
PHYSICAL REVIEW C 79, 044602 (2009)
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We extend our previous description of the superscaling phenomenon in inclusive electron scattering within the
coherent density fluctuation model (CDFM). This model is a natural extension to finite nuclei of the relativistic
Fermi gas (RFG) model within which the scaling variable ψ ′ was introduced. In this work we propose a new
modified CDFM approach to calculate the total, longitudinal, and transverse scaling functions built up from
the hadronic tensor and the longitudinal and transverse response functions in the RFG model. We test the
superscaling behavior of the new CDFM scaling functions by calculating the cross sections of electron scattering
(in quasielastic and � regions for nuclei with 12 � A� 208 at different energies and angles) and comparing
to available experimental data. The new modified CDFM approach is extended to calculate charge-changing
neutrino and antineutrino scattering on 12C at 1 GeV incident energy.
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I. INTRODUCTION

The relativistic Fermi gas (RFG) model in Refs. [1,2]
has been the basis for defining the scaling variable ψ ′
and for introducing the first theoretical considerations of
the superscaling phenomenon. Superscaling has been ob-
served in inclusive electron scattering from nuclei (see, e.g.,
Refs. [1–4]). The term “superscaling” includes the scaling of
the first and the second kind (independence of the reduced
cross section on the momentum transfer q and the mass
number A, respectively) that have been seen at excitation
energies below the quasielastic (QE) peak. These studies
can be considered a part of more general investigations that
follow the ideas of West [5] on scaling phenomena. They
include also the studies of the related y-scaling in high-energy
electron-nuclei scattering (e.g., Refs. [5–13]). It has been
shown in both y- and ψ ′-scaling analyses that the scaling
function is sensitive to the high-momentum components of
the spectral function and, consequently, to the tail of the
nucleon momentum distributions n(k). Thus, knowledge of
the scaling function can provide important information about
the dynamical ground-state properties of the nuclei. In the
ψ ′ < −1 region, superscaling is due to the specific high-
momentum tail of n(k) caused by short-range and tensor
correlations, which is similar for all nuclei and which is
in turn related to specific properties of the nucleon-nucleon
(NN ) forces near the repulsive core. Even more, it has been
shown in Ref. [14] that the behavior of the scaling function
f (ψ ′) for values of ψ ′ < −1 depends on the particular form
of the power-law asymptotic of n(k) at large k related to a
corresponding behavior of the in-medium NN forces around
the core. The latter dependence together with the existing link
between the asymptotic behavior of n(k) and the NN forces
makes it possible to conclude that the inclusive QE electron
scattering at ψ ′ <∼ −1 provides important information on the
NN forces in the nuclear medium.

Confirming the superscaling behavior of the world data
on inclusive electron scattering, the analyses in Refs. [3,4]
have shown the necessity of considering this phenomenon on
the basis of a more complex dynamical picture of realistic
finite nuclear systems beyond the RFG. Indeed, the scaling
function in the RFG model is f (ψ ′) = 0 for ψ ′ � − 1,
whereas the experimental scaling function extracted from
(e, e′) data extends up to ψ ′ ≈ −2, where the effects beyond
the mean-field approximation become important. One such
approach is the coherent density fluctuation model (CDFM;
e.g., Refs. [15,16]), which is a natural extension of the Fermi
gas model based on the generator coordinate method [17] and
includes long-range correlations (LRC) of collective type. The
QE scaling function f (ψ ′) is deduced in the CDFM on the
basis of realistic density and momentum distributions in nuclei
and it agrees with the empirical data for the scaling function for
negative values of ψ ′ � − 1 [18–22]. This agreement is related
to the realistic high-momentum tail of the nucleon momentum
distribution in the CDFM, which is similar for a wide range of
nuclei, in contrast with the sharp behavior of n(k) as a function
of k in the RFG model (see, e.g., Fig. 3 of Ref. [18], Fig. 2 of
Ref. [19], and the analysis in Ref. [14]). A number of studies
of superscaling have been published in the past decade or
so (e.g., Refs. [23–35]). A “universal” phenomenological QE
scaling function f QE(ψ ′) has been obtained [3,4,23,24] on the
basis of the available separation of inclusive electron scattering
data into their longitudinal and transverse contributions for
nuclei with A > 4. An unexpected feature of this scaling
function extracted from the superscaling analyses (SuSA)
is its asymmetric shape with respect to the peak position
ψ ′ = 0 with a long tail extended toward positive ψ ′ values.
This is in contrast to the RFG scaling function, which is
symmetric. Detailed studies of this asymmetry [36–38] within
the relativistic mean-field (RMF) approach have shown the
important role played by a proper description of final-state
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interactions (FSI) in reproducing the asymmetric shape of
f (ψ ′). The existence of the asymmetric tail of the scaling
function has also been shown recently in Ref. [35] in a model
accounting for pairing BCS-type correlations.

The approach of SuSA to QE electron scattering has
been extended in Ref. [24] to the �-resonance excitation
region.

The features of superscaling in inclusive electron-nucleus
scattering have made it possible to initiate analyses of neutrino
and antineutrino scattering off nuclei on the same basis
(e.g., Refs. [24,36,39,40]). Neutrino-nucleus or antineutrino-
nucleus charge-changing (CC) [36] or neutral-current (NC)
[32] scattering cross sections for intermediate to high energies
can be calculated by multiplying the elementary single-
nucleon CC or NC neutrino (or antineutrino) cross sections
by the corresponding scaling functions. The assumptions
leading to such a procedure have been tested within the
RMF plus FSI model [41]. Here we mention a number of
other theoretical studies of CC (see, e.g., Refs. [42–51]) and
NC (e.g., Refs. [42,43,50,52–56]) neutrino- and antineutrino-
nucleus scattering in recent years.

The CDFM scaling function has been used to predict cross
sections for several processes: inclusive electron scattering
in the QE and � regions [21,22] and neutrino (antineutrino)
scattering both for CC [22] and for NC [56] processes
(u-channel inclusive processes). The CDFM analyses became
useful to obtain information about the role of the nucleon
momentum and density distributions for the explanation of
superscaling in lepton-nucleus scattering [19,21]. It may
also prove to be useful to explore the extension of the u-
and t-channel scaling criteria beyond independent particle
models.

It is important to point out that the physics contained in
the “experimental” scaling function comes not only from the
initial but also from the final states involved in the scattering
process. Hence, caution should be placed on the general
connection between the scaling function and the spectral
function (or momentum distribution). Nevertheless, following
the general consideration introduced in Ref. [14] on the
relationship between f (ψ ′) and the nucleon momentum
distribution n(k), it was found within the CDFM [19] that
the slope of the QE scaling function f (ψ ′) at negative
values of ψ ′ crucially depends on the high-momentum tail
of the momentum distribution n(k) at larger values of k (k >

1.5 fm−1). Moreover, the sensitivity of the scaling function
in the CDFM to the particular behavior of n(k) in different
regions of k has been studied in Ref. [19], showing that the
available empirical data on f (ψ ′) are informative for n(k) for
momentum k up to k � 2–2.5 fm−1.

In our previous works [18–21] we obtained the CDFM
scaling function f (ψ ′) starting from the RFG model scaling
function fRFG(ψ ′) and convoluting it with the weight function
|F (x)|2, which is related equivalently to either the density
ρ(r) or the momentum distribution n(k) in nuclei. Thus, the
CDFM scaling function is an infinite superposition of weighted
RFG scaling functions. This approach improves upon RFG
and enables one to describe the scaling function for realistic
finite nuclear systems. In the approach in Refs. [18–21]
the longitudinal and transverse scaling functions are equal

[fL(ψ ′) = fT (ψ ′), the so-called scaling of zero kind]; this
is also a property of the RFG scaling functions. The aim
of this work is to develop a new CDFM approach in which
we start directly from the hadronic RFG [1] tensor Wµν and
the corresponding response functions RL,T , and convolute
them with the CDFM function |F (x)|2. We call this new
approach CDFMII to distinguish it from our former version
to which we refer as CDFMI. This method provides a more
general way to apply CDFM ideas and to go beyond the
RFG in the construction of scaling functions. Particularly,
it allows us to study the possible violation of the zero-kind
scaling [fL(ψ ′) �= fT (ψ ′)] and to compare the behavior of fL

and fT to that from other approaches [e.g., the relativistic
plane-wave impulse approximation (RPWIA)]. It can be seen
in our work that the CDFMII scaling function calculated for
different values of the transferred momentum q shows both
a saturation of its asymptotic behavior and also the region of
appearance of the scaling of the first kind (at values of the
transverse momentum of the order or higher than 0.5 GeV/c).
The main difference between CDFMI and CDFMII is that in
CDFMI the LRC are taken a posteriori in the scaling function,
once the RFG scaling function has been derived from the total
inclusive cross section, whereas in the CDFMII the correlations
are included through the weighting function |F (x)|2 in the
hadronic tensor (i.e., they are included at an earlier stage in
the derivation of the cross section). This allows us to study
the emergence of scaling within the model, as well as pos-
sible differences between longitudinal and transverse scaling
functions.

The second aim of the present work is to apply
the obtained CDFMII scaling functions (f, fL, and fT )
to calculate cross sections of inclusive electron scatter-
ing off various nuclei, as well as cross sections of CC
neutrino (antineutrino) scattering on 12C at intermediate
energies.

The theoretical scheme used in the present work is given
in Sec. II. It includes the basic relationships of the RFG
model for the hadronic tensor, the response functions, and
the procedure to obtain the CDFMII scaling functions. The
results for f (ψ ′), fL(ψ ′), and fT (ψ ′), as well as those from
calculations of inclusive electron scattering cross sections
in both (CDFMI and CDFMII) approaches and of cross
sections of CC neutrino reactions on 12C, are presented and
discussed in Sec. III. The conclusions are summarized in
Sec. IV.

II. THEORETICAL SCHEME

We begin this section with a brief discussion of the basic
formalism for inclusive electron scattering from nuclei [1]
in which an electron with four-momentum Kµ = (ε, k) is
scattered through an angle θ = �(k, k′) to four-momentum
K ′µ = (ε′, k′). The four-momentum transferred in the process
is then Qµ = (K − K ′)µ = (ω, q), where ω = ε − ε′, q =
|q| = k − k′, and Q2 = ω2 − q2 � 0. In the relativistic limit
(ERL) |k| ∼= ε � me and |k′| ∼= ε′ � me, where me is the
electron mass. In the one-photon-exchange approximation, the
double-differential cross section in the laboratory system can
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be written in the form

d2σ

d	dε′ = σM

[(
Q2

q2

)2

RL(q, ω)

+
(

1

2

∣∣∣∣Q2

q2

∣∣∣∣ + tan2 θ

2

)
RT (q, ω)

]
, (1)

where L (T ) refer to responses with longitudinal (transverse)
projections (i.e., with respect to the momentum transfer
direction) of the nuclear currents, and where the Mott cross
section is given by

σM =
[

α cos(θ/2)

2ε sin2(θ/2)

]2

, (2)

with α the fine-structure constant.
This cross section is obtained by contracting leptonic and

hadronic current-current interaction electromagnetic tensors
and hence it is proportional to ηµνW

µν . The leptonic tensor
ηµν may be calculated in the standard way involving traces of
Dirac γ matrices and under ERL conditions becomes

ηµν = KµK ′
ν + K ′

µKν − gµνK · K ′. (3)

Contracting this with a general hadronic tensor Wµν and
rewriting the cross section in Eq. (1), we have the following
for the two response functions (using summation convention
on repeated indices):

RL(q, ω) = W 00, (4)

RT (q, ω) = −
(

gij + qiqj

q2

)
Wij . (5)

In the RFG model the hadronic tensor Wµν can be expressed
by

Wµν = 3Nm2
N

4πp3
F

∫
d3p

E(p)E(p + q)
θ (pF − |p|)

× θ (|p + q| − pF )δ[ω − [E(p + q) − E(p)]]

× f µν(P + Q,P ),N = N,Z, (6)

where the scattering is assumed to involve a struck nu-
cleon of mass mN and four-momentum P = [E(p), p] with
corresponding (on-shell) energy E(p) = (p2 + m2

N )
1/2

lying
below the Fermi momentum pF and having supplied en-
ergy and momentum ω and q, respectively, to the nucleon,
resulting in a four-momentum (P + Q)µ lying above the
Fermi surface. f µν(P + Q,P ) is the single-nucleon response
tensor evaluated in the system where the struck nucleon has
four-momentum P :

f µν(P + Q,P ) = −W1(τ )

(
gµν − QµQν

Q2

)

+W2(τ )
1

m2
N

(
P µ − P.Q

Q2
Qµ

)

×
(

P ν − P.Q

Q2
Qν

)
. (7)

Then the response functions in the RFG model can be
written as

R
(RFG)
L,T = 3N

4mNκη3
F

(εF − �)�(εF − �)

×
⎧⎨
⎩

κ2

τ
[(1 + τ )W2(τ ) − W1(τ ) + W2(τ )�] for L,

[2W1(τ ) + W2(τ )�] for T ,
(8)

W1(τ ) = τG2
M (τ ), W2(τ ) = [G2

E(τ ) + τG2
M (τ )]

1 + τ
, (9)

where GE and GM are the electric and magnetic Sachs form
factors, the standard dimensionless variables are defined by

κ ≡ q/2mN, λ ≡ ω/2mN, τ = κ2 − λ2,

η ≡ |p|/mN, ε ≡ E(p)/mN =
√

1 + η2, (10)

ηF ≡ pF /mN, εF =
√

1 + η2
F ,

and

� = τ

κ2

[
1

3

(
ε2
F + εF � + �2) + λ(εF + �) + λ2

]
− (1 + τ ),

(11)

� ≡ max

[
(εF − 2λ), γ− ≡ κ

√
1 + 1

τ
− λ

]
.

In Refs. [18–22] we defined [18,19] and applied the
scaling function within the CDFM using the basis of the RFG
scaling function. In the model [15,16], the one-body density
matrix ρ(r, r′) is an infinite superposition of one-body density
matrices ρx(r, r′) corresponding to single Slater determinant
wave functions of systems of free A nucleons homogeneously
distributed in a sphere with radius x, density ρ0(x) = 3A

4πx3 ,

and Fermi momentum pF (x) = [ 3π2

2 ρ0(x)]1/3 = α/x (with
α ≈ 1.52A1/3):

ρ(r, r′) =
∫ ∞

0
dx|F (x)|2ρx(r, r′). (12)

The weight function |F (x)|2 can be expressed in an
equivalent way either by means of the density distribution
[15,16,19],

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

at
dρ(r)

dr
� 0, (13)

or by the nucleon momentum distribution [19],

|F (x)|2 = −3π2

2

α

x5

dn(k)

dk

∣∣∣∣
k=α/x

at
dn(k)

dk
� 0. (14)

In Eqs. (13) and (14)∫
ρ(r)dr = A,

∫
n(k)dk = A,

(15)∫ ∞

0
|F (x)|2dx = 1.

So, in the first version of the CDFM approach the con-
structed (CDFMI) scaling function has the form [18,19]

f (ψ ′) =
∫ α/(kF |ψ ′|)

0
dx|F (x)|2fRFG(x,ψ ′), (16)

044602-3



ANTONOV, IVANOV, BARBARO, CABALLERO, AND DE GUERRA PHYSICAL REVIEW C 79, 044602 (2009)

where the RFG scaling function is

fRFG(x,ψ ′) = 3

4

[
1 −

(
kF x|ψ ′|

α

)2
]

×
{

1 +
(xmN

α

)2
(

kF x|ψ ′|
α

)2

×
⎡
⎣2 +

(
α

xmN

)2

− 2

√
1 +

(
α

xmN

)2
⎤
⎦
⎫⎬
⎭

(17)

and the momentum kF is calculated consistently in the CDFM
for each nucleus from the expression

kF =
∫ ∞

0
dxkF (x)|F (x)|2 =

∫ ∞

0
dx

α

x
|F (x)|2. (18)

Thus, kF in the CDFM is not a fitting parameter as it is in the
RFG model.

By using Eqs. (13) and (14) in Eqs. (16) and (18) the CDFMI

scaling function f (ψ ′) and kF can be expressed explicitly by
the density and momentum distributions [19].

In contrast to the CDFMI, in this work we construct a
more general CDFM approach (CDFMII), starting not from
the scaling function, but from the hadronic tensor, the response
functions, and related quantities in the model of the RFG with a
density ρ0(x) and a Fermi momentum pF (x). Thus, now we re-
place the quantities pF , ηF , and εF in Eqs. (6), (8), and (11) by

ηF (x) = pF (x)

mN

= α

xmN

,

(19)

εF (x) =
√

1 + η2
F (x) =

√
1 +

(
α

xmN

)2

,

and, following the CDFM methods in Refs. [15,16], the
hadronic tensor and the response functions in the CDFMII

approach are obtained by weighting the RFG model ones by
the function |F (x)|2 [Eqs. (13) and (14)]:

W
µν

CDFM =
∫ ∞

0
|F (x)|2Wµν

(RFG)(x)dx, (20)

RL(ψ) =
∫ ∞

0
|F (x)|2R(RFG)

L (x,ψ)dx, (21)

RT (ψ) =
∫ ∞

0
|F (x)|2R(RFG)

T (x,ψ)dx, (22)

where W
µν

(RFG)(x) and R
(RFG)
L,T (x,ψ) are given by Eq. (6) and

Eq. (8), respectively, but now the Fermi momentum depending
on x according to Eq. (19) and the scaling variable ψ is defined
by [1,2]

ψ ≡ 1√
ξF

λ − τ√
(1 + λ)τ + κ

√
τ (1 + τ )

, (23)

where ξF =
√

(1 + η2
F ) − 1. Note that Eq. (23) is meant to be

used only in the Pauli unblocked region q > 2kF .
We label d2σ

d	dε′ by CCDFM(ψ):

CCDFM(ψ) ≡ d2σ

d	dε′

= σM

{(
Q2

q2

)2

RL(ψ) +
[

1

2

∣∣∣∣Q2

q2

∣∣∣∣
+ tan2 θ

2

]
RT (ψ)

}
. (24)

The single-nucleon eN elastic cross section has the form [24]

S = σM

{(
Q2

q2

)2

GL(τ ) +
[

1

2

∣∣∣∣Q2

q2

∣∣∣∣ + tan2 θ

2

]
GT (τ )

}
,

(25)

FIG. 1. The longitudinal scaling functions fL(ψ) (a) and the transverse scaling functions fT (ψ) (b) for 12C calculated in the CDFMII for
q = 0.3, 0.5, 0.8, and 1.0 GeV/c and RPWIA (Lorentz gauge) for q = 0.5, 0.8, and 1.0 GeV/c.
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FIG. 2. The longitudinal scaling functions fL(ψ) for 12C cal-
culated for q = 1 GeV/c in the CDFMI, CDFMII, RPWIA, and
asymmetric CDFMII. The experimental data are taken from Ref. [25].

where the single-nucleon functions GL and GT are given by

GL(τ ) = κ

2τ

[
ZG2

E,p(τ ) + NG2
E,n(τ )

] + O
(
η2

F

)
, (26)

GT (τ ) = τ

κ

[
ZG2

M,p(τ ) + NG2
M,n(τ )

] + O
(
η2

F

)
. (27)

Then the superscaling function can be obtained by

f CDFMII (ψ) = pF × CCDFM(ψ)

S
, (28)

and, finally, following Ref. [4] longitudinal L and transverse
T scaling functions can be introduced:

fL(ψ) = pF × RL(ψ)

GL

, (29)

FIG. 3. The quasielastic scaling function f QE(ψ) for 12C calcu-
lated in the CDFMII for q = 0.3–1.0 GeV/c with steps of 0.1 GeV/c.

FIG. 4. The ratio fL(ψ)/fT (ψ) for 12C calculated in the CDFMII

for q = 0.3, 0.5, 0.8, and 1.0 GeV/c and RPWIA (Lorentz gauge) for
q = 0.5, 0.8, and 1.0 GeV/c.

fT (ψ) = pF × RT (ψ)

GT

. (30)

We note that this approach differs from the first version of
the CDFM applied to the scaling phenomenon [18–22] where
the RFG scaling function fRFG(ψ ′, x) is directly weighted
by the function |F (x)|2 [Eqs. (16) and (17)].

As mentioned in Sec. I, in this paper we mark the CDFM
approach developed in our previous works [14,18–22,56] as
CDFMI in contrast with the CDFMII one presented here in
Sec. II. We would like to note that, as can be seen in Sec. III,

FIG. 5. The differences fT (ψ) − fL(ψ) for 12C calculated in the
CDFMII for q = 0.3, 0.5, 0.8, and 1.0 GeV/c and RPWIA (Lorentz
gauge) for q = 0.5, 0.8, and 1.0 GeV/c.

044602-5



ANTONOV, IVANOV, BARBARO, CABALLERO, AND DE GUERRA PHYSICAL REVIEW C 79, 044602 (2009)

FIG. 6. The quasielastic scaling function f QE(ψ ′) for 12C, 27Al, 56Fe, and 197Au calculated in the CDFMI and RFG model. The experimental
data are taken from Ref. [3] and the labels indicate the mass number for each set of data.

in the CDFMII, f
CDFMII
L (ψ) �= f

CDFMII
T (ψ), in contrast with

CDFMI, where f
CDFMI
L (ψ) = f

CDFMI
T (ψ). The results and

discussions are given in the next section.

III. RESULTS

In this section we first present our results of longitudinal
[Fig. 1(a)] and transverse [Fig. 1(b)] scaling functions at fixed
values of momentum transfer q = 0.3, 0.5, 0.8, and 1.0 GeV/c
calculated within the CDFMII approach compared with results
of the RPWIA with Lorentz gauge [37]. In contrast with our
previous results, where the CDFMI scaling functions are equal,
f

CDFMI
L (ψ) = f

CDFMI
T (ψ) = f CDFMI (ψ), and do not depend

on the momentum transfer q, in the CDFMII the scaling
functions, which are built from the nuclear electromagnetic
response functions, depend on the momentum transfer q till
a sufficiently high q. As can be seen from Fig. 1, scaling

of the first kind is clearly violated for low q values (q <

0.5 GeV/c) in the negative ψ region, whereas for q of the
order of 0.5 GeV/c, scaling violation slowly disappears as
q increases and the CDFMII and RPWIA scaling functions
reach their asymptotic values. In Fig. 2 we give a comparison
of the longitudinal scaling functions from CDFMI, CDFMII,
and RPWIA with the experimental data. We note that all
three approaches overestimate the data, especially at the QE
peak and in the high positive ψ region. A better comparison
with data can be achieved by introducing, as done in our
previous work [21], a phenomenological asymmetric tail for
ψ > 0 in such a way to preserve the correct normalization of
the superscaling function: The corresponding result, labeled
“CDFMII (asymmetric),” is also shown in the figure. Similar
behavior for the total QE scaling function can be seen in
Fig. 3, where we present our results of calculations of f QE(ψ)
[Eq. (28)] for 12C within the CDFMII for q = 0.3–1.0 GeV/c
with steps of 0.1 GeV/c. Note that the asymmetry in the

FIG. 7. The quasielastic scaling function f QE(ψ ′) for 12C, 27Al, 56Fe, and 197Au calculated in the CDFMII and RFG model. The experimental
data are taken from Ref. [3] and the labels indicate the mass number for each set of data.
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FIG. 8. The nucleon momentum distribution n(k) (also see
Fig. 2 of Ref. [19] and Fig. 3 of Ref. [21]). The gray area shows
the combined results of CDFM for 4He, 12C, 27Al, 56Fe, and 197Au. The
solid line is the mean-field result using Woods-Saxon single-particle
wave functions (for 56Fe). The normalization is

∫
n(k)d3k = 1.

scaling function, clearly observed for low q values, tends
to disappear as q goes up. This asymmetry in the negative
ψ region at low q is linked to effects introduced by Pauli
blocking, which destroy the scaling behavior. We note that the
results of CDFMII at q = 0.8 GeV/c and q = 1.0 GeV/c are
similar among themselves in both the negative and positive ψ

regions.
In Figs. 4 and 5 we present results for the ratio fL(ψ)/fT (ψ)

and the differences fT (ψ) − fL(ψ) for 12C calculated in
the CDFMII and RPWIA (Lorentz gauge) at fixed values
of momentum transfer q = 0.3, 0.5, 0.8, and 1.0 GeV/c. In
the CDFMII calculations we observe violation of the scaling
of the zeroth kind [fL(ψ) �= fT (ψ)], at variance with the
CDFMI one. The behavior of the ratio fL(ψ)/fT (ψ) in our
model is similar to that in the RPWIA for positive ψ values
where the response is positive except for very low q(q =
0.3 GeV/c). In contrast, in the negative ψ region, the ratio
fL(ψ)/fT (ψ) becomes negative for RPWIA and positive for
CDFMII, the variation in the former case being much larger.
These results are consistent with the ones shown in Fig. 5.
Here, the difference fT (ψ) − fL(ψ) is negative (positive) for
all q values (q = 0.3 GeV/c) in the whole ψ region in the
case of the CDFMII. This is in contrast with RPWIA results
where fT (ψ) − fL(ψ) starts being positive (left ψ region),
changing to negative for higher ψ . The specific value of ψ

where fT (ψ) − fL(ψ) changes sign depends on the q value
considered, being larger as q increases. As a general outcome,
we conclude that CDFMII scaling functions are not so different
from each other as they are in the RPWIA case.

The next step in our studies is to examine the scaling of
the second kind in the CDFMII. This requires calculations of
the scaling functions for different nuclei. In Figs. 6 and 7
we give the results for the QE scaling functions for 12C,
27Al, 56Fe, and 197Au calculated in the CDFMI and CDFMII,
respectively. The result of the RFG model is also presented.
One can see the essential difference between the results of
the RFG model and those of the CDFMI and CDFMII in the
region ψ ′ < −1. For readers who may not be familiar with
the scaling variable ψ ′ we recall that the variable ψ , first
introduced by Alberico et al. [1] as the natural scaling variable
within the RFG model, is defined [see Eq. (23)] so that it varies
from ψ ∼ (−κ/

√
ξF ) to ψ = 0 on the left-hand side of the

quasielastic peak (i.e., when the transfer energy ω varies from
0 to Q2/2mN ), whereas ψ > 0 when we are in the right-hand
side and other production channels may start to open. The
variable ψ ′ was introduced in Refs. [11] and [3,4] as the
corresponding phenomenological variable to analyze data and
to show scaling of the second kind. It involves a redefinition
of λ that corrects for the displacement in ω of the QE peak
position, which depends on the nuclear target. It can be seen
also from our results that the scaling of the second kind is
good in both CDFM approaches; however, the CDFMI scaling
functions are in better agreement with the experimental data.
This is because the maximum of f CDFMII (ψ) is 0.80 (coming
from the expressions for the RFG hadronic tensor) but not 0.75
as it is in the RFG model and, correspondingly, in the CDFMI.
In this case

f CDFMII
max (ψ) ≈ 0.8 > f CDFMI

max (ψ) = 0.75

and the normalization∫ ∞

−∞
f CDFMII (ψ)dψ =

∫ ∞

−∞
f CDFMI (ψ)dψ = 1

leads to narrower behavior of f (ψ) in the CDFMII.
The behavior of the CDFMI and CDFMII scaling functions

can be explained by the long-range collective correlations
included in the CDFM, which is based on the generator
coordinate method [17] applied to consider the monopole
breathing motions [15,16]. These correlations are important
and they are reflected in the tail of the CDFM scaling functions
at negative ψ ′. In contrast, the results of mean-field approaches
(relativistic or not) are generally closer to those of the RFG
model. Although the differences of the results of CDFMI and
CDFMII are not large, they reflect the different stage at which
the RFG approach is replaced by the CDFM (using the weight
function): In the CDFMII long-range correlations are included
at the level of the hadron tensor, whereas in the CDFMI this
is done directly in the scaling function after having factorized
and divided by the single-nucleon factors.

To illustrate the effects of the NN correlations included in
the CDFM on the tail of the CDFM scaling function we recall
the relationship (mentioned in Sec. I) between the scaling
function f (ψ ′) and the nucleon momentum distribution n(k).
It was found within the CDFM [14,18,19,21] that the slope of
the QE scaling function f (ψ ′) at negative ψ ′ crucially depends
on the high-momentum tail of n(k) at larger values of k(k >

1.5 [fm−1]). This can be seen in Fig. 8 from the difference
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FIG. 9. Inclusive electron cross sections as function of energy loss. Shown are results for the CDFMI (dash-dotted line), the CDFMII (solid
line), the L contribution in the CDFMII (dashed line), and the T contribution in the CDFMII (dotted line). The experimental data are taken from
Ref. [26].
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FIG. 10. The cross section of the charge-
changing neutrino (νµ, µ−) reaction on 12C at
θµ = 45◦ and εν = 1 GeV.

between the CDFM combined results (nCDFM) for 4He, 12C,
27Al, 56Fe, and 197Au (gray area) and the mean-field result
(nWS) obtained by means of Woods-Saxon single-particle wave
functions (for 56Fe). It was shown in Refs. [18,19] that when the
scaling function is calculated using realistic high-momentum
components of n(k) at k > 1.5 [fm−1] (i.e., obtained in a
nuclear model accounting for NN correlations beyond the
mean-field approximation), a reasonable explanation of the
superscaling behavior of the scaling function for ψ ′ < −1
is achieved. We note that the difference between the CDFM
scaling function and that from the RFG model for |ψ ′| > 1,
which can be seen in Figs. 6 and 7, is due to the large
difference between n(k) in the CDFM and that in the RFG
model, where the (dimensionless) momentum distribution is
a step function. The study performed in Ref. [19] of the
sensitivity of the CDFM scaling function to the particular
behavior of n(k) in different regions of k showed that the
available empirical data on f (ψ ′) are informative for n(k) for
momentum k � 2.0–2.5 [fm−1].

A test of the CDFM superscaling functions is performed
(Fig. 9) by calculations of the cross sections of electron
scattering in QE and � regions for nuclei with 12 � A � 208
at different energies and angles using the CDFMI and CDFMII

scaling functions. For the scaling function in the � region we
use the results of Ref. [19]. The results are compared with
available experimental data.

As can be seen from Fig. 9 the results calculated with both
CDFMI and CDFMII scaling functions do not differ too much,
agreeing well with experimental data in the QE region. In some
particular cases, CDFMII overestimates data whereas CDFMI
agrees better, being the reverse in other situations. Finally,
some kinematical regimes lead to very similar results for both
models, being in excellent accord with data. Away from the QE
and � peaks the behavior of the cross sections is due to higher
resonances and, as can be expected, in some cases our results
are not in good agreement with the experimental data. We also
display the separate longitudinal and transverse contributions
to the QE peak.

Finally, in Fig. 10 we present the CDFM results for the cross
section of the charge-changing neutrino (νµ, µ−) reaction
on 12C at θµ = 45◦ and εν = 1 GeV. The calculations are
performed following the formalism from Refs. [21,24] using
not only the CDFMI but also the CDFMII QE scaling function.
Our results are compared with those from the RFG model and
SuSA and RPWIA approaches.

We note that the CDFM results are qualitatively similar
to that of Fig. 2; namely, the result for the CDFMII with
asymmetry is closer to that calculated using the phenomeno-
logical (SuSA) scaling function that is extracted from the
experimental data on inclusive electron scattering. However,
CDFMI and CDFMII models lead to very close results, with
the maximum of the scaling function being slightly higher in
the latter. The scaling functions for both approaches follow
closely the behavior exhibited by the RPWIA one.

IV. CONCLUSIONS

The results of the present work can be summarized as
follows:

(i) A new, more general, approach within the coherent
density fluctuation model is proposed (CDFMII). We
apply it to calculate the total f (ψ ′), the longitudinal
fL(ψ ′), and the transverse fT (ψ ′) scaling functions by
taking as starting point the hadronic tensor and the
longitudinal and transverse response functions in the
RFG model.

(ii) The approach leads to a slight violation of the zero-kind
scaling [fL(ψ ′) �= fT (ψ ′)] in contrast with the situation
in the RFG model and CDFMI.

(iii) It is found that the ratio fL(ψ ′)/fT (ψ ′) in the CDFMII

has similarities with that from the RPWIA approach
(with Lorentz gauge) for positive ψ ′.

(iv) It is shown that the CDFMII scaling functions calculated
for different values of the transferred momentum q

show a saturation of its asymptotic behavior. Scaling
of the first kind appears at q larger than ≈0.5 GeV/c.

(v) The CDFM scaling functions are applied to calculate
cross sections of inclusive electron scattering (and
their longitudinal and transverse components) in the
quasielastic and � regions for nuclei with 12 � A � 208
at different energies and angles. The results are in good
agreement with available experimental data, especially
in the QE region.

(vi) The CDFMII approach is applied to calculate charge-
changing neutrino (antineutrino) scattering on 12C at
1 GeV incident energy. The results are compared with
those from the RFG model, as well as from the SuSA
and RPWIA approaches.
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