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Calculation of the total potential between two deformed heavy ion nuclei using the
Monte Carlo method and M3Y nucleon-nucleon forces
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In the current study, a simulation technique has been employed to calculate the total potential between two
deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total
potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic
nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for
the 48Ca + 238U, 46Ti + 46Ti, and 27Al + 70Ge reactions reveal that considering the density dependent effects in
the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.
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I. INTRODUCTION

Since the interaction between two deformed nuclei could
be a way to access the proposed islands of superheavy nuclei,
the calculation of the nucleus-nucleus potential between
two deformed, oriented nuclei is one of the main subjects
that has attracted great interest in theoretical heavy ion
physics [1–8]. Recent studies on the interactions between
deformed nuclei using the double folding (DF) formalism
reveal that the physically significant region of the HI potential
is strongly associated with the orientation of the symmetry
axes of the participant nuclei [2,6,7]. Therefore, the amount of
overlapping of the nuclear density in these regions depends on
the different orientations of the symmetry axes of the two
nuclei participating in the reaction. This and the fact that
nucleon-nucleon (NN ) interaction forces are of M3Y kind
that depends on the density have motivated us to conduct this
study to find out to what extent the density dependent terms in
the M3Y interaction affect the calculation of the total potential
in the reactions of the deformed nuclei. Since we are going to
study the effect of this correction on the calculation of the
total potential, we have, therefore, ignored the effects such
as channel coupling and the possibility of the exchange of
neutrons between the projectile and the target nuclei during
the fusion process.

In order to calculate the total potential between deformed
nuclei using the M3Y NN forces, one has to employ a
suitable formalism such as the DF model [9]. However, the
calculations of the DF formalism for two deformed nuclei
lead to a six-dimensional integral that makes the task of
its precise evaluation formidable. Among different methods
suggested to simplify the calculation of the six-dimensional
integral of the DF model, the multipole expansion for the
nuclear density distribution function is a suitable method for
the evaluation of the total potential in the interaction between
deformed nuclei [10]. In this method the use of the Fourier
transform of the total potential and the multipole expansion
of the nuclear density distribution function reduce the six-
dimensional integral of the DF model to a sum of the products
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of the three single dimensional integrals. However, taking into
account the corrections due to the density dependent effects in
the M3Y NN interactions greatly complicates the analytical
calculations of this formalism. Thus, in the investigations of
the heavy-ion interactions, it is usually advantageous to seek
methods that can accurately and quickly calculate the total
potential using two deformed density distributions that take
into account the density dependent effects in the interactions
of nucleons for all possible orientations of symmetry axes
of nuclei participated in the reaction. To this end, we have
extended the simulation method previously that we used to
calculate the total potential in the interaction of the two
heavy-ion spherical nuclei [11], to the calculation of the total
potential of deformed nuclei.

In Secs. II and III we shall briefly discuss the calculations
of the DF model using the multipole expansion of the nuclear
matter density and the Monte Carlo methods, respectively.
Comparison between the results of the multipole expansion
and the Monte Carlo methods is given in Sec. IV. In Sec. V
we discuss the effect of the density dependent terms in the
M3Y NN interaction on the calculation of the total potential.
Section VI is devoted to some concluding remarks.

II. THE DF MODEL AND THE MULTIPOLE EXPANSION
OF THE NUCLEAR DENSITY

In general the calculation of the total potential plays a key
role in the investigation of interactions between deformed
nuclei. One of the models commonly used to calculate this
potential is the DF model. If the orientation of the symmetry
axes of the nuclei participating in the reactions with respect to
the fixed laboratory frame is denoted by a set of Euler angles
�i for each nucleus, then using the effective nucleon-nucleon
potential VNN (s), and the internuclear potential is given by

V (R, �̂P , �̂T ) =
∫

ρP (r1, �̂P )ρT (r2, �̂T )VNN (s)dr1dr2,

(1)

where s = R + r2 − r1. The coordinate system for the inter-
acting deformed-deformed nuclei is indicated in Fig. 1. Now
if one uses the multipole expansion function of the nuclear
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FIG. 1. Geometry of the collision between
two deformed-deformed nuclei. (θ2P , φ2P ) and
(θ2T , φ2T ) are the angels that the symmetry axes
of the projectile and the target nuclei make with
a fixed reference direction in space.

density functions along with the Euler matrices in order to
relate the nuclear density in body-fixed frame to that in the
lab-fixed frame, in the calculations of the DF model we can
get [2,10]

V (R, �̂P , �̂T )

= (4π )3
∑
λ1λ2λ

iλ1+λ−λ2 (2λ + 1)

(
λ λ1 λ2

0 0 0

)
×

∫
dqq2jλ(qR)VNN (q)C̃T

λ2
(q)C̃P

λ1
(q)

×
m=+λ1∑
m=−λ1

(−1)m
(

λ λ1 λ2

0 m −m

)
Y ∗

λ1m
(�̂P )Yλ2m(�̂T ), (2)

where

VNN (q) = 1

(2π )3

∫
dxe−iq.xVNN (x), (3)

Cλ(r) =
∫

d�r̂ ρ(r)Yλ,0(r̂), (4)

C̃λ(q) =
∫

drr2Cλ(r)jλ(qr). (5)

Here Cλ(r) is in fact the radius dependent function in
the multipole expansion of nuclear density, i.e., ρi(r) =∑

λ Cλ(r)Yλ,0(r̂). In these calculations the density distribution
functions of the deformed nuclei are assumed to be of the form
of the Fermi distribution function,

ρ(r) = ρ◦
1 + e

r−R(r̂)
a

, (6)

where R(r̂) = R◦(1 + ∑
l�2 βlYλ,0(r̂)) and βl are the defor-

mation coefficients of the nuclei.

III. THE SIMULATION METHOD

In our previous work, we purposed a Monte Carlo simula-
tion technique for the calculation of the total potential in the
interaction of the two heavy-ion spherical nuclei [11]. In this
method, each of the participating nuclei in the reactions has
been considered to be a bulk of randomly distributed points
where each point represents the position of the constituent
nucleons of the nuclei and their distribution obeys the nuclear
density distribution.

In order to calculate the total potential of the deformed
nuclei employing the proposed simulation technique one has
to use the density function of the deformed nuclei instead of
that of spherical nuclei. The density function of the deformed
nuclei is assumed to be given by

ρ(r, θ, φ) = ρ0

1 + exp[(r − R(θ, φ))/a]
, (7)

where

R(θ, φ) = R0

[
1 +

∑
l,m

βlmYl,m(θ, φ)

]
(8)

and βl are the deformation parameters of the nucleus. For
spherical nuclei these parameters are equal to zero. We have
extended this relation for the nuclei that their axes of symmetry
make angles θ2 and φ2 with a fixed direction in space. Using
the addition theorem for spherical harmonics, we have

R(θ1, φ1; θ2, φ2)

= R0

[
1 +

∑
l,m

βl(−1)lYl,m(θ1, φ1)Yl,−m(θ2, φ2)

]
(9)

and the nuclear matter density of these nuclei is given by

ρ(r, θ1, φ1; θ2, φ2) = ρ0

1 + exp[(r − R(θ1, φ1; θ2, φ2))/a]
,

(10)

where θ1 and φ1 are the angles between r and a fixed direction
in space. r is a position vector at which the density is evaluated
by Eq. (10) when the symmetry axis makes angles θ2 and φ2

with respect to the fixed direction in space. For the nuclei
that have their symmetry axes rotated with respect to a fixed
reference axis in space, the nuclear matter distribution is given
by Eq. (10).

Random distribution of the nucleons inside a nucleus
represents an unstable state of that nucleus. In order to simulate
a true nucleus in its ground state, one has to randomly displace
the nucleons in small distances in a way that the following
two requirements are met. Firstly, the sum of the Coulomb
and nuclear potentials between the nucleons agree with the
experimental value of the binding energy of the nucleus in
its ground state, and secondly, for the spherical nuclei the
Rrms parameter should agree with its experimental value. For
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TABLE I. The values of the quadruple (β2),
hexadecapole (β4) deformation parameters, and
R0, a0 for the charge distribution. Values of these
parameters are determined by HFB calculation
[14].

Nuclei β2 β4 R0 a0

48Ca 0.0 0.0 3.8871 0.4673
238U 0.24 0.02 7.0727 0.4496
46Ti 0.24 0.01 3.9081 0.4804
27Al −0.33 −0.04 3.1595 0.4646
70Ge −0.24 −0.04 4.4741 0.5362

deformed nuclei we have substituted the Rrms parameter by the
〈R2

x〉, 〈R2
y〉, and 〈R2

z 〉 parameters. The nucleon displacements
are possible by both dynamic and static methods and in
this paper we have used the latter. We have also used the
BDM3Y1-Paris potential to calculate the nuclear potential
between the nucleons inside the nucleus.

In order to calculate the total potential, we have calculated
the sum of all interactions between the nucleons that constitute
the target and the projectile nuclei. We have repeated these
calculations for different arrangements of nucleons keeping
the angles representing the symmetry axes of the deformed
nuclei with respect to a reference axis in space fixed, until
the average variations of the total potential become less than
0.1%.

In this proposed simulation method nucleons inside the
nucleus are distributed randomly and their position is defined
by the nuclear matter distribution function, so the value of
the density of the nuclear matter in the site of the nucleons is
known and we need not recalculate the nuclear density when
we calculate the interaction between nucleons. Therefore, by
employing our method of simulation, we can easily calculate
the density dependent function in the NN interaction [see
Eq. (13)]. It seems that our proposed method is a convenient
method that can be used in the calculation of the total potential
between the two deformed nuclei in the density dependent NN

interaction.

IV. THE MONTE CARLO SIMULATION VS THE DF

In order to examine the possibility of using the purposed
simulation method in the calculations of the total potential of
the deformed heavy ion reactions, we have chosen the 48Ca +
238U, 46Ti + 46Ti, and 27Al + 70Ge reactions. At least, one
of the participating nuclei in these reactions is considered to
be deformed in its ground state. The total potential for these
reactions using both the Monte Carlo simulation and the DF
methods considering different orientations of the symmetry
axes of the involved nuclei has been calculated and compared
with each other.

In the calculations of the nucleus-nucleus potential for these
reactions in both the DF model and the proposed simulation
method, the nuclear matter densities of the target and the
projectile nuclei for simplicity are assumed to be proportional
to the charge densities in these nuclei (i.e., ρA = ρZA/Z).
In these calculations we have used the two parameter Fermi
distribution (2PF) for proton densities. The parameters of
density for the participant nuclei that are obtained from
Hartree-Fock-Bogoliubov (HFB) calculations [14] are given
in Table I.

The density independent effective NN interaction of the
M3Y-Reid [12] type has been employed to calculate the nu-
clear potential. The direct part of this effective NN interaction
is given by

vdir(s) = v00(s) + N1 − Z1

A1

N1 − Z1

A1
v01(s). (11)

To calculate the exchange term in the nuclear potential we
have used the zero-range approximation,

vex(s) =
(

Ĵ00 + N1 − Z1

A1

N1 − Z1

A1
Ĵ01

)
δ(s), (12)

where s is the distance between two nucleons. The explicit
form of the expressions for v00, v01, Ĵ00, and Ĵ01 are given,
for example, in Ref. [13]. Since the ground sate spin of one
of the participating nuclei is zero in the chosen reactions,
therefore the spin dependent terms of the M3Y interaction
are relatively unimportant, thus we have not considered their

TABLE II. Comparison of the fusion barrier and its location calculated from the Monte Carlo simulation (MN)
method with those obtained from the DF model. Calculation are made at different orientation angles (θT , φT ) and
(θP , φP ) of the symmetry axes of the target and the projectile nuclei, respectively.

Reaction Orientation angles (θT , φT ) (θP , φP ) RDF (fm)a BDF (MeV)a RMN (fm)b BMN (Mev)b

(0,0) (0,0) 13.85 186.28 13.88 186.25
48Ca + 238U (45,0) (0,0) 12.99 194.04 12.95 194.06

(90,0) (0,0) 12.14 201.35 12.19 201.28

(0,0) (0,0) 11.25 59.57 11.25 59.67
46Ti + 46Ti (45,0) (0,0) 10.82 61.28 10.81 61.37

(90,0) (0,0) 10.41 63.15 10.42 63.11
(90,0) (90,0) 9.61 66.79 9.61 66.83

(45,0) (135,0) 9.82 56.09 9.80 56.12
27Al + 70Ge (45,45) (135,0) 9.86 55.95 9.88 55.97

(45,90) (135,0) 9.92 55.58 9.93 55.66

aThe values of the fusion barrier and its location obtained by the DF method.
bThe values of the fusion barrier and its location obtained by the MN method.
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effects in these calculations. Moreover, we neglect the possible
energy dependence of these parameters.

Since the nuclear potential is of prime importance in
the fusion cross-section calculations, we have compared our
obtained results using the Monte Carlo method for the fusion
barrier height and its location with those obtained using the
DF method considering different orientations between the two
symmetry axes of the interacting nuclei. The results are listed
in Table II. It can be seen that the obtained results with both
of these methods are in good agreement.

V. DENSITY-DEPENDENT NUCLEON-NUCLEON
INTERACTION EFFECTS ON THE
NUCLEUS-NUCLEUS POTENTIAL

It is know that the density dependence for effective the M3Y
NN interaction is required to reproduce the basic properties
of nuclear matter. In order to obtain the correct value of central
nucleon density and nucleon binding energy, several versions
of a density-dependent M3Y interaction have been proposed
[15,16].
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FIG. 2. The sum (dashed line) of the participant nuclei densities
(solid lines) in the reaction 46Ti + 46Ti in the x-z plane for the
orientations (a) (0,0)(0,0) and (b) (90,0)(90,0) are shown versus the
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nucleus have been calculated using Eq. (10) and to simplify these
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FIG. 3. The height of the fusion barrier for (a) 46Ti + 46Ti
and (b) 27Al + 70Ge reactions have been calculated using several
different versions of the density dependent M3Y interaction, the
density dependence labels are listed in Table III. In this figure
the orientation between target and projectile nuclei is indicated as
(θ2T , φ2T )(θ2P , φ2P ).

The density dependence of the effective NN interaction of
the M3Y type has been entered as a multiplier f (ρ) in Eq. (11)
where the function f is given by

f (ρ) = C(1 + α exp(−βρ) − γρ), (13)

the values of the C, α, β, and γ parameters for various
interactions are given in Table III. For densities less than
0.11 fm−3 the density dependence leading to a stronger nuclear
force since f > 1. The effect of this on the calculation of
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TABLE III. The C, α, β, and γ parameters for several density
dependent M3Y-Paris interaction [16].

DD label Interaction C α β (fm−3) γ (fm−3)

0 D independent 1 0.0 0.0 0.0
1 DDM3Y1 0.2963 3.7231 3.7384 0.0
2 CDM3Y1 0.3429 3.0232 3.5512 0.5
3 CDM3Y2 0.3346 3.0357 3.0685 1.0
4 CDM3Y3 0.2985 3.4528 2.6388 1.5
5 CDM3Y4 0.3052 3.2998 2.3180 2.0
6 CDM3Y5 2.2728 3.7367 1.8294 3.0
7 CDM3Y6 0.2658 3.8033 1.4099 4.0
8 BDM3Y1 1.2521 0.0 0.0 1.7452

the total potential in the interaction between deformed nuclei
depends on the amount of the overlap of the nuclear density
due to different orientations of the axes of symmetry of
the participant nuclei. For instance, Fig. 2 shows the total
density variation in the 46Ti + 46Ti reaction for two different
orientations of the symmetry axes of the participant nuclei.
Here, the variation of the sum of the target and projectile
nuclei densities is shown in the x-z plane as a function of
distance between the centers of interacting nuclei. One can
see that the variation of the overlap density for different
angles of orientation is significant and this causes the density
dependent function in the NN interaction to have different
values. Therefore, the NN interaction will not have the same
strength for different interaction angles.

In order to study this effect on the nucleus-nucleus potential
we have calculated the height of the fusion barrier for the
reactions 46Ti + 46Ti and 27Al + 70Ge, using the method that
we described in Sec. III. In these calculations the height of
the fusion barrier has been calculated using several different
versions of the density dependent M3Y interaction. Results are
shown in Fig. 3. The obtained results for 46Ti + 46Ti, Fig. 3(a),
which are made at different polar angles show that accounting

for the density dependent decreases the height of the fusion
barrier. It is clear from Fig. 3(b) that the calculation of the total
potential depends on the azimuthal angle and accounting for
density dependent effects will also decrease the height of the
fusion barrier.

VI. CONCLUSION

In this paper we have employed a simulation technique
based on the Monte Carlo simulation method for the calcula-
tion of the total potential between two deformed nuclei. The
results obtained for the fusion barrier in the 46Ti + 46Ti and
27Al + 70Ge reactions (Table II) are in good agreement with
those obtained by using the DF method. Therefore, by using
this Monte Carlo simulation one can accurately calculate the
total potential in the interactions between spherical-deformed
and deformed-deformed nuclei. The simulation technique
employed here has the ability of calculating the total potential
taking into account the realistic nuclear matter density, all the
possible deformation degrees of freedom, different orienta-
tions of the symmetry axes of the target, and the projectile
nuclei with respect to each other and accounting the density
dependent effect in the NN interactions.

We have also investigated the density dependent effects of
the M3Y interaction on the calculation of the fusion barrier
height, which is a physically important quantity in the field
of heavy ion collisions. The obtained results reveal that the
variation of fusion barrier height due to this effect depends
on both the variation of the polar and azimuthal angles of the
symmetry axis of the participant nuclei (Fig. 3).

The results obtained by the analysis of the46Ti + 46Ti and
27Al + 70Ge reactions using the density dependent corrections
in the M3Y forces show a decrease of about 0.4 MeV of
the fusion barrier height in comparison to the corresponding
values that are obtained using the density independent M3Y
interaction.
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