
⎪⎪⎩

�′
A−2

1
2 j ′

A−2

LA−1
1
2 JA−1

λ′ s2 Y

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

�A−2
1
2 jA−2

�A−1
1
2 jA−1

λ s2 Y

⎫⎪⎪⎬
⎪⎪⎭

×
∑
n1�1

∑
n′

2�
′
2

∑
n2�2

〈n′
2�

′
2, n1�1, λ

′|NA−1LA−1, n
′
A−2�

′
A−2, λ

′〉 A−1
A−3

〈n2�2, n1�1, λ|nA−1�A−1, nA−2�A−2, λ〉 A−1
A−3

×
{

�1 �′
2 λ′

s2 Y j2

}{
�1 �2 λ

s2 Y j2

}
〈n′

2�
′
2s2j2t2|V (

√
2 �ρA−2σA−2σA−1τA−2τA−1)|n2�2s2j2t2〉, (A19)
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where the summation runs over he quantum num-
bers NA−3, iA−3, JA−3, TA−3, nA−2, �A−2, jA−2, n

′
A−2, �

′
A−2,

and j ′
A−2.

For A = 4 (a = 1) the (A − 2)-nucleon states
|NA−2iA−2JA−2TA−2〉 are simply antisymmetric two-nucleon

states of the kind |N2L2S2J2T2〉 characterized by a single
Jacobi coordinate (�ξ1). Therefore, the transformation (A18)
is somewhat different for the four-nucleon system, leading to
an independent expression for the matrix elements of the V2,3

interaction term between the target basis states:

〈(N ′
2L

′
2S

′
2J

′
2T

′
2;N3L3J3)I1T1|V2,3|N2L2S2J2T2; n3�3j3)I1T1

〉
= 1

2

[
1 − (−1)L

′
2+S ′

2+T ′
2
]1

2

[
1 − (−1)L2+S2+T2

]
(−1)S

′
2+S2 Ĵ ′

2Ĵ2Ĵ3ĵ3T̂
′

2T̂2

∑
s2j2t2

ŝ2
2 ĵ

2
2 t̂2

2

{
1
2

1
2 T ′

2

1
2 T1 t2

}{
1
2

1
2 T2

1
2 T1 t2

}

×
∑
Y

Ŷ 2
∑
λ′,λ

λ̂′2λ̂2

⎧⎨
⎩

1
2 J3 I1 Y

L3 J ′
2

1
2 s2

λ′ L′
2 S ′

2
1
2

⎫⎬
⎭
⎧⎨
⎩

1
2 j3 I1 Y

�3 J2
1
2 s2

λ L2 S2
1
2

⎫⎬
⎭

×
∑
n1�1

∑
n′

2�
′
2

∑
n2�2

〈n′
2�

′
2, n1�1, λ

′|N3L3, N
′
2L

′
2, λ

′〉3〈n2�2, n1�1, λ|n3�3, N2L2, λ〉3

{
�1 �′

2 λ′
s2 Y j2

}

×
{

�1 �2 λ

s2 Y j2

}
〈n′

2�
′
2s2j2t2|V (

√
2 �ρ2 σ2 σ3 τ2 τ3)|n2�2s2j2t2〉. (A20)

Note that to recover the full expression for the A = 4 (a = 1)
“exchange” potential kernel, it is sufficient to replace A with 4
in Eq. (A15) and combine the latter equation with Eq. (A20).

APPENDIX B: 12- j SYMBOL DEFINITION

The 12-j symbol of the first kind [51] is defined by⎧⎨
⎩

e h b c

r s p q

s g a d

⎫⎬
⎭

=
∑
X

(−1)a+b+c+d+e+f +g+h+p+q+r+s−XX̂2

{
a b X

c d p

}

×
{

c d X

e f q

}{
e f X

g h r

}{
g h X

b a s

}
(B1)

=
∑
Y

(−1)2Y+a+b+e+f Ŷ 2

⎧⎨
⎩

s h b

g r f

a e Y

⎫⎬
⎭
{

b f Y

q p c

}{
a e Y

q p d

}
.

(B2)
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[42] C. Forssén, P. Navrátil, W. E. Ormand, and E. Caurier, Phys.

Rev. C 71, 044312 (2005).
[43] P. Doleschall, Phys. Rev. C 69, 054001 (2004); P. Doleschall,
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