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New description of the doublet bands in doubly odd nuclei

H. G. Ganev,1 A. I. Georgieva,1 S. Brant,2 and A. Ventura3

1Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria
2Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

3Ente per le Nuove tecnologie, l’Energia e l’Ambiente, I-40129 Bologna and Istituto Nazionale di Fisica Nucleare,
Sezione di Bologna, Italy

(Received 25 December 2008; published 28 April 2009)

The experimentally observed �I = 1 doublet bands in some odd-odd nuclei are analyzed within the
orthosymplectic extension of the interacting vector boson model (IVBM). A new, purely collective interpretation
of these bands is given on the basis of the obtained boson-fermion dynamical symmetry of the model. It is
illustrated by its application to three odd-odd nuclei from the A ∼ 130 region, namely 126Pr, 134Pr, and 132La. The
theoretical predictions for the energy levels of the doublet bands as well as E2 and M1 transition probabilities
between the states of the yrast band in the last two nuclei are compared with experiment and the results of
other theoretical approaches. The obtained results reveal the applicability of the orthosymplectic extension of the
IVBM.
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I. INTRODUCTION

In recent years, extensive experimental evidence for the
existence of distinct band structures in odd-odd nuclei has
been obtained. It has created an opportunity for testing
the predictions of different theoretical models on the level
properties of these nuclei. One such study involves the
observation of doublet �I = 1 bands in odd-odd N = 75
and N = 73 isotones in the A ∼ 130 region. A large number
of experimental data [1–8] have been accumulated in this
mass region, showing that the yrast and yrare states with the
πh11/2 ⊗ νh11/2 configuration form �I = 1 doublet bands
that are nearly degenerate in energy. They are built on the
single-particle states of a valence neutron and a valence
proton in the same unique-parity orbital 0h11/2. Pairs of
bands have been found also in the A ∼ 105 and A ∼ 190
mass regions. Initially, these �I = 1 doublet bands had been
interpreted as a manifestation of “chirality” in the sense of the
angular-momentum coupling [9]. Several theoretical models
have been applied in a number of articles, like the tilted axis
cranking (TAC) model [8,10–12], the core-quasiparticle cou-
pling model [13], the particle-rotor model (PRM) [4,14,15],
two quasiparticle+triaxial rotor model (TQPTR) [16], and the
core-particle-hole coupling model (CPHCM) [6]. All these
models have one assumption in common, they suppose a rigid
triaxial core and hence support the interpretation of the doublet
bands of chiral structure. On the contrary, all odd-odd nuclei
in which twin bands have been observed have a different
characteristic in common: They are in regions where even-even
nuclei are γ -soft, i.e., effectively triaxial but not rigid. Their
potential energy surface is rather flat in the γ direction and
the couplings with other core structures, not only the ground
state band, are significant. It is evident that odd-odd nuclei in
these mass regions do not satisfy all the requirements for the
existence of chirality, but they can approach some of them or
at least retain some fingerprints of chirality.

Many of the recent experiments and theoretical analysis
do not support completely the chiral interpretation [17–21].

In particular, in an ideal situation, i.e., perfectly orthogonal
angular-momentum vectors and stable triaxial nuclear shape,
a perfect degeneracy between the identical spin states should
be observed. In fact, the attainment of degeneracy is one
of the key characteristics of chirality. This feature has not
been observed in any of the chiral structures identified to
date. Moreover, states with different quantum numbers in
two nonchiral bands can also show an accidental degeneracy.
Thus, one of the important tests of chirality is that the
degenerate states in the two bands should also have similar
physical properties, such as moment of inertia, quasiparticle
alignments, transition quadrupole moments, and the related
B(E2) values for intraband E2 transitions. Some experimental
studies have shown that the two bands have different shapes
due to the different kinematical moments of inertia, which
suggest a shape coexistence (triaxial and axial shapes). This
is an interesting observation because the quantal nature of
chirality automatically demands that a chiral partner band
should have identical properties to the yrast triaxial rotational
band. Similarly, it was also found that the experimental data
for the behavior of other observables [equal E2 transitions,
staggering behavior of the M1 values, the smoothness of the
signature S(I ), etc.] do not support such a chiral structure
[17–21]. These results demand a deeper and more detailed
discussion of our understanding of the origin of doublet
bands.

Within the framework of pair truncated shell model it was
pointed out that the band structure of the doublet bands can
be explained by the chopsticks-like motion of two angular
momenta of the odd neutron and the odd proton [22–24]. It was
found that the level scheme of �I = 1 doublet bands arises not
from the chiral structure but from different angular momentum
configurations of the unpaired neutron and unpaired proton
in the 0h11/2 orbitals, weakly coupled with the collective
excitations of the even-even core. The same interpretation was
given also in the quadrupole coupling model [25,26].

An alternative interpretation has been based on the inter-
acting boson fermion-fermion model (IBFFM) [27,28], where
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the energy degeneracy is obtained but a different nature
is attributed to the two bands. A detailed analysis of the
wave functions in IBFFM showed as well that the presence
of configurations with the angular momenta of the proton,
neutron, and core in the chirality favorable, almost orthogonal
geometry, is substantial but far from being dominant. The large
fluctuations of the deformation parameters β and γ around
the triaxial equilibrium shape enhance the content of achiral
configurations in the wave functions. The β distribution of the
yrast band has its maximum at larger deformations than that
of the sideband. At higher angular momenta, this difference
becomes very pronounced. In addition, the fluctuations of β in
the sideband become very large with increasing spin. In both
bands the fluctuations of γ increase with spin, being more
pronounced in the sideband [29]. The composition of the yrast
band, in terms of contributions from core states, shows that
the yrast band is basically built on the ground state band of
the even-even core. With increasing spin the admixture of the
γ band of the core becomes more pronounced. The sideband
wave functions contain large components of the γ band and
with increasing spin, of higher-lying collective structures of
the core, which near the band crossing become dominant.
So, the conclusion of Refs. [20,29] was that the existence
of twin bands in 134Pr should be attributed to a weak dynamic
(fluctuation dominated) chirality combined with an intrinsic
symmetry yet to be revealed. The IBFFM was applied to the
doublet bands in 134Pr [17,20,29]. The B(E2) values of the
transitions depopulating the analog states are different from
the chiral predictions and the B(M1) staggering is not present
[30]. The IBFFM was also applied for the description of the
yrast πh11/2 ⊗ νh11/2 band in 126Pr [31].

The above variety of models and approaches dealing
with the description of the doublet bands in odd-odd nuclei
motivated us to consider their properties in the framework
of the boson-fermion extension of the symplectic IVBM
[32].

In the present work we carry out an analysis of the doublet
bands in some doubly odd nuclei from the A ∼ 130 region
within the orthosymplectic extension [33] of the IVBM.
The latter was proposed to encompass the treatment of the
odd-mass nuclei. Further, the new version of IVBM was
applied for the description of the ground and first excited
positive and/or negative bands of odd-odd nuclei [34]. The
spectrum of the positive-parity states in the odd-odd nuclei
considered in this article is based on the odd proton and
odd neutron (not necessary considered as proton particle-like
and neutron holelike) that occupy the same single-particle
level h11/2. The theoretical description of the doubly odd
nuclei under consideration is fully consistent and starts with
the calculation of theirs even-even and odd-even neighbors.
We consider the simplest physical picture in which two
particles (or quasiparticles) with intrinsic spins taking a single
j value are coupled to an even-even core nucleus whose
states belong to an SpB(12, R) irreducible representation.
Thus, the bands of the odd-mass and odd-odd nuclei arise as
collective bands build on a given even-even nucleus. Therefore,
within the framework of the orthosymplectic extension of the
model a purely collective structure of the doublet bands is
obtained.

The level structure of 126Pr, 134Pr, and 132La is analyzed in
the framework of the orthosymplectic extension of the IVBM
[33]. Thus to describe the structure of odd-odd nuclei, first
a description of the appropriate even-even cores should be
obtained.

The application of the theory to real nuclear systems
is related to the fitting of the model parameters to the
experimental data. The set of five parameters evaluated for the
reproduction of the energies of different collective bands of
the even-even core nuclei is further used with addition of only
three new parameters in the calculations of the energy levels
of the neighboring odd-A and odd-odd nuclei. At the same
time the number of described states is substantially increased
in respect to the ones of the initial even-even cores, which is
illustrated in the applications. That is why the correct choice of
the collective states of the initial even-even nuclei, from which
the basic model parameters are determined, is very important.

II. THE EVEN-EVEN CORE NUCLEI

The algebraic structure of the IVBM is realized in terms of
creation and annihilation operators u+

m(α), um(α) (m = 0,±1).
The bilinear products of the creation and annihilation operators
of the two vector bosons generate the boson representations of
the noncompact symplectic group SpB(12, R) [35]:

FL
M (α, β) =

∑
k,m

CLM
1k1mu+

k (α)u+
m(β),

(1)
GL

M (α, β) =
∑
k,m

CLM
1k1muk(α)um(β),

AL
M (α, β) =

∑
k,m

CLM
1k1mu+

k (α)um(β), (2)

where CLM
1k1m, which are the usual Clebsch-Gordan coeffi-

cients for L = 0, 1, 2 and M = −L,−L + 1, . . . L, define
the transformation properties of Eqs. (1) and (2) under
rotations. The commutation relations between the pair creation
and annihilation operators (1) and the number preserving
operators (2) are given in Ref. [35].

Being a noncompact group, the unitary representations
of SpB(12, R) are of infinite dimension, which makes it
impossible to diagonalize the most general Hamiltonian. When
reduced to the group UB(6), each irrep of the group SpB(12, R)
decomposes into irreps of the subgroup characterized by the
partitions [32,36]:

[N, 05]6 ≡ [N ]6,

where N = 0, 2, 4, . . . (even irrep) or N = 1, 3, 5, . . . (odd
irrep). The subspaces [N ]6 are finite dimensional, which
simplifies the problem of diagonalization. Therefore the
complete spectrum of the system can be calculated through
the diagonalization of the Hamiltonian in the subspaces of
all the unitary irreducible representations (UIR) of UB(6),
belonging to a given UIR of SpB (12, R), which further clarifies
its role of a group of dynamical symmetry.
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The Hamiltonian, corresponding to the unitary limit of
IVBM [32]

SpB(12, R) ⊃ UB(6) ⊃ UB(3) ⊗ UB(2)

⊃ OB(3) ⊗ [UB(1) ⊗ UB(1)], (3)

expressed in terms of the first- and second-order invariant
operators of the different subgroups in the chain (3) is [32]:

H = aN + bN2 + α3T
2 + β3L

2 + α1T
2

0 . (4)

Taking into account the relations T = 2λ and N = λ + 2µ

between the quantum numbers of the mutually complementary
groups SUB(3) and UB(2) in Eq. (3), it becomes obvious that
H [Eq. (4)] is diagonal in the basis

|[N ]6; (λ,µ); KLM; T0〉 ≡ |(N, T ); KLM; T0〉, (5)

labeled by the quantum numbers of the subgroups of the chain
(3). Its eigenvalues are the energies of the basis states of the
boson representations of SpB(12, R):

E[(N, T ), L, T0] = aN + bN2 + α3T (T + 1)

+β3L(L + 1) + α1T
2

0 . (6)

The construction of the symplectic basis for the even IR
of SpB(12, R) is given in detail in Ref. [32]. The SpB(12, R)
classification scheme for the SUB(3) boson representations for
even value of the number of bosons N is shown on Table I in
Ref. [32] (see also Table I).

The most important application of the UB(6) ⊂ SpB(12, R)
limit of the theory is the possibility it affords for describing
both even- and odd-parity bands up to very high angular
momentum [32]. To do this we first have to identify the
experimentally observed bands with the sequences of basis
states of the even SpB(12, R) irrep (Table I). As we deal
with the symplectic extension we are able to consider all
even eigenvalues of the number of vector bosons N with
the corresponding set of T -spins, which uniquely define the
SUB (3) irreps (λ,µ). The multiplicity index K appearing in
the final reduction to the SOB (3) is related to the projection
of L on the body fixed frame and is used with the parity (π )
to label the different bands (Kπ ) in the energy spectra of the
nuclei. For the even-even nuclei we have defined the parity of
the states as πcore = (−1)T [32]. This allowed us to describe
both positive and negative bands.

Further, we use the algebraic concept of “yrast” states,
introduced in Ref. [32]. According to this concept we consider
as yrast states the states with given L, that minimize the energy
(6) with respect to the number of vector bosons N that build
them. Thus the states of the ground state band (GSB) were
identified with the SUB (3) multiplets (0, µ) [32]. In terms
of (N, T ) this choice corresponds to (N = 2µ, T = 0) and
the sequence of states with different numbers of bosons N =
0, 4, 8, . . . and T = 0, T0 = 0. Hence the minimum values of
the energies (6) are obtained at N = 2L.

The presented mapping of the experimental states onto the
SUB (3) basis states, using the algebraic notion of yrast states,
is a particular case of the so called “stretched” states [37].
The latter are defined as the states with (λ0 + 2k, µ0) or
(λ0, µ0 + k), where Ni = λ0 + 2µ0 and k = 0, 1, 2, 3, . . .. In
the symplectic extension of the IVBM the change of the

TABLE I. Classification scheme of basis states (16) according
the decompositions given by the chain (15).

N T (λ,µ) K L J = L ± I

0 0 (0, 0) 0 0 I

2 1 (2, 0) 0 0, 2 I ; 2 ± I

0 (0, 1) 0 1 1 ± I

2 (4, 0) 0 0, 2, 4 I ; 2 ± I ; 4 ± I

4 1 (2, 1) 1 1, 2, 3 1 ± I ; 2 ± I ; 3 ± I

0 (0, 2) 0 0, 2 I ; 2 ± I

3 (6, 0) 0 0, 2, 4, 6 I ; 2 ± I ; 4 ± I ; 6 ± I

1 ± I ; 2 ± I ; 3 ± I ;
2 (4, 1) 1 1, 2, 3, 4, 5

4 ± I ; 5 ± I

6 1 (2, 2) 2 2, 3, 4 2 ± I ; 3 ± I ; 4 ± I

0 0, 2 I ; 2 ± I

0 (0, 3) 0 1, 3 1 ± I ; 3 ± I

I ; 2 ± I ; 4 ± I ;
4 (8, 0) 0 0, 2, 4, 6, 8

6 ± I ; 8 ± I

1 ± I ; 2 ± I ; 3 ± I ;
3 (6, 1) 1 1, 2, 3, 4, 5, 6, 7

4 ± I ; 5 ± I ; 6 ± I ;
7 ± I ; 8 ± I

2 ± I ; 3 ± I ; 4 ± I ;
2 (4, 2) 2 2, 3, 4, 5, 6

5 ± I ; 6 ± I

8 0 0, 2, 4 I ; 2 ± I ; 4 ± I

1 (2, 3) 2 2, 3, 4, 5 2 ± I ; 3 ± I ; 4 ±
I ; 5 ± I

0 1, 3 1 ± I ; 3 ± I

0 (0, 4) 0 0, 2, 4 I ; 2 ± I ; 4 ± I

...
...

...
...

...
...

number k, which is related in the applications to the angular
momentum L of the states, gives rise to the collective bands.
This is achieved by multiple action of one and the same of the
pair rasing generators (1) that are used to define the transition
operators [38]. For the GSB those are the minimum weight
SUB(3) states of a given UB(6) representation, which further
motivate their definition as yrast state.

It was established [39] that the correct placement of the
bands in the spectrum strongly depends on their bandheads’
configuration, and in particular, on the minimal or initial
number of bosons, N = Ni , from which they are built. The
latter determines the starting position of each excited band. In
the present application we take for Ni the value at which the
best χ2 is obtained in the fitting procedure for the energies of
the considered excited band.
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Thus, for the description of the different excited bands, we
first determine the Ni of the bandhead structure and develop
the corresponding excited band over the stretched SUB(3)
multiplets. This corresponds to the sequence of basis states
with N = Ni,Ni + 4, Ni + 8, . . . (�N = 4). The values of T

for the first type of stretched states (λ changing) are changing
by step �T = 2, whereas for the second type (µ changing)
−T is fixed so that in both cases the parity is preserved even
or odd, respectively. For all presented even-even nuclei, the
states of the described excited bands are associated with the
stretched states of the first type (λ changing).

To describe the structure of odd-mass and odd-odd nuclei,
first a description of the appropriate even-even cores should be
obtained. We determine the values of the five phenomenolog-
ical model parameters a, b, α3, β3, α1 by fitting the energies
of the ground and γ bands of the even-even nuclei to the
experimental data [40], using a χ2 procedure.

Numerous IBM studies of even-even nuclei in the A ∼ 130
mass region have shown that these nuclei are well described
by the O(6) symmetry of the IBM, that in the classical limit
corresponds to the Wilets-Jean model of a γ -unstable rotor
[41], and that the accepted interpretation is that they are γ -
soft. The core nucleus 124Ce follows the systematic trend of
the Ce isotopes. The heavier isotopes are γ -soft [O(6)-like in
the IBM terminology], and the lighter ones are considerably
deformed, but they never reach the rigid rotor structure that
corresponds to the SU(3) limit of the IBM. The transition
between these two structures occurs for 126Ce and is reflected
in the dynamics of bands in the neighboring odd-even and
odd-odd nuclei. In contrast to the O(6)-like spectra observed
in the odd-odd isotopes 130,132Pr [42], the structure of 126Pr
reflects the transitional SU(3)-O(6) nature of the core nucleus
124Ce.

Here, we must point out that only in the considered
dynamical symmetry (3) of the IVBM, due to the employed
“algebraic yrast” condition N = 2L and the reduction rules
connecting the values of the number of bosons N with their
angular momentum L the energies of the collective states of
ground state band [32], for example, can be written as:

Eg(L) = (2a − 4b)L + (4b + β3)L(L + 1), (7)

where obviously the rotational L(L + 1) and vibrational L

collective modes are mixed and the type of collectivity depends
on the ratio of the coefficients in front of these two terms. In
analogy it could be shown that the two collective modes are
mixed in the excited bands as well. Hence we can describe quite
well in the same group chain of the symplectic extension, the
even-even cores with various collective properties that need
different dynamical symmetries or their mixture in the IBM.

The theoretical predictions for the even-even core nuclei are
presented in Figs. 1–3. For comparison, the predictions of IBM
and CPHCM are also shown. The IBM results for 124Ce and
134Ce are extracted from Refs. [17,31] and those of CPHCM
for 132Ba from Ref. [6], respectively. From the figures one can
see that the calculated energy levels of both ground state and
γ bands agree rather well up to high angular momenta with
the observed data. Except for the GSB of 134Ce, for which
the IVBM and IBM results are almost identical, the IVBM

FIG. 1. (Color online) Comparison of the theoretical, experimen-
tal, and IBM energies for the ground band of 124Ce.

predictions reproduce better the band structures compared to
CPHCM and IBM.

III. FERMION DEGREES OF FREEDOM

To incorporate the intrinsic spin degrees of freedom into
the symplectic IVBM, we extend the dynamical algebra of
SpB(12, R) to the orthosymplectic algebra of OSp(2	/12, R)
[33]. For this purpose we introduce a particle (quasiparticle)
with spin j and consider a simple core plus particle picture.
Thus, in addition to the boson collective degrees of freedom
[described by dynamical symmetry group SpB(12, R)] we
introduce creation and annihilation operators a

†
m and am

(m = −j, . . . , j ), which satisfy the anticommutation relations

{a†
m, a

†
m′ } = {am, am′ } = 0,

(8)
{am, a

†
m′ } = δmm′ .

All bilinear combinations of a+
m and am′ , namely

fmm′ = a†
ma

†
m′ , m �= m′

(9)
gmm′ = amam′ , m �= m′;
Cmm′ = (a†

mam′ − am′a†
m)/2 (10)

generate the (Lie) fermion pair algebra of SOF (2	). Their
commutation relations are given in Ref. [33]. The number pre-
serving operators (10) generate maximal compact subalgebra
UF (	) of SOF (2	). The upper script B or F denotes the boson
or fermion degrees of freedom, respectively.

FIG. 2. (Color online) Comparison of the theoretical, experimen-
tal, and IBM energies for the ground and first excited γ and Kπ = 4+

bands of 134Ce.
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A. Fermion dynamical symmetries

As can be seen from Eq. (10), the full number conserving
symmetry of a fermion of spin j is UF (2j + 1). In general, the
full dynamical algebra build from all bilinear combinations
[Eqs. (9) and (10)] of creation and annihilation fermion
operators is the SOF (2	) algebra [for a multilevel case
	 = ∑

j (2j + 1)]. One can further construct a certain fermion
dynamical symmetry, i.e., the group-subgroup chain:

SOF (2	) ⊃ G′ ⊃ G′′ ⊃ . . . . (11)

In particular for one particle occupying a single level j we are
interested in the following dynamical symmetry:

SOF (2	) ⊃ Sp(2j + 1) ⊃ SUF (2), (12)

where Sp(2j + 1) is the compact symplectic group. The
dynamical symmetry (12) remains valid also for the case of
two particles occupying the same level j . In this case, the
allowed values of the quantum number I of SUF (2) in Eq. (12)
according to reduction rules are I = 0, 2, . . . , 2j − 1 [43]. If
the two particles occupy different levels j1 and j2 of the same
or different major shell(s), one can consider the chain

↗ UF (	1) ⊃ Sp(2j1 + 1) ⊃ SUF
I1

(2) ↘
SOF (2	) ⊃ UF (	) SUF (2),

↘ UF (	2) ⊃ Sp(2j2 + 1) ⊃ SUF
I2

(2) ↗
(13)

where 	 = 	1 + 	2. We want to point out that although the
final group SUF (2) that appears in the chain (13) is the same
as in Eq. (12), its content is different. Here the values of
the common fermion angular momentum I are determined
by the vector sum of the two individual spins I1 and I2,
respectively. Nevertheless, for simplicity hereafter we will
use just the reduction SOF (2	) ⊃ SUF (2) [i.e., dropping all
intermediate subgroups between SOF (2	) and SUF (2)] and
keep in mind the proper content of the set of I values for one-
and/or two-particle cases, respectively. We consider only the
highest weight states of Sp(2j + 1) with υ = n = 1 (odd-mass
nuclei) and υ = n = 2 (odd-odd nuclei) that are multiplicity
free [43,44]. υ is the quantum number of the Sp(2j + 1)
algebra and n is the number of fermions. Thus, no multiplicity
indices are required in the latter reduction.

B. Bose-Fermi symmetry

Once the fermion dynamical symmetry is determined we
proceed with the construction of the Bose-Fermi symmetries.
If a fermion is coupled to a boson system having itself a
dynamical symmetry (e.g., such as an IBM core), the full
symmetry of the combined system is GB ⊗ GF . Bose-Fermi

FIG. 3. (Color online) Comparison of the theoretical, experimen-
tal, and CPHCM energies for the ground and γ bands of 132Ba.

symmetries occur if at some point the same group appears in
both chains

GB ⊗ GF ⊃ GBF, (14)

i.e., the two subgroup chains merge into one. It should be noted
that (14) is true only for the diagonal subgroup GB ⊗ GF , i.e.,
the one in which the two group elements multiplied directly
are parametrized by the same parameters. In this way the Bose-
Fermi symmetry not only constrains parameters by the choice
of particular subgroup chains in the boson and fermion sectors
but also specifies the interaction between the two.

IV. DYNAMICAL SUPERSYMMETRY

The standard approach to supersymmetry in nuclei (dynam-
ical supersymmetry) is to embed the Bose-Fermi subgroup
chain of GB ⊗ GF into a larger supergroup G, i.e., G ⊃
GB ⊗ GF . It is our intention in this article to do that for chains
describing odd-odd nuclei.

Making use of the embedding SUF (2) ⊂ SOF (2	) and
considerations from the preceding section, we make orthosym-
plectic (supersymmetric) extension of the IVBM that is defined
through the chain [33]:

O Sp(2	/12, R) ⊃ SOF (2	) ⊗ SpB(12, R)
⇓

⇓ ⊗ UB(6)
N

⇓
SUF (2) ⊗ SUB(3) ⊗ UB

T (2)
I (λ,µ) ⇐⇒ (N, T )

↘ ⇓
⊗ SOB(3) ⊗ UB(1)

L T0

⇓
SpinBF(3) ⊃ SpinBF(2),
J J0

(15)
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where below the different subgroups the quantum numbers
characterizing their irreducible representations are given.
SpinBF(n) (n = 2, 3) denotes the universal covering group of
SO(n).

In the next section we present the application of the boson-
fermion extension of IVBM, developed for the description
of the collective bands of even-even [32] and odd-mass [33]
nuclei, to include in our considerations the positive-parity
states of the yrast and sidebands of odd-odd nuclei from
A ∼ 130 region, build on πh11/2 ⊗ νh11/2 configuration.

V. THE ENERGY SPECTRA OF ODD-MASS AND
ODD-ODD NUCLEI

We can label the basis states according to the chain (15) as:

|[N ]6; (λ,µ); KL; I ; JJ0; T0〉
≡ |[N ]6; (N, T ); KL; I ; JJ0; T0〉, (16)

where [N ]6, the UB(6) labeling quantum number, and (λ,µ),
the SUB(3) quantum numbers, characterize the core excita-
tions; K is the multiplicity index in the reduction SUB(3) ⊃
SOB(3), L is the core angular momentum, I is the intrinsic spin
of an odd particle (or the common spin of two fermion particles
for the case of odd-odd nuclei), J, J0 are the total (coupled
boson-fermion) angular momentum and its third projection,
and T , T0 are the T -spin and its third projection, respectively.
Because the SO(2	) label is irrelevant for our application, we
drop it in the states (16).

The Hamiltonian of the combined boson-fermion system
can be written as linear combination of the Casimir operators
of the different subgroups in (15):

H = aN + bN2 + α3T
2 + β ′

3L
2 + α1T

2
0

+ ηI 2 + γ ′J 2 + ζJ 2
0 (17)

and it is obviously diagonal in the basis (16) labeled by
the quantum numbers of their representations. Then the
eigenvalues of the Hamiltonian (17) that yield the spectrum
of the odd-mass and odd-odd systems are:

E(N ; T , T0; L, I ; J, J0)

= aN + bN2 + α3T (T + 1) + β ′
3L(L + 1) + α1T

2
0

+ ηI (I + 1) + γ ′J (J + 1) + ζJ 2
0 . (18)

We note that only the last three terms of Eq. (17) come from the
orthosymplectic extension. We choose parameters β ′

3 = 1
2β3

and γ ′ = 1
2γ instead of β3 and γ to obtain the Hamiltonian

form of Ref. [32] (setting β3 = γ ), when for the case I =
0 (hence J = L) we recover the symplectic structure of the
IVBM.

The infinite set of basis states classified according to the
reduction chain (15) are schematically shown in Table I.
The fourth and fifth columns show the SOB (3) content of the
SUB(3) group, given by the standard Elliott’s reduction rules
[45], while in the next column are given the possible values of
the common angular momentum J , obtained by coupling of
the orbital momentum L with the spin I . The latter is vector
coupling and hence all possible values of the total angular
momentum J should be considered. For simplicity, only the

maximally aligned (J = L + I ) and maximally antialigned
(J = L − I ) states are illustrated in Table I.

The basis states (16) can be considered as a result of
the coupling of the orbital |(N, T ); KLM; T0〉 (5) and spin
φj≡I,m wave functions. Then, if the parity of the single
particle is πsp, the parity of the collective states of the odd-A
nuclei will be π = πcoreπsp [33]. In analogy, one can write
π = πcoreπsp(1)πsp(2) for the case of odd-odd nuclei. Thus,
the description of the positive- and/or negative-parity bands
requires only the proper choice of the core bandheads, on
which the corresponding single particle(s) is (are) coupled to,
generating in this way the different odd-A (odd-odd) collective
bands.

Further in the present considerations, the “yrast” condi-
tions yield relations between the number of bosons N and
the coupled angular momentum J that characterizes each
collective state. For example, the collective states of the
GSB Kπ

J = 5
2

+
(125Ce) of the odd-mass nuclei are identified

with the SUB(3) multiplets (0, µ) that yield the sequence
N = 2(J − I ) = 0, 2, 4, . . . for the corresponding values J =
5
2 , 7

2 , 9
2 , . . .. The T -spin for the SUB(3) multiplets (0, µ) is

T = 0 and hence πcore = (−1)T = (+). Here it is assumed
that the single particle has j ≡ I = 5/2 and parity πsp = (+),
so the common parity π is also positive.

For the description of the different excited bands, we first
determine the Ni of the bandhead structure and then we
map the states of the corresponding band onto the sequence
of basis states with N = Ni,Ni + 2, Ni + 4, . . . (�N = 2)
and T = even = fixed or T = odd = fixed, respectively. This
choice corresponds to the stretched states of the second type
(µ changing). In general, except for the excited bands of the
even-even nuclei for which the stretched states of the first
type (λ changing) are used, the stretched states of the second
type (µ changing) are considered in all the calculations of the
collective states of the odd-mass and doubly odd nuclei.

The number of adjustable parameters needed for the
complete description of the collective spectra of both odd-A
and odd-odd nuclei is three, namely γ, ζ , and η. The first two
are evaluated by a fit to the experimental data [40] of the GSB
of the corresponding odd-A neighbor, while the last one is
introduced in the final step of the fitting procedure for the
odd-odd nucleus, respectively. For the A ∼ 130 region where
the doublet bands are built on πh11/2 ⊗ νh11/2 configuration,
the two fermions occupy the same single-particle level j1 =
j2 = j = 11/2 with negative parity (πsp = −) and the fermion
reduction chain (12) can be used.

The odd-A neighboring nuclei 125Ce and 135Ce can be
considered as a neutron coupled to the even-even cores
124Ce and 134Ce, while the 133La can be considered as a
proton coupled to the 132Ba, respectively. The low-lying
positive-parity states of the GSB in odd-A neighbors are
based on positive-parity proton and positive-parity neutron
configurations (s 1

2
, d 3

2
, d 5

2
, g 7

2
), whereas those of negative

parity are based on h11/2. For each nucleus under consideration
we take into account only the first available single-particle
orbit j1 [generating the groups SO(2	1) and/or U(	1) with
	1 = (2j1 + 1)]. Thus, in the present calculations only the
single-particle levels j = 5/2 (125Ce) and j = 11/2 (135Ce,
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FIG. 4. (Color online) Comparison of the theoretical, experimen-
tal, and IBFM energies for the ground Kπ

J = 5
2

+
and first excited

Kπ
J = 7

2

−
bands of 125Ce.

133La), respectively, are considered. We want to point out that
for the description of the excited bands (e.g., Kπ

J = 7/2− of
125Ce, Kπ

J = 19/2+ of 135Ce) with opposite parity additional
single-particle levels are not involved. The collective states of
the odd-A (or odd-odd) system are built on the proper SUB(3)
multiplets (λ,µ) so that the common positive- or negative-
parity π = πcoreπsp is correctly reproduced. For example, the
Kπ

J = 7/2− band of 125Ce is obtained by the coupling of a
particle with j = 5/2 (πsp = +) to the core SUB(3) multiplets
(18, µ) (µ changing) (T = 9 and hence πcore = −) so that the
common parity is negative.

The comparison between the experimental spectra for the
GSB and first excited band using the values of the model
parameters given in Table II for the nuclei 125Ce, 135Ce, and
133La is illustrated in Figs. 4–6. One can see from the figures
that the calculated energy levels agree rather well in general
with the experimental data up to very high angular momenta.
For comparison, in Figs. 4 and 6 the IBFM and CPHCM results
for 125Ce and 133La are also shown. They are extracted from
Refs. [31] and [6], respectively.

For the calculation of the odd-odd nuclei spectra a second
particle should be coupled to the core. In our calculations a
consistent procedure is employed that includes the analysis of
the even-even and odd-even neighbors of the nucleus under
consideration. Thus, as a first step an odd particle was coupled
to the boson core to obtain the spectra of the odd-mass neigh-

FIG. 5. (Color online) Comparison of the theoretical and experi-
mental energies for the yrast Kπ

J = 11
2

−
and first excited Kπ

J = 19
2

+

bands of 135Ce.

FIG. 6. (Color online) Comparison of the theoretical, experimen-
tal, and CPHCM energies for the yrast Kπ

J = 11
2

−
band of 133La.

bors 125Ce, 135Ce, and 133La. As a second step, we consider an
addition of a second particle to the boson-fermion system.

TABLE II. Values of the model parameters.

Nucl. Bands Ni T T0 J χ 2 Parameters

a = 0.02855
Yrast:

126Pr 24 0 0 L + I 0.0017 b = −0.00120
Kπ = 8+

α3 = 0.00680

β3 = 0.01774
I = 8

α1 = 0.01387

η = −0.00906
γ = 0.01691
ζ = −0.01132

a = 0.07449
Yrast

132La 44 0 0 L − I 0.0034 b = 0.00690
Kπ = 8+

α3 = 0.05709

Side β3 = 0.04847
I = 8 50 2 0 L − I 0.0088

Kπ = 11+ α1 = 0.06076

η = 0.02360
γ = 0.04796
ζ = 0.02960

a = 0.08190
Yrast:

134Pr 10 0 0 L + I 0.0046 b = 0.00473
Kπ = 8+

α3 = 0.03637

Side: β3 = 0.03660
I = 8 14 4 0 L + I 0.0020

Kπ = 8+ α1 = 0.04424

η = −0.01876
γ = 0.03002
ζ = 0.00061
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FIG. 7. (Color online) Comparison of the theoretical, experimen-
tal, and IBFFM energies for 20 levels of the yrast band of 126Pr.

In our application, the most important point is the identi-
fication of the experimentally observed states with a certain
subset of basis states from (ortho-)symplectic extension of
the model. Here we consider a more general mapping when
the states of the GSB of the odd-odd nuclei are associated
with a sequence of SUB (3) multiplets (0, µ) but the band
starts with the multiplet (0, µ0) instead of (0, 0). Thus, to
the states of the yrast band with J = I, I + 1, I + 2, . . . of
the odd-odd nuclei we put into correspondence the SUB(3)
multiplets (0, µ) (µ changing) of the basis states (16) that
in terms of (N, T ) correspond to (N = 2µ, T = 0) and the
sequence of states with different numbers of bosons N =
N0, N0 + 2, N0 + 4, . . . (�N = 2). The chosen set of SUB(3)
multiplets (0, µ) means that the GSB of the odd-odd as
well as that of odd-mass nuclei is built on the GSB of the
even-even core nucleus. We recall that in contrast to the
IBM, the symplectic core structure [described by different
SUB(3) multiplets (0, µ)] within the IVBM is active allowing
the change of the number of bosons. The “yrast” condition
that results from this mapping of the band’s states over
the stretched states (λ0 = 0, µ0 + k) yields N = 2µ0 + 2L

(or k = L). In particular, when the bandhead structure is
determined by N0 = 0 bosons, the yrast condition reduces to
N = 2L (or µ = L) [32,33]. To visualize the correspondence
under consideration, we illustrate the selected subset of basis

FIG. 8. (Color online) Comparison of the theoretical, experimen-
tal, and IBFFM energies for 10 levels of the yrast and 10 levels of the
sidebands of 134Pr.

FIG. 9. (Color online) Comparison of the theoretical, experimen-
tal and CPHCM energies for 10 levels of the yrast and 6 levels of the
sidebands 132La.

states in Table III. Hence one obtains the observed ground
state of the yrast band with Kπ

J = 8+ for 126Pr,134Pr, and 132La
nuclei simply attributing to it only the angular momentum
I = 8 from the vector coupling of the proton Ip = 11

2 and
neutron In = 11

2 momenta.
For the description of the side (yrare) band built also on

the πh11/2 ⊗ νh11/2 configuration that can be considered an
excited band, we first determine the collective structure of
the bandhead Ni = λ0 + 2µ0 and then map the states of this
band onto the sequences of basis states with N = Ni,Ni +
2, Ni + 4, . . . (�N = 2) and T = even = fixed. This choice
corresponds to the stretched states of the second type (µ
changing). The SUB (3) multiplets (λ �= 0, µ) attributed to
the sideband suggest similar collective structure for this band
compared to that of its “doublet partner.” Similar interpretation
of the two bands takes place in the IBFFM, where the
yrast band is basically built on the GSB [described within
a single SU(3) multiplet (λ,µ)] of the even-even core, while
the structure of the sideband is that of odd proton and odd
neutron coupled to the γ band of the core and in the high-spin
region contains sizable components of the higher-lying core
structures.

The theoretical predictions for the yrast and sidebands
based on πh11/2 ⊗ νh11/2 configuration for the three odd-
odd nuclei 126Pr, 134Pr, and 132La from A ∼ 130 region are
presented in Figs. 7, 8, and 9, respectively. For comparison,
the IBFFM (Refs. [29,31]) and CPHCM (Ref. [6]) results
are also shown. In Table II, the values of Ni, T , T0, J , and
χ2 for each band under consideration are also given. From
the figures one can see the good overall agreement between
the theory and experiment which reveals the applicability
of the boson-fermion extension of the model.

TABLE III. The subset of basis states (16) associated with the
states of the GSB of odd-odd nuclei, based on πh11/2 ⊗ νh11/2

configuration.

N N0 N0 + 2 N0 + 4 N0 + 6 . . .

(λ,µ) (0, µ0) (0, µ0 + 1) (0, µ0 + 2) (0, µ0 + 3) . . .

L 0 1 2 3 . . .

J I I + 1 I + 2 I + 3 . . .
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To investigate the structure of the doublet bands in a certain
nucleus, it is crucial to determine the B(E2) and B(M1) values
that are very important for establishing the nature of these
bands. So, in the next section we consider the E2 and M1
transitions in the framework of the orthosymplectic extension
of the IVBM.

VI. ELECTROMAGNETIC TRANSITIONS

A successful nuclear model must yield a good description
not only of the energy spectrum of the nucleus but also of
its electromagnetic properties. Calculation of the latter is a
good test of the nuclear model functions. The most important
electromagnetic features that manifest themselves in doublet
bands are the E2 and M1 transitions. In this section we discuss
the calculation of the E2 and M1 transition strengths between
the states of the yrast band of the odd-odd nuclei based on
πh11/2 ⊗ νh11/2 configuration and compare the results with
the available experimental data.

For a mixed systems of bosons and fermions it is convenient
to expand the coupled basis states (16) into the direct product of
the boson and fermion states. The latter significantly simplifies
the application of the Wigner-Eckart theorem in the practical
calculations of the transition rates.

A. E2 transitions

As was mentioned, in the symplectic extension of the
IVBM the complete spectrum of the system is obtained in
all the even subspaces with fixed N , even of the UIR [N ]6

of UB(6), belonging to a given even UIR of SpB(12, R). The
classification scheme of the SUB(3) boson representations for
even values of the number of bosons N was presented in
Table I.

In the present article, the states of the yrast band are
identified with the SUB(3) multiplets (0, µ). This yields the
sequence N = N0, N0 + 2, N0 + 4, . . . for the corresponding
values J = I, I + 1, I + 2, . . . (see Table III). In terms of
(N, T ) this corresponds to (N = 2µ, T = 0).

Using the tensorial properties of the SpB(12, R) generators
with respect to (3) it is easy to define the proper E2 transition
operator between the states of the considered band as [38]:

T E2 = e
[
A

[1−1]6 20
(1,1)3[0]2 00 + θ

(
[F × F ] [4]6 20

(0,2)[0]2 00

+ [G × G] [−4]6 20
(2,0)[0]2 00

)]
. (19)

The first part of (19) is a SUB (3) generator and actually changes
only the angular momentum with �L = 2.

The tensor product

[F × F ] [4]6 20
(0,2)[0]2 00

=
∑

C
[2]6 [2]6 [4]6

(2,0)[2]2 (2,0)[2]2 (0,2)[0]2
C

(2,0) (2,0) (0,2)
(2)3 (2)3 (2)3

×C20
20 20C

10
111−1F

[2]6 20
(2,0)[2]2 11 F

[2]6 20
(2,0)[2]2 1−1 (20)

of the operators (1) that are the pair raising SpB(12, R)
generators changes the number of bosons by �N = 4 and
�L = 2. It is obvious that this term in T E2 (19) comes from

the symplectic extension of the model. In Eq. (19) e is the
effective boson charge.

The transition probabilities are by definition SO(3) reduced
matrix elements of transition operators T E2 (19) between the
|i〉 (initial) and |f 〉 (final) collective states (16)

B(E2; Ji → Jf ) = 1

2Ji + 1
|〈f ‖ T E2 ‖ i〉|2. (21)

The basis states (16) can be considered as a result of the
coupling of the orbital |(N, T ); KLM; T0〉 (5) and spin φIm

wave functions. Because the spin I (I − fixed) is simply added
to the orbital momentum L, the action of the transition operator
T E2 concerns only the orbital part of the basis functions (16).

To prove the correct predictions following from our theo-
retical results we apply the theory to the two nuclei 134Pr and
132La for which there are available experimental data for the
transition probabilities between the states of the yrast bands.
The application actually consists of fitting the two parameters
of the transition operator T E2 (19) to the experiment for each
of the considered bands. The B(E2) strengths between the
positive-parity states of the yrast band, as were attributed to
the SUB (3) symmetry-adapted basis states (16) of the model,
are calculated. For these SUB(3) multiplets, the procedure
for their calculations actually coincides with that given in
Ref. [38] and modified for the case of odd-odd nuclei in [46].
The theoretical predictions for the 134Pr nucleus are compared
with the experimental data [29] in Fig. 10. For comparison,
the IBFFM and TQPTR results (Ref. [29]) are also shown.
From the figure one can see the good overall reproduction of
the experimental values, which is obviously better than the
IBFFM and TQPTR ones.

In Fig. 11 the theoretical predictions for the 132La nucleus
are compared with the experimental data [19]. One sees that
the experimental behavior of B(E2) values of this nucleus is
also reproduced quite well.

FIG. 10. (Color online) Comparison of the theoretical and exper-
imental values for the B(E2) transition probabilities for the 134Pr. The
theoretical predictions of the IBFFM and TQPTR are shown as well.
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FIG. 11. (Color online) Comparison of the theoretical and exper-
imental values for the B(E2) transition probabilities for the 132La.

B. M1 transitions

The structure of M1 transition operator between the states
of the yrast band can be defined in the following way:

T
M1 (1)

M =
√

3

4π

[
gJ

(1)
M + gFG

(
F

[2]6 1M
(0,1)[0]2 00

+G
[−2]6 1M

(1,0)[0]2 00

)]
. (22)

J
(1)
M is the total boson-fermion angular momentum, i.e., J (1)

M =
L1

M + I
(1)
M , where L

(1)
M = −√

2
∑

α A1
M (α, α) and I

(1)
M =

[a†
j aj ](1)

M . The second term in Eq. (22) changing the number of
bosons by �N = 2 comes also from the symplectic extension.
In Eq. (22) g and gFG stand for the gyromagnetic factors, which
we consider as free parameters.

The B(M1) values can be obtained from the reduced matrix
elements of M1 operator in the usual way:

B(M1; J → J ′) = 1

2J + 1
|〈γ ′, J ′ ‖ T M1 ‖ γ, J 〉|2. (23)

The labels γ and γ ′ denote the quantum numbers of the basis
states in chain (15).

For the calculation of the matrix element of first term in
Eq. (22) we note that the J (1)

m operator is a generator of
SpinBF(3) algebra. Hence, the Wigner-Eckart theorem can be
applied at the SpinBF(3) level. Using the latter, one obtains for
the required reduced matrix element

〈γ ′, J ′||J (1)
m ||γ, J 〉 = δγ,γ ′δJ,J ′

√
J (J + 1)(2J + 1). (24)

Further, we will calculate the matrix element of F
[2]6 10

(0,1)[0]2 00

of the second term in Eq. (22) that is a generator of SpB(12, R)
algebra. The action of the latter concerns only the orbital part of
the basis functions (16). In general, for calculating the matrix
elements of symplectic generators, we have the advantage of
using the generalized Wigner-Eckart theorem in two steps [38].
For the SUB(3) → SOB(3) and SUB(2) → UB(1) reduction
we need the standard SU(2) Clebsch-Gordan coefficients

〈[N ′](λ′, µ′); K ′L′M ′; T ′T ′
0|T [χ]6 lm

[σ ]3[2t]2 t t0
|[N ] (λ,µ);

KLM; T T0 〉
= 〈[N ′](λ′, µ′); K ′L′||T [χ]6 lm

[σ ]3[2t]2 t t0
||[N ]

× (λ,µ); KL〉CL′M ′
LMlmC

T ′T ′
0

T T0t t0
. (25)

For the calculation of the double-barred reduced matrix
elements in Eq. (25) we use the next step:

〈[N ′](λ′, µ′); K ′L′||T [χ]6 lm

[σ ]3[2t]2 t t0
||[N ] (λ,µ); KL〉

= 〈[N ′]|||T [χ]6
[σ ]3[2t]2

||| [N ]〉C[N]6 [χ]6 [N ′]6
(λ,µ)[2T ]2 [σ ]3[2t]2 (λ′,µ′)[2T ′]2

×C
(λ,µ) [λ]3 (λ′,µ′)
KL k(l)3 K ′L′ , (26)

where C
[N]6 [χ]6 [N ′]6

(λ,µ)[2T ]2 [σ ]3[2t]2 (λ′,µ′)[2T ′]2
and C

(λ,µ) [λ]3 (λ′,µ′)
KL k(l)3 K ′L′

are UB(6) and SUB(3) isoscalar factors (IF’s). Obviously the
practical value of the application of the generalized Wigner-
Eckart theorem for the calculation of the matrix elements of
the SpB(12, R) generators depends on the knowledge of the
isoscalar factors for the reductions UB(6) ⊃ UB(3) ⊗ UB(2)
and UB(3) ⊃ OB(3), respectively. For the evaluation of the
matrix elements (25) of the SpB(12, R) operators in respect to
the chain (3) the reduced triple-barred UB(6) matrix elements
are also required (26).

Thus, for the calculation of the matrix element

〈[N + 2], (0, µ + 1); 0L + 10; 00|F [2]6 10
(0,1)[0]2 00

× |[N ], (0, µ); 0L0; 00〉
= C

[N]6 [2]6 [N+2]6
(0,µ)[0]2 (0,1)[0]2 (0,µ+1)[0]2

C
(0,µ) (0,1) (0,µ+1)

L 1 L+1

×C
L+1,0
L,0 1,0〈[N + 2]|||F [2]6

(0,1) [0]2
|||[N ]〉 (27)

we use the standard recoupling technique for two coupled
UB(6) tensors [38,43,47]:

〈[N ′]|||[T [α]6 × T [β]6 ]σ [γ ]6 |||[N ]〉
=

∑
c,ρ1,ρ2

U ([N ]6; [β]6; [N ′]6; [α]6|[Nc]6ρ2ρ1; [γ ]6σ )

×〈[N ′]|||T [α]6 |||[Nc]〉〈[Nc]|||T [β]6 |||[N ]〉, (28)

where U(· · ·) are the UB(6) Racah coefficients in unitary form
[48]. For the reduced triple-barred matrix element in our case,
which is multiplicity free and hence there is no sum, we have

〈[N + 2]|||F [2]6
(0,1)[0]2

|||[N ]〉
= U ([N ]6; [1]6; [N + 2]6; [1]6|[N + 1]6; [2]6)

×〈[N + 2]|||u†[1]6 |||[N + 1]〉〈[N + 1]|||u†[1]6 |||[N ]〉
=

√
(N + 1)(N + 2), (29)

where the corresponding Racah coefficient for maximal cou-
pling representations is equal to unity [38,43,47]. For obtaining
this, we used the fact that in the case of vector bosons that span
the fundamental irrep [1] of u(n) algebra the u(n)-reduced ma-
trix element of raising generators has the well-known form [49]

〈[N + 1]|||u†
m(α)|||[N ]〉 = √

N + 1. (30)

Taking into account the fact that the corresponding UB(6) IF
entering in Eq. (27) for maximal coupling representations is
equal to 1 [38,43], we obtain

〈[N + 2], (0, µ + 1); 0L + 10; 00|F [2]6 10
(0,1)[0]2 00

× |[N ], (0, µ); 0L0; 00〉

= C
L+1,0
L,0 1,0

[
(µ + L + 3)(L + 1)

(µ + 1)(2L + 3)

]1/2

×
√

(N + 1)(N + 2). (31)
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The value of the reduced SUB(3) Clebsch-Gordan coefficient
(IF) is taken from Ref. [50]. Finally, the yrast condition
N = 2(µ0 + L) = N0 + 2L (or µ = µ0 + L) leads to the
following reduced matrix element

〈[N + 2], (0, µ + 1); 0L + 1; 00
∥∥F

[2]6 10
(0,1)[0]2 00

∥∥[N ],

(0, µ); 0L; 00〉

=
[

(N0 + 4L + 6)(L + 1)

(N0 + 2L + 2)(2L + 3)

]1/2

×
√

(N0 + 2L + 1)(N0 + 2L + 2), (32)

where in Eq. (32) the relation N = 2µ + λ is taken into
account. We see that the expression (32) depends on the
ground state collective structure N0. If N0 = 0 (hence
N = 2L), the matrix element reduces simply to

〈[N + 2], (0, µ + 1); 0L + 1; 00
∥∥F

[2]6 10
(0,1)[0]2 00

∥∥[N ],

(0, µ); 0L; 00〉 =
√

(2L + 1)(2L + 2) (33)

obtained in Ref. [38].
For the calculation of the matrix element of G

[−2]6 10
(1,0)[0]2 00

we use the conjugation property

〈[N − 2], (0, µ − 1); 0L − 1; 00
∥∥G

[−2]6 10
(1,0)[0]2 00

∥∥[N ],

(0, µ); 0L; 00〉 = (〈[N ], (0, µ); 0L; 00
∥∥F

[4]6 10
(0,1)[0]2 00

∥∥
[N − 2], (0, µ − 1); 0L − 1; 00〉)∗

= C
[N−2]6 [2]6 [N]6
(0,µ−1)[0]2 (0,1)[0]2 (0,µ)[0]2

×C
(0,µ−1) (0,1) (0,µ)

L−1 1 L

√
N (N − 1)

=
[

(N0 + 4L + 2)L

(N0 + 2L)(2L + 1)

]1/2

×
√

(N0 + 2L)(N0 + 2L − 1). (34)

With the help of the above analytic expressions (24), (32),
and (34) one obtains the corresponding B(M1; J → J − 1)
values between the states in the yrast band as attributed to the
SUB (3) symmetry-adapted basis states of the model (16). The
numerical values obtained by fitting the two parameters g and
gFG to the experimental data for 134Pr are given in Fig. 12.

FIG. 12. (Color online) Comparison of the theoretical and experi-
mental values for the in-band B(M1) transition probabilities between
the states of the yrast band for the 134Pr. The theoretical predictions
of the IBFFM and TQPTR are shown as well.

FIG. 13. (Color online) Comparison of the theoretical and experi-
mental values for the in-band B(M1) transition probabilities between
the states of the yrast band for the 132La.

For comparison, the IBFFM and TQPTR results (Ref. [29])
are also shown. From the figure one can see that while the
IVBM and IBFFM results in the J ≈ 13–17 region are with
almost the same level of accuracy, the general experimental
trend is fairly well reproduced in the framework of the former.
The adopted values of effective g factors are g = 2.2µN and
gFG = −3.87µN .

In Fig. 13 the theoretical predictions for the 132La nucleus
are compared with experiment [19]. The adopted values of
effective g factors are g = 0.84µN and gFG = −0.11µN . One
can observe a very good description of the experimental
data within the framework of the present approach in this
nucleus as well. We want to point out that the contribution
of the symplectic term in Eq. (23) is crucial for the accurate
reproduction of the experimental B(M1) behavior.

The calculation of the M1 and E2 transitions in the
sideband requires the knowledge of the corresponding UB(6)
and SUB (3) isoscalar factors that are not available analytically
for the basis states attributed to states of the sideband. The
computer codes [51] for the numerical calculation of the
SUB(3) IF’s can be used, so the difficulties are focused on
the calculation of the corresponding UB(6) isoscalar factors.
Hence, the calculation of the transition probabilities in the
sideband is a nontrivial task for a future application of our
approach.

Finally, we want to point out that the expressions for the
transition probabilities depend on the bandhead structure N0.
It turns out that the values of B(E2) and B(M1) transition
strengths are very sensitive to the initial number of bosons N0.
Usually, the bandhead structures of the GSB of the even-even
core and the yrast band of the doubly odd (or odd-mass)
nuclei are different. This suggests modified values of the
effective charges and gyromagnetic factors required for the
calculation of the B(E2) and B(M1) transition probabilities
in the neighboring even-even and odd-A nuclei.

VII. CONCLUSIONS

In the present article, the yrast and yrare states with
the πh11/2 ⊗ νh11/2 configuration in the doubly odd nuclei,
126Pr, 134Pr, and 132La, were investigated in terms of the
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orthosymplectic extension of the IVBM. This allows for the
proper reproduction of the energies of these states up to high
angular momenta in both bands.

The basis states of the odd-mass and odd-odd systems are
classified by the dynamical symmetry (15) and the model
Hamiltonian is written in terms of the first- and second-order
invariants of the groups from the corresponding reduction
chain. Hence the problem is exactly solvable within the
framework of the IVBM that, in turn, yields a simple and
straightforward application to real nuclear systems.

For two of the three isotopes considered, the B(E2) and
B(M1) transition probabilities between the states of the yrast
band are calculated and compared with the experimental data.
A good overall agreement of the theoretical predictions with
experiment is obtained. The calculations reveal the important
role of the symplectic term entering in the corresponding
transition operator for the correct reproduction of the behavior
of both B(E2) and B(M1) strengths.

The even-even nuclei are used as a core on which the
collective excitations of the neighboring odd-mass and odd-
odd nuclei are built on. Thus, the spectra of odd-mass and
odd-odd nuclei arise as a result of the coupling of the fermion
degrees of freedom to the boson core. The states of the yrast
band of doubly odd nuclei are built on the ground state band
SUB(3) multiplets (0, µ) of the even-even core, while those
of sideband are built on the SUB(3) multiplets (λ0 = fixed, µ)
that suggests similar collective behavior [both sets of SUB(3)
multiplets are the stretched states of second type] of the
two bands. The only difference comes from the initial band
head structures [(0, µ) and (λ0, µ)]. Hence, a purely collective
structure of the states of the yrast and sidebands is introduced.

Those assumptions suggest a similar behavior (slope) of the
transitions in the sideband that we intend to investigate in
future.

The good agreement between the theoretical and the
experimental band structures is a result of the mixing of
the basic collective modes—rotational and vibrational ones
arising from the yrast conditions—way back on the level of
the even-even cores. This allows for the correct reproduction
of the high-spin states of the collective bands and the correct
placement of the different bandheads. The simplifications in
our approach comes from the fact that only one dynamical sym-
metry is employed, which leads to exact and simple solutions
depending only on the values of the model parameters. The
success of the presented applications is based on the proper and
consistent mapping of the experimentally observed collective
states of the even-even, odd-mass, and odd-odd nuclei on
the (ortho-)symplectic structures. The latter is much simpler
approach than the mixing of the basis states considered in other
theoretical models.

The presented results on the description of the doublet
bands in odd-odd nuclei confirm the wider applicability of
the used boson-fermion symmetry of IVBM.
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