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Particle-number restoration within the energy density functional formalism:
Nonviability of terms depending on noninteger powers of the density matrices

T. Duguet,1,2,3,* M. Bender,4,5,† K. Bennaceur,3,6,‡ D. Lacroix,7,§ and T. Lesinski6,‖
1National Superconducting Cyclotron Laboratory, 1 Cyclotron Laboratory, East Lansing, Michigan 48824, USA

2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
3CEA, Irfu, SPhN, Centre de Saclay, F-911191 Gif-sur-Yvette, France
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We discuss the origin of pathological behaviors that have been recently identified in particle-number-restoration
calculations performed within the nuclear energy density functional framework. A regularization method that
removes the problematic terms from the multi reference energy density functional and that applies (i) to any
symmetry-restoration- and/or generator-coordinate-method-based configuration mixing calculation and (ii) to
energy density functionals depending only on integer powers of the density matrices was proposed in [D. Lacroix,
T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009)] and implemented for particle-number-restoration
calculations in [M. Bender, T. Duguet, and D. Lacroix, Phys. Rev. C 79, 044319 (2009)]. In the present article,
we address the viability of noninteger powers of the density matrices in the nuclear energy density functional.
Our discussion builds on the analysis already carried out in [J. Dobaczewski et al., Phys. Rev. C 76, 054315
(2007)]. First, we propose to reduce the pathological nature of terms depending on a noninteger power of the
density matrices by regularizing the fraction that relates to the integer part of the exponent using the method
proposed in [D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009)]. Then, we discuss the
spurious features brought about by the remaining fractional power. Finally, we conclude that noninteger powers
of the density matrices are not viable and should be avoided in the first place when constructing nuclear energy
density functionals that are eventually meant to be used in multi reference calculations.
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I. INTRODUCTION

In their recent article [1], Dobaczewski et al. have pointed
out that there are two distinct pathologies that might appear in
calculations aiming at restoring particle number within the nu-
clear energy density functional (EDF) framework. Formulating
a particle-number-restored (PNR) EDF calculation through a
contour integral in the complex plane over multi reference
(MR) EDF kernels, the two categories of pathologies are
associated with spurious poles and branch cuts of the complex
MR-EDF kernels that relate to dependencies of the latter
on integer and noninteger powers of the (transition) density
matrices, respectively.

The possible appearance of spurious poles was already
identified in Refs. [2–4]. In Ref. [5], hereafter referred to as
Article I, we demonstrated that such a pathology is shared by
any symmetry-restoration- or generator-coordinate-method-
(GCM) based configuration mixing calculation performed
within the EDF context, which we will call a multi reference
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energy density functional (MR-EDF) formalism from now on.
In most other cases than PNR, however, the identification
of the spuriosities is much less transparent. In Article I,
we proposed a formal and practical regularization method
that applies to any symmetry-restoration and/or GCM-based
configuration mixing calculation. In Ref. [6], hereafter referred
to as Article II, we applied the correction method to PNR
calculations using a particular energy functional that depends
only on integer powers of the density matrices and thus display
only spurious poles.

The pathology associated with spurious branch cuts has
been overlooked until recently [1] for reasons that will become
clear in the following. As a remedy to it, the authors of Ref. [1]
have proposed to deform the integration contour in the complex
plane such that it does not cross the branch cuts. As will be
discussed below, such a procedure does not allow the definition
of a fully satisfactory theory; e.g., the breaking of the shift
invariance remains. In addition, there is no clear method for
generalizing the proposed solution to any other coordinate
frequently used in MR-EDF calculations.

In the present article, we thus address the pathology
associated with branch cuts from a different point of view
than that in Ref. [1]. We first make use of the correction
scheme designed in Article I to regularize the pathology
associated with spurious poles. Doing so we can isolate
the part that is specific to the pathology brought about by
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branch cuts and question whether it is possible to perform
meaningful MR calculations using an EDF that depends on
noninteger powers of the density matrices. In fact, the question
relates to the possibility to deal with any EDF providing
multivalued MR kernels over the complex plane. It will appear
that any EDF (i) providing multivalued MR kernels over the
complex plane, (ii) whose functional form is such that the
pole structure cannot be extracted analytically, e.g., the family
of functionals proposed by Fayans and collaborators [7,8], is
critical. Eventually, anything but low-order polynomials seems
difficult, if not impossible, to handle in practical MR-EDF
calculations. Indeed, even if the pole structure of a complicated
EDF can be characterized, it is only for low-order polynomials
that the regularization method proposed in Article I can be
applied to identify the associated spurious contribution to the
physical pole at z = 0.

The present discussion is conducted for PNR calculations
based on an EDF whose normal part takes the form of a
toy Skyrme energy density functional and whose pairing part
derives from a density-dependent delta interaction (DDDI).
Numerical applications are performed using the realistic SLy4
Skyrme EDF combined with a local pairing part as derived
from a (density-independent) delta interaction (DI). Two
situations of interest are actually considered that correspond
to using an EDF (i) derived from (density-dependent) forces
(ii) formulated directly at the level of the energy functional
itself.

The article is organized as follows. In Sec. II, basic elements
of the single-reference EDF method are recalled and the
form of the simplified energy functional considered for the
discussion is given. Section III introduces PNR calculations
performed within the EDF framework and describes the
analytical continuation into the complex plane that is used
for analysis purposes in Sec. IV.

Section IV discusses the occurrence of pathological patterns
in particle-number-restored energies. First, we recall the
situation for EDFs depending on integer powers of the density
matrices, which is the focus of Articles I and II. Then, EDFs
depending on noninteger powers of the density matrices are
discussed as the simplest and most practically relevant example
of EDF generating multivalued PNR energy kernels over
the complex plane. Still, the conclusions drawn are valid
for more involved EDFs presenting such a feature. Finally,
results of numerical applications are provided in Sec. V,
highlighting again the differences between EDFs depending
on integer powers of the density matrices and those depending
on noninteger ones. Conclusions are given in Sec. VI.

II. SINGLE-REFERENCE EDF METHOD

Before we present results obtained with a realistic SLy4+DI
EDF, we analyze the relevant physics with a toy functional,
reduced to the bare minimum of terms necessary to convey our
point.

A. Density matrices

The implementation of the single-reference EDF approach
relies on the use of a quasiparticle vacuum |�ϕ〉 to calculate

the one-body density matrices the energy E[ρ, κ, κ∗] is a
functional of. The index ϕ in |�ϕ〉 denotes the gauge angle
that provides the orientation of the system in gauge space.
Using the requirement that a meaningful energy functional
should be invariant under gauge space rotations, the angle can
be set to a convenient value, usually ϕ = 0.

In the canonical basis {φµ(r) ≡ 〈r|a†
µ|0〉} of the Bogoliubov

transformation that underlies the quasiparticle vacuum |�0〉,
the SR normal density matrix ρ and anomalous density matrix
κ (pairing tensor) take the form

ρµν ≡ 〈�0|a†
νaµ|�0〉

〈�0|�0〉 = v2
µ δµν, (1)

κµν ≡ 〈�0|aνaµ|�0〉
〈�0|�0〉 = uµvµ δνµ̄, (2)

κ∗
µν = 〈�0|a†

µa†
ν |�0〉

〈�0|�0〉 = uµvµ δνµ̄, (3)

where {uµ, vµ} are BCS-like occupation numbers such that
u2

µ + v2
µ = 1, uµ = uµ̄ > 0, and vµ = −vµ̄. The two canoni-

cal states (µ, µ̄) are the so-called pair conjugated states. Based
on an appropriate quantum number, the basis can be split into
a positive half (µ > 0) and a negative half (µ < 0). When a
canonical state µ belongs to one of these halves, its conjugate
state µ̄ belongs to the other half.

From the point of view of their physical content, currently
used nuclear EDFs can be put under the generic form [9]

E[ρ, κ, κ∗] = Ekin[ρ] + Enorm[ρ] + Epair[ρ, κ, κ∗], (4)

where appear the uncorrelated kinetic energy, the normal,
and the pairing contributions, respectively. The contributions
from Coulomb interaction and explicit quantum corrections as
the center-of-mass correction have been omitted for the sake
of using simple notations. Including them will not modify
the arguments given below. From the point of view of their
functional dependence on normal and anomalous density
matrices, the different parts of the functional can be formally
written

Ekin[ρ] ≡ Eρ, (5)

Enorm[ρ] ≡ Eρρ + Eρρρα

, (6)

Epair[ρ, κ, κ∗] ≡ Eκκ + Eκκργ

, (7)

where the superscripts specify the powers of the normal and
anomalous density matrices that contribute to a given term.
The focus of the present work is on the properties of Eρρρα

and
Eκκργ

when such a nuclear EDF is used in MR calculations.
Note that the Slater approximation that is usually used to tackle
the exchange part of the Coulomb contribution to the normal
part of the EDF is of the form Eρρρα

.
For the sake of a transparent discussion, we will perform

the analysis for a toy functional limited to the minimum of
ingredients necessary to make the point. For this purpose,
we start from a simplified Skyrme interaction containing the
so-called t0 and t3 terms only, which limits the local densities
entering Enorm[ρ] to those that do not contain spatial derivatives
[9]. In addition, and because the validity of the points made
together with the conclusions reached do not critically depend
on it, we omit the isospin degree of freedom and consider one
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nucleon species only throughout the discussion. Comments
on the additional complexity brought by considering neutrons
and protons are added in Sec. IV E. The generalization to
a complete and realistic Skyrme or Gogny EDF is then
straightforward.

B. Local densities

The local matter and spin densities needed to construct
Enorm[ρ] are given by

ρ(r) ≡
∑

µ

φ†
µ(r) φµ(r)ρµµ, (8)

s(r) ≡
∑

µ

φ†
µ(r) σ̂φµ(r) ρµµ, (9)

where φµ(r) and σ̂ denote a canonical single-particle spinor
and the vector of Pauli matrices, respectively. In addition, one
needs the local kinetic density

τ (r) ≡
∑

µ

[∇φ†
µ(r)] · [∇φµ(r)]ρµµ, (10)

to express the kinetic energy. The three previous local densities
can be put under the form

f (r) =
∑

µ

Wf
µµ(r)ρµµ, (11)

where f ∈ {ρ, s, τ } and where the explicit form of W
f
µν(r) can

be easily extracted from Eqs. (8)–(10); i.e.,

Wρ
µν(r) ≡ φ†

µ(r)φν(r), (12)

Ws
µν(r) ≡ φ†

µ(r) σ̂ φν(r), (13)

Wτ
µν(r) ≡ [∇φ†

µ(r)] · [∇φν(r)]. (14)

The densities entering the pairing part of the EDF are the local
pair densities defined as

ρ̃(r) ≡ 2
∑
µ>0

W
ρ̃
µµ̄(r) κµ̄µ. (15)

Finally, with the symmetries of the SR- and MR-EDF
calculations assumed here, W

ρ̃
µµ̄(r) and W

ρ̄∗
µµ̄ are equal and

given by the spin-singlet part of the two-body wave function,
defined as

Wρ̃
µν(r) = Wρ̄∗

µν (r) ≡
∑

σ=±1

σφµ(rσ ) φν(r − σ ) (16)

= −Wρ̃
νµ(r) = −Wρ̄∗

νµ (r). (17)

C. Toy energy density functional

The kinetic energy part of the EDF takes the form

Eρ ≡
∫

d3r
h̄2

2m
τ (r), (18)

whereas the normal part derives from a toy Skyrme interaction
characterized by1

Eρρ ≡
∫

d3r [Aρρρ2(r) + Asss2(r)], (19)

Eρρρα ≡
∫

d3r
[
Aρρρα

ρ2(r) + Assρα

s2(r)
]
ρα(r). (20)

Finally, the pairing part of the EDF is given as

Eκκ ≡
∫

d3rAρ̃ρ̃ ρ̄∗(r)ρ̃(r), (21)

Eκκργ ≡
∫

d3rAρ̃ρ̃ργ

ρ̄∗(r)ρ̃(r) ργ (r), (22)

where the superscripts ff and fff ′ of the As refer to the local
densities the corresponding term depends on. In addition, one
can still read off those superscripts the powers of normal and
anomalous density matrices that the corresponding term incor-
porate. Note that no hypothesis about time-reversal invariance
of the system has been made. However, we limit ourselves to
quasiparticle vacua |�ϕ〉 with an even number-parity quantum
number and thus discuss explicitly only even-even systems.

The part of the EDF that depends only on the normal density
matrix can be derived from a schematic Skyrme force

vsk(R, r12) = t0(1 + x0P̂σ )δ(r12)

+ t3

6
(1 + x3P̂σ ) ρα

0 (R)δ(r12), (23)

where R ≡ (r1 + r2)/2 and r12 ≡ r1 − r2, whereas P̂σ ≡
1
2 (1 + σ1 · σ2) denotes the spin exchange operator. Computing
the normal part of the EDF as the Hartree and Fock contri-
butions derived from such an empirical effective vertex, one
obtains

Aρρ = + 1
4 t0(1 − x0), Aρρρα = + 1

24 t3(1 − x3), (24a)

Ass = − 1
4 t0 (1 − x0), Assρα = − 1

24 t3(1 − x3), (24b)

which shows that in this case the four coupling constants
entering the EDF depend on two independent parameters
only. However, we will also be interested in EDFs that are
not derived from a Skyrme force and for which the four
coupling constants can be chosen independently. For more
complete and realistic functionals, local gauge invariance
imposes constraints between certain coupling constants [10].

The part of the EDF that depends on the anomalous density
matrix could be derived from the same Skyrme force. As one
usually focuses on the superfluidity in the spin-singlet/isospin-
triplet channel, one would be led in practice to select only a
part of the interaction from the outset. Furthermore, there exists
strong theoretical motivations to explicitly disconnect the part
of the EDF responsible for superfluidity from the part that only
depends on the normal density matrix [11]. However, such a
decoupling between Enorm and Epair is at the origin of serious
problems encountered in MR-EDF calculations [1,5]. We will
come back to that in the following. For now, one can relate the

1One could have considered that the terms multiplying ρ2 and s2 in
Eρρρα

present different exponents.
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specific local pairing functional given in Eqs. (21) and (22) to
a DDDI vertex of the form

vpair(R, r) = t̃0

2
(1 − P̂σ )

[
1 − η

(
ρ0(R)

ρsat

)γ ]
δ(r), (25)

where ρsat = 0.16 fm−3, which leads to

Aρ̃ρ̃ = 1

4
t̃0, Aρ̃ρ̃ργ = − η

4ρ
γ
c

t̃0. (26)

Independently of the starting point, a quasilocal pairing
EDF must be regularized/renormalized as far as its ultraviolet
divergence is concerned [12].

III. PARTICLE-NUMBER RESTORATION

A. Notations

As extensively discussed in Ref. [1] and in Article II, PNR
performed within the EDF framework relies on calculating
the energy of the N -particle system through a MR energy
functional of the form

EN ≡
∫ 2π

0
dϕ

e−iϕN

2πc2
N

E[0, ϕ]〈�0|�ϕ〉, (27)

where

c2
N ≡

∫ 2π

0
dϕ

e−iNϕ

2π
〈�0|�ϕ〉, (28)

in such a way that EN depends only implicitly on the
(normalized) projected state

|�N 〉 ≡ P̂ N |�0〉
〈�0|P̂ N |�0〉

=
∫ 2π

0
dϕ

e−iϕN

2πcN

|�ϕ〉. (29)

The gauge-space-rotated product states constituting the MR
set of interest read, in their common canonical basis, as

|�ϕ〉 ≡ eiϕN̂ |�0〉 =
∏
µ>0

(uµ + vµe2iϕa+
µ a+

µ̄ )|0〉, (30)

where |0〉 is the particle vacuum. The above form of |�ϕ〉 is
convenient to compute the overlap between a rotated state and
the unrotated one

〈�0|�ϕ〉 =
∏
µ>0

(
u2

µ + v2
µe2iϕ

)
. (31)

In Eq. (27), E[0, ϕ] denotes the (set of) MR energy density
functional kernel(s). It is traditionally defined by replacing the
SR normal and anomalous density matrices by transition ones

ρ0ϕ
µν ≡ 〈�0|a†

νaµ|�ϕ〉
〈�0|�ϕ〉 = v2

µe2iϕ

u2
µ + v2

µe2iϕ
δνµ, (32)

κ0ϕ
µν ≡ 〈�0|aνaµ|�ϕ〉

〈�0|�ϕ〉 = uµvµe2iϕ

u2
µ + v2

µe2iϕ
δνµ̄, (33)

κϕ0∗
µν ≡ 〈�0|a†

µa†
ν |�ϕ〉

〈�0|�ϕ〉 = uµvµ

u2
µ + v2

µe2iϕ
δνµ̄, (34)

into the SR-EDF E[ρ, κ, κ∗]. This corresponds to defining
nondiagonal energy kernels through the prescription

E[0, ϕ] ≡ E[ρ0ϕ, κ0ϕ, κϕ0∗]. (35)

As discussed in Article I, MR-EDF calculations performed
along the lines presented above fulfill basic requirements [13]
but may display pathologies such as divergences and finite
steps in the energy. The extent of such problems depends on
the analytical form of the EDF used. To conduct an in-depth
analysis of the potential problems, it is necessary to perform an
analytical continuation of E[0, ϕ] to the complex plane [1,14].

B. Continuation to the complex plane

The continuation is achieved by extending the complex
number z = eiϕ onto the entire complex plane in all previous
formulas.2 In that context, the PNR energy defined through
Eq. (27) results from integrating over over a closed contour
around z = 0 that can be chosen as the unit circle C1(|z| =
R = 1)

EN ≡
∮

C1

dz

2iπc2
N

E [z]

zN+1
〈�1|�z〉, (36)

c2
N =

∮
C1

dz

2iπ

1

zN+1
〈�1|�z〉, (37)

where

〈�1|�z〉 =
∏
µ>0

(
u2

µ + v2
µz2). (38)

With this continuation, the transition density matrix and
pairing tensor read as

ρ1z
µν = v2

µz2

u2
µ + v2

µz2
δνµ, (39)

κ1z
µν = uµvµz2

u2
µ + v2

µz2
δνµ̄, (40)

κz1∗
µν = uµvµ

u2
µ + v2

µz2
δνµ̄, (41)

and must replace the SR density matrices in Eqs. (8)–(15) to
define the corresponding transition local densities. Finally, the
energy kernel from Eq. (35) reads as

E[z] ≡ E[ρ1z, κ1z, κz1∗]. (42)

IV. STEPS AND DIVERGENCES

A. General considerations

The computation of EN through an integration over a
contour encircling the origin requires the knowledge of the
(non-)analytical structure of the integrand E[z]〈�1|�z〉/zN+1

over the complex plane. First, it obviously contains a (physical)

2The same notation as before is used when extending the definition
of SR states and energy kernels to any value of the complex variable
z. Thus, we abusively replace the gauge angle ϕ by the complex
variable z in all our expressions; i.e., SR states characterized by
the gauge angle ϕ, |�ϕ〉 are extended into |�z〉 to denote SR states
anywhere on the complex plane. In particular, the unrotated SR state,
denoted as |�0〉 when using ϕ as a variable, is written as |�1〉 when
using z as a more general variable.
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FIG. 1. (Color online) Pole structure of ρ1z, κ1z, and κz1∗ on the
complex plane.

pole at z = 0. Because E[z] is a functional of the transition
density matrices, (i) it is a function of z2 and is thus even,
i.e., E[z] = E[−z], and (ii) its analytical structure relates to
the one of the transition densities. As displayed in Fig. 1, it
is trivial to see that ρ1z, κ1z, and κz1∗ possess simple poles at
z = ±zµ ≡ ±i|uµ|/|vµ| [1]. In general, it is likely that those
poles will translate into nonanalytical features of E[z]〈�1|�z〉
that have serious consequences on the PNR energy.

As explained in Article I, it is necessary to go to configura-
tion space to isolate the spurious contributions to the MR-EDF
energy. For a given pair of vacua belonging to the MR set,
the basis relevant to the analysis of the corresponding energy
kernel is the canonical basis of the Bogoliubov transformation
connecting the two vacua. For PNR calculations, this simply
amounts to expressing the EDF kernel E[z] in the canonical
basis of the Bogoliubov transformation defining any of the
product states of reference, e.g., |�1〉. Indeed, the same
canonical basis is shared by all product states |�z〉 over the
complex plane, as well as by the Bogoliubov transformation
linking any pair of them.

B. Term depending on integer powers of densities

Let us start the analysis with terms that depend on integer
powers of the density matrices. To illustrate the situation, we

make use of the bilinear parts, Eqs. (19) and (21), of the toy
EDF introduced in Sec. II C.

1. Matrix elements

Working in the canonical basis of Bogoliubov transforma-
tion connecting |�1〉 and |�z〉, the bilinear part of the energy
kernel E[z] takes the form

Eρρ[z] + Eκκ [z] = 1

2

∑
µν

v̄ρρ
µνµν ρ1z

µµρ1z
νν

+ 1

4

∑
µν

v̄κκ
µµ̄νν̄ κz1∗

µµ̄ κ1z
νν̄ , (43)

where v̄ρρ and v̄κκ denote matrix elements of effective two-
body vertices associated with Eρρ and Eκκ , respectively. For
the toy functional of Eq. (19), the matrix elements of v̄ρρ take
the form

v̄ρρ
µνµν ≡ 2

∫
d3r

[
AρρWρ

µµ(r) Wρ
νν(r)

+AssWs
µµ(r) · Ws

νν(r)
]
. (44)

The quasilocal nature of the Skyrme energy functional (the
toy functional considered here being purely local) simplifies
the construction of the matrix elements v̄ρρ

µνµν as they involve a
single spatial integral only. However, the discussion conducted
in the rest of the article would hold equally for nonlocal
functionals, e.g., as obtained from finite-range, possibly
nonlocal, effective vertices.

The matrix elements associated with Eκκ in Eq. (21) take
the form

v̄κκ
µµ̄νν̄ ≡ 4

∫
d3r Aρ̃ρ̃ W

ρ̄∗
µµ̄(r) W

ρ̃
νν̄(r). (45)

Note that for PNR calculations, the matrix elements that one
naturally associate to any term of the EDF depending on integer
powers of the density matrices do not depend on the pair of
vacua |�1〉 and |�z〉 under consideration, i.e., they do not
depend on the gauge variable z.

2. Analytical structure of (Eρρ[z] + Eκκ [z]) 〈�1|�z〉
Due to the additional presence of the norm factor 〈�1|�z〉

in the integrand of Eq. (36), it is easy to realize that only the
terms corresponding to ν = µ and ν = µ̄ in Eq. (43) can lead
to nonanalytical features [5,6]. Such terms contribute to the
integrand through

ν = µ =⇒ 1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄

) v4
µz4

u2
µ + v2

µz2

∏
ν 
=µ>0

(
u2

ν + v2
νz

2
)
, (46)

ν = µ̄ =⇒
[

1

2

(
v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

)
v2

µz2 + v̄κκ
µµ̄µµ̄u2

µ

]
v2

µz2

u2
µ + v2

µ z2

∏
ν 
=µ>0

(
u2

ν + v2
νz

2
)
, (47)
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and both contain potential poles at z = ±zµ = ±i|uµ|/|vµ|.
Note that those poles do not exist in the first place if the
states (µ, µ̄) are more than doubly degenerate in terms of
occupation numbers as an additional factor from the norm
then compensates the single pole in Eqs. (46) and (47).3

Otherwise, the poles disappear in Eq. (46) if, and only if,
v̄ρρ

µµµµ = v̄
ρρ
µ̄µ̄µ̄µ̄ = 0; i.e., the matrix elements associated with

Eρρ are antisymmetrized. Coming back to the toy Skyrme
functional used in the present article, and noting that

∣∣Ws
µµ(r)

∣∣2 = ∣∣Wρ
µµ(r)

∣∣2 =
[ ∑

σ=±1

|ϕµ(rσ )|2
]2

, (48)

for all µ, one finds that v̄ρρ
µµµµ = v̄

ρρ
µ̄µ̄µ̄µ̄ = 0 if, and only if,

Ass = −Aρρ . As shown by Eqs. (24a) and (24b), such a con-
dition is satisfied when starting from the (density-independent
part of the) Skyrme force. The previous analysis is trivially
extended to the density-independent part of a more complete
Skyrme or Gogny vertex. However, using a functional ap-
proach that bypasses the introduction of a two-body vertex,
relationships such as Ass = −Aρρ might not be fulfilled. In
such a case Eρρ generates poles at z = ±zµ in the integrand of
Eq. (36).

The poles disappear from Eq. (47) if, and only if, v̄
ρρ
µµ̄µµ̄ =

v̄κκ
µµ̄µµ̄; i.e., diagonal matrix elements involving two conjugated

canonical states are identical in Eρρ and Eκκ . If it is so,
the two terms in the bracket of Eq. (47) combine in such a
way that the dangerous denominator explicitly cancels out.
One is then left with a finite contribution to the MR energy
kernel. Such a recombination is obviously satisfied if both
Eρρ and Eκκ are constructed from the same (effective) force,
for example, when using the density-independent part of the
Gogny interaction [3]. Using a functional approach or starting
from two different effective vertices to build Eρρ and Eκκ ,
the recombination is unlikely to occur and one is left with an
ill-defined PNR formalism and compromised results. Just as
we did to ensure that v̄ρρ

µµµµ = v̄
ρρ
µ̄µ̄µ̄µ̄ = 0, i.e., Ass = −Aρρ ,

one could work out minimal constraints between the coupling
constants entering Eρρ and Eκκ to impose that v̄

ρρ
µµ̄µµ̄ = v̄κκ

µµ̄µµ̄

in the underlying EDF.

3. Projected energy from a Hamiltonian

As seen from the previous discussion, poles in the transition
densities do not always translate into poles in E[z]〈�1|�z〉.
The most trivial example for this occurs when the particle
number projected energy is computed from the average value
of a genuine Hamiltonian in the projected state |�N 〉; i.e., what
we denote as the strict projected HFB approach in Article II.
In this case, the only pole of the integrand in Eq. (36) is the

3This holds for bilinear functionals. A term of order n in the density
matrices can generate a pole at ±zµ of order (at most) (n − 1). For
the pole to disappear, (n − 1) additional factors from the norm kernel
are needed to cancel the denominator (u2

µ + v2
µz2)−(n−1). Thus, the

pair of interest (µ, µ̄) needs to be degenerate (at least) with (n − 1)
other pairs in terms of occupations for this to occur.

FIG. 2. Computation of EN for an EDF (i) obtained from the
average value of a genuine Hamiltonian in the projected state
(ii) depending only on integer powers of the densities and after
applying the correction proposed in Article I. The integration is
performed in the complex plane over a circular contour CR of arbitrary
radius R.

physical one at z = 0. To apply the Cauchy theorem4 and
calculate the projected energy, the original circular contour
C1 must be deformed to exclude the pole at z = 0. As shown
in Fig. 2, this can be achieved by choosing two semicircular
contours Cd and Cg , such that C1 ≡ [Cg + Cd ](ε → 0), and
by closing those semicircular contours along the imaginary
axis in such a way that the pole at z = 0 is bypassed by two
semicircles of infinitely small radii. Using such contours, it is
easy to prove that

c2
NEN = Res

[E[z]〈�1|�z〉
zN+1

]∣∣∣∣
z=0

, (49)

c2
N = Res

[ 〈�1|�z〉
zN+1

]∣∣∣∣
z=0

. (50)

Because the only pole of the integrand is at z = 0, the same
result is obtained for EN by starting from any integration
contour encircling the origin in Eq. (36). When the energy
is calculated as the average value of a Hamiltonian in the
projected state, the independence of the projected energy on the
details of the integration contour, as for example its radius, can
be related to the invariance of the normalized projected state
with respect to shift transformations [1,14]. This symmetry
will be discussed below in the EDF context.

4. PNR energy from an EDF

The poles subsist in Eqs. (46) and (47) for any EDF that is
characterized by v̄ρρ

µµµµ 
= 0 and/or v̄
ρρ
µµ̄µµ̄ 
= v̄κκ

µµ̄µµ̄. To apply

4The present section reformulates parts of the analysis proposed in
Article II for functionals proportional to integer powers of the density
matrices, i.e., we employ Cauchy’s integral theorem rather than using
directly Cauchy’s residue formula. Coming back to Cauchy’s integral
theorem will be needed to conduct the discussion for more general
functionals as is indicated in the next section.
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FIG. 3. (Color online) Computation of EN for an EDF depending
on integer powers of the densities. The integration is performed in
the complex plane over the unit circle C1.

the Cauchy theorem in this case, the circular contour C1 must
now be deformed to exclude not only the pole at z = 0 but also
those at z = ±zµ that are inside the unit circle. As shown in
Fig. 3, this can be done by choosing two semicircular contours
Cd and Cg , such that C1 ≡ [Cg + Cd ](ε → 0), and by closing
each of them along the imaginary axis in such a way that all
the poles are bypassed by semicircles of infinitely small radii.
Using such contours, the Cauchy theorem leads to

c2
NEN =

∑
z=0,±zµ

Res

[E[z]〈�1|�z〉
zN+1

]∣∣∣∣
z

, (51)

whereas c2
N remains unchanged.

According to Eq. (51), the existence of poles at z = ±zµ

in the integrand makes the PNR energy to (i) depend on the
radius of the integration circle [1,6] (ii) display a finite step
whenever a pole leaves the integration circle, e.g., as the system
is deformed along a collective degree of freedom [1,6]. Such a
behavior make the PNR energy to break shift invariance. This
is very undesirable as the concept of shift transformation and
shift invariance can be extended to the EDF framework in such
a way that the invariance of EN with respect to the radius of
the integration contour remains a fundamental feature of the
theory.

Also, PNR energies may display divergences whenever
a pole crosses the integration circle. When a pole sits on
the integration contour CR , the definition of the contour
CR ≡ [Cg + Cd ](ε → 0) is in fact ambiguous and requires
an additional prescription. The most natural procedure is to
define the integration through the pole in the sense of the
Cauchy principal value. Doing so provides a finite PNR energy
if the Laurent series of the integrand centered at the pole only
contains odd powers. Considering the structure of the nuclear
EDF, this will happen if the EDF (i) contains only bilinear
terms, (ii) contains additional trilinear terms that do not allow
three powers of the same isospin (as a zero-range three-body
force does not allow), or (iii) contains additional quartic terms
that are bilinear in each isospin. In this case, one is left with
simple poles at z = ±zµ and the Cauchy principal value equals

half the result that would be obtained if the pole were to lie
inside the integration circle. In all other cases, one can see that
(i) the poles at z = ±zµ will be of higher orders, (ii) the Laurent
series centered at those poles will contain even powers, and
(iii) the Cauchy principle value will lead to an infinite values
and the PNR energy will diverge as a poles crosses the
integration circle. If the EDF used is such that PNR energies
diverge whenever a pole crosses the integration circle, it
is important to note that variation after projection (VAP)
calculations will not converge as soon as the minimization
procedure “finds” the infinity [3,15].

All previous features prove that PNR calculations are ill
defined whenever poles at z 
= 0 arise and that the theory is
unacceptable as it is. However, it is possible to meaningfully
regularize PNR calculations based on any EDF depending on
integer powers of the density matrices as was demonstrated in
Article I and exemplified in Article II. As a matter of fact, the
method proposed in Article I precisely removes the poles at
z = ±zµ from E[z]〈�1|�z〉. However, it is crucial to realize
that the correction method does not only remove those poles
but also consistently subtracts a spurious contribution to the
physical pole at z = 0 [6]. In the end, only the physical pole
at z = 0 remains in Eq. (49) and the independence of EN on
the integration contour is recovered, as seen from Fig. 2; i.e.,
the same PNR energy is obtained by integrating over circular
contours CR of arbitrary radius R.

C. Noninteger power of densities

1. Problem

The situation is often more complex due to the presence
of higher-order terms of the form Eρρρα

and Eκκργ

in realistic
nuclear EDFs, Eqs. (20) and (22).

If α = γ = 1, then Eρρρ and Eκκρ can, at least formally,
be analyzed as if they originated from a three-body vertex.
Thus, and as for the bilinear terms, two cases have to be
distinguished: (i) Eρρρ and Eκκρ are both derived from the
same antisymmetrized three-body vertex and do not lead to
divergences and steps in MR-EDF calculations and (ii) they
refer to different three-body vertices such that the regulariza-
tion method proposed in Article I can be applied to obtain a
meaningful PNR-EDF method.

However, all modern parametrizations of the nuclear EDF,
starting either from a functional approach or from a density-
dependent vertex, depend on noninteger powers of the density
matrix that one cannot expand in a Taylor series to relate them,
at least formally, to three-body, four-body, . . . forces. The goal
of the present article is to characterize the pathologies brought
about by such dependencies and whether they are viable in
the end; i.e., if the corresponding pathologies can be easily
regularized.

2. Regularizing the integer part

As a first step, one can reduce the extent of the problems
associated with terms of the form Eρ2m+n+α

and Eκ2mρn+γ

, with
m and n integer, and 0 < α < 1 and 0 < γ < 1, to pathologies
only due to the fractional powers ρα and ργ , respectively. This
means that steps and potential divergences associated with the
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integer part 2m + n can be regularized from the outset. This
is the case either (i) if one started from a density-dependent-
(2m + n) body effective force or (ii) by applying the correction
method proposed in Article I to Eρ2m+n

and Eκ2mρn

.
Let us exemplify how an empirical extension of the

correction method proposed in Article I can be designed to
regularize the quadratic part of Eρρρα

, with 0 < α < 1. To
simplify the situation further, we disregard the term Eκκργ

in
the following discussion. Such a simplification does not alter
any of the conclusions given in the rest of the article.

To proceed, we first introduce pseudo two-body matrix
elements v̄ρρρα

µνµν[z] that take, for the toy functional considered
in the present article, the form

v̄ρρρα

µνµν[z] ≡ 2
∫

d3r
[
Aρρρα

Wρ
µµ(r) Wρ

νν(r)

+Assρα

Ws
µµ(r) · Ws

νν(r)
]

[ρ1z(r)]α. (52)

With the pseudo two-body matrix elements v̄ρρρα

µνµν[z] at
hand, one can apply the correction formula given by Eq. (43)
of Article II. However, and as opposed to terms of the EDF
depending on integer powers of the density matrices, the matrix
elements of v̄ρρρα

do depend on the gauge variable z. As a
result, Eq. (43) of Article II must be applied in such a way
that the matrix elements are located underneath the integral
over z. Last but not least, it would also be trivial to regularize
the integer part of Eκκργ

by introducing the pseudo two-body
matrix elements v̄κκρα

[z] and by using them in Eq. (43) of
Article II.

D. Left-over fractional power

With the latter correction at hand, the quadratic part of
Eρρρα

does not create any divergence or step in the PNR-EDF
energy anymore. Again, the same is true if one starts from the
outset from a density-dependent two-body antisymmetrized
interaction, as long as the corresponding term Eκκρα

is
explicitly considered in the EDF to proceed to the necessary
recombination of terms in Eq. (47). One way or another, one is
only left in the end with discussing the impact of the fractional
power of the transition density; i.e., the extra factor [ρ1z(r)]α ,
with 0 < α < 1.

1. Analytical structure of Eρρρα
[z] 〈�1|�z〉

Now that the pathologies due to the bilinear factor in Eρρρα

have been taken care of, the contribution of interest to the PNR
energy can be written as

EN [ρρρα] ≡
∮

CR

dz

2iπc2
N

Eρρρα

[z]

zN+1
〈�1|�z〉

≡
∮

CR

dz

2iπc2
N

∫
d3r

F [z](r)

zN+1
[ρ1z(r)]α, (53)

where

F [z](r) ≡ z4
∑

ν 
=µ,µ̄

[
Aρρρα

Wρ
µµ(r)Wρ

νν(r)

+Assρα

Ws
µµ(r) · Ws

νν(r)
]
v2

µv2
ν

∏
ζ>0

ζ 
=µ,ν

(
u2

ζ + v2
ζ z

2
)
,

(54)

with N even. In agreement with the properties of E[z]
mentioned above, F [z](r) is an even function of z for all r. For
odd N , it is easy to prove that F [z](r) is an odd function of z

in such a way that F [z](r)/zN+1 remains itself an odd function
of z.

The terms corresponding to ν = µ and ν = µ̄ are absent
in Eq. (54) because (i) they were removed by the correction
method briefly outlined in Sec. IV C and (ii) one started from
a density-dependent two-body interaction; i.e., the term with
ν = µ disappears (Assρα = −Aρρρα

), whereas the term with
ν = µ̄ could be combined with the corresponding one in Eκκρα

to give a well-behaved contribution that we omit here.
To understand the features displayed by the contribution

EN [ρρρα] to the PNR energy, it is necessary to extract for each
r the nonanalytical structure of the integrand in Eq. (53) where
the order of the two integrals over r and z have been reversed.
Clearly, the function F [z](r)/zN+1 displays a (physical) pole
at z = 0. The difficulty comes from the fractional power of the
local transition density that multiplies F [z](r). Indeed, such a
function is multivalued on the complex plane for all r.

Defining the function corresponding to taking the fractional
power of a complex number5 requires the introduction of
a branch cut along the axis where that number is real and
negative. Here, this means that one needs the values of z for
which the function ρ1z(r) is real and negative. As can be seen
from Eqs. (8) and (39), the transition density is real both on the
real and imaginary axis but can be negative only on the latter.
A discussed in Ref. [1], ρ1z(r) is negative for z = iy such
that |zµ−1| < αµ < y < |zµ|, as well as on the entire interval
[−z1,+z1], where z1 denotes the closest pole to the origin.
The corresponding branch cuts are characterized in Fig. 4 by
solid lines joining the zeros of ρ1z(r) at z = ±iαµ (crosses)
and its next integrable pole at z = ±zµ (square). Whereas the
poles of ρ1z(r) are independent of the position vector r, the
points z = ±iαµ at which it changes sign in between two poles
do depend on r.

2. Calculation of E N [ρρρα]

Knowing the nonanalytical structure of the integrand
F [z](r)[ρ1z(r)]α/zN+1, the integration contour to be used in
Eq. (53) can be specified. Just as before, the circle CR needs
to be deformed to apply the Cauchy theorem on contours
encircling regions where the function is entirely analytical.
In particular, one cannot go through branch cuts as one must
remain on the same Riemann sheet. An acceptable decom-
position under the form CR ≡ [Cg + Cd ](ε → 0), where each
semicircle Cg/Cd is further closed by a vertical segment along
the imaginary axis interrupted by a semicircle around the
origin, is displayed in Fig. 5. Note that, as opposed to Fig. 3, no
special care needs to be taken around the poles at z = ±zµ as
they are now integrable (∼1/zα with 0 < α < 1). The crucial
point, however, is that the portions along the branch cuts will

5Parameterizing z = reiθ , θ ∈ [−π,+π ], we define the principal
value of the function zα, α being a rational number between zero and
one, as zα ≡ rαeiαθ . The latter choice lifts the ambiguity regarding
the multivalued nature of the function but requires to track the latter
through several Riemann cuts.
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FIG. 4. (Color online) Branch cuts of [ρ1z(r)]α . The branch cuts
join the integrable poles of [ρ1z(r)]α at z = ±i|uµ/vµ| (squares) and
its zeros at z = ±iαµ (crosses).

not cancel out as we sum the two vertical segments because the
integrand (in fact [ρ1z(r)]α) is discontinuous across the branch
cuts.

One may wonder what happens when, as in Fig. 6, the radius
R is such that the original contour CR goes through a branch
cut. In fact, the contour CR defined through [Cg + Cd ](ε → 0)
in Fig. 5 (i) is well defined when a branch cut lies in between
Cg and Cd because the limit ε → 0 does not pose any problem
once the value of the function on both sides of the cut has been
properly worked out, (ii) is the contour that has been used in
actual calculations [1,3,16], and (iii) might, however, need to
be discretized on a rather dense mesh to provide converged
calculations.

Note that the deformation of the contour discussed above
was advocated in Ref. [1] as a remedy to the pathology brought
about by branch cuts. In fact, it is rather a necessary step to
simply define the integration over the original circle and obtain
the result it provides. As detailed below, proceeding to such

FIG. 5. (Color online) Specification of the integration contour for
an EDF containing fractional powers of the densities.

a deformation of the contour does not remove the intrinsic
pathological nature of MR calculations performed using an
EDF containing noninteger powers of the density matrices.

We are now ready to apply the Cauchy theorem along the
two closed contours appearing in Fig. 5 and then let ε goes to
zero. It is clear that the contributions from the vertical portions
in between the branch cuts cancel out as we add the results
from the two closed contours. However, contributions from
segments along the branch cuts will not cancel out because of
the discontinuity of the integrand across them.

We consider for illustration (see Fig. 6) the situation where
the contour CR “hits” the (n + 1)th branch cut at z = ±iR; i.e.,
αn+1 � R � |zn+1|. This means that the nth branch cut is entirely
located inside CR , whereas the (n + 1)th one is partially outside
the circle of integration. For simplicity, and because it is
irrelevant to the present discussion, we do not calculate the
contribution EN [ρρρα]([−z1,+z1]) from the closest branch
cut to the origin. Indeed, this one is trickier than the other
branch cuts because the physical pole at z = 0 lies on that
branch cut. All that matters for the present discussion is that
the branch cut [−z1,+z1] provides a finite contribution to the
projected energy. In the end, one obtains

EN [ρρρα](R) − EN [ρρρα]([−z1,+z1]) = (−1)
N
2

2

π
sin(απ )

⎡
⎣ n∑

µ=1

∫ |zµ|

αµ

dy +
∫ R

αn+1

dy

⎤
⎦ ∫

d3r
F [iy](r)

yN+1
|ρ1iy(r)|α, (55)

which is real and where, for y real,

ρ1iy(r) =
∑

µ

Wρ
µµ(r)

y2

y2 − |zµ|2 , (56)

F [iy](r) = y4
∑

ν 
=µ,µ̄

[
Aρρρα

Wρ
µµ(r) Wρ

νν(r) + Assρα

Ws
µµ(r) · Ws

νν(r)
]
v2

µv2
ν

∏
ζ>0

ζ 
=µ,ν

(
u2

ζ − v2
ζ y

2
)
. (57)
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FIG. 6. (Color online) Zoom on the integration contour CR

obtained as the limit of the sum of two disconnected semicircles.
For illustration, we display a situation where the chosen integration
contour CR “hits” the (n + 1)th branch cut at z = ±iR, that is, has a
radius R such that αn+1 � R � |zn+1|.

The above analytical results are explicit enough that we can
draw several important conclusions from them. First, Eq. (55)
demonstrates that the PNR energy depends on the radius R of
the integration contour through the boundary of the integral;
i.e., the PNR energy is not shift invariant. As CR goes through
a branch cut, the contribution of that branch cut changes
progressively and leaves a smoothed step in the PNR energy;
see Fig. 7. This relates to an unphysical breaking of shift
invariance. Second, there is no discontinuity or divergence
as CR passes through the branch points because the function
|ρ1iy(r)|α is integrable at y = |zµ|, for all µ.

The two previous conclusions are at variance with what
happens for (most of the) EDFs containing only integer powers
of the densities as recalled in Sec. IV B. Indeed, a pole crossing
the integration provides in this case PNR energies with
(i) an abrupt step and (ii) a divergence if the pole is of even
order [6]. Also, it is important to underline the role played by
the regularization of the bilinear part of Eρρρα

put forward in
Sec. IV C2. If one were to use the uncorrected term Eρρρα

, the
PNR energy would diverge as CR passes through the branch
points. Indeed, the integrand in Eq. (55) would then contain
terms overall proportional to (y2 − |zµ|2)−1|ρ1iy(r)|α that is
not integrable at y = |zµ|.

In any case, the absence of divergence for the reg-
ularized EN [ρρρα] is critical because the associated in-
tegrability of the pole was used in Ref. [3] to assess

FIG. 7. Schematic effect of a shift transformation on the PNR
energy. (Top) Projected energy EN [ρρρα] as a function of R. (Bottom)
Same for the derivative of EN [ρρρα] with respect to R.

the meaningfulness of PNR calculations performed with
the Gogny force. However, and although divergences do
constitute a dramatic pathology of ill-defined PNR calcula-
tions, the most profound problem relates rather to the breaking
of shift invariance of the PNR energy as one changes the in-
tegration contour. Indeed, the associated spurious branch cuts
modify the topology of potential energy curves as one deforms
the system with respect to a collective degree of freedom. As
discussed above, such a problem persists for a regularized
noninteger power or, equivalently, for an effective two-body
vertex depending on a fractional power of the density.
Still, the absence of divergence explains why the spurious
nature of fractional powers of the densities that we focus on
here has been overlooked so far even more than the pathologies
brought about by integer powers.

In the end, divergences are presently replaced by another
pathological behavior of the PNR energy. To isolate such a
pattern, let us take the derivative of EN [ρρρα](R) in Eq. (55)
with respect to the radius of integration R. One obtains, for
µ > 1

dEN [ρρρα]

dR

∣∣∣∣∣
R

=
⎧⎨
⎩

0 if R ∈ [|zµ−1|, αµ],

(−1)N/2

RN+1

2

π
sin(απ )

∫
d3r F [iR](r) |ρ1iR(r)|α if R ∈ [αµ, |zµ|]. (58)

Because of the nonanalytic behavior of |ρ1iR(r)|α at each
branch point, the derivative diverges in Eq. (58) for R =
|zµ|, µ 
= 1. As a result, the projected energy displays a kink
(nonderivable behavior) as the integration circle goes through a
branch point or as a branch point goes through the integration
circle when the system is deformed along a collective path.
This fact alone is unacceptable for a well-defined projected
theory. The corresponding pattern is schematically displayed

in Fig. 7 and is observed in realistic calculations as will be
discussed in Sec. V.

E. Isospin degree of freedom

The isospin degree of freedom does not modify any
conclusion of the present article but only complexifies certain
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aspects of the discussion. Still, to provide an idea of the
modifications brought about by the consideration of both
protons and neutrons, we now proceed to a restricted set of
remarks.

Considering the isospin degree of freedom, one must
account for the fact that densities, e.g., ρq(r), and single-
particle wave functions ϕµ(rq) are now labeled with the isospin
projection quantum number q, where q = n and q = p for
neutrons and protons, respectively. The problematic terms
entering the toy Skyrme functional [Eqs. (20)–(22)] now take
the form

Eρρρα ≡
∫

d3r
∑

q=p,n

[
Aρρρα

ρ2
q (r) + Assρα

s2
q(r)

]
ρα

0 (r)

+
∫

d3r
∑

q,q′=p,n

q 
=q′

[
Bρρρα

ρq(r)ρq ′ (r)

+Bssρα

sq(r) · sq ′ (r)
]
ρα

0 (r), (59)

Eκκργ ≡
∫

d3r
∑

q=p,n

Aρ̃ρ̃ργ ∣∣ρ̃q(r)
∣∣2

ρ
γ

0 (r), (60)

where the coupling constants A/B characterize terms in which
the two linear densities involved refer to identical/different
isospins. Note that neutron-proton pairing is not considered.
Also, ρ0(r) is the isoscalar part of the matter density. As
single-particle states have a definite isospin projection, ρ0(r) =
ρn(r) + ρp(r).

In the present case, both neutron and proton particle
numbers are restored. Doing so requires considering two gauge
angles ϕn and ϕp for neutrons and protons, respectively. As a
result, PNR energies are obtained through a double integration
over the complex plane where the corresponding variables are
denoted as zn and zp.

As far as the regularization of the bilinear part of the toy
functional, see Sec. IV C2, it still leads to the condition Ass =
−Aρρ and thus only constrains the like-particle interaction.
Then, one notes that the pseudo matrix elements introduced in
Eq. (52) to deal with the part of the EDF containing noninteger
powers of the density matrices now depend on both the neutron
zn and proton zp gauge variables because of the dependence on
the isoscalar part of the transition local density in Eqs. (59) and
(60). With the pseudo two-body matrix elements v̄ρρρα

µνµν[zn, zp]
at hand, one can apply the correction formula of Eq. (43) of
Article II ensuring that the matrix elements are now placed
underneath the integrals over the two gauge angles.

Once the part of the energy kernel E[zn, zp] that depends
only on integer powers of the density matrix has been regular-
ized, one is left with the spuriosities brought by the fractional
power of the isoscalar transition density [ρ

1zq

q (r) + ρ
1zq̄

q̄ (r)]α .
The branch cuts of the latter are not the same as those seen
when dealing with a single-particle species. This modifies
the analysis but does not change the fact that the theory is
not satisfactory, irrespective of the fine tuning done to define
the integration contour. As a result, PNR energies cannot be
made shift invariant and display smooth spurious steps as
one changes the proton and/or neutron radii of integration
or deforms the system along a certain degree of freedom.

V. APPLICATIONS

We wish to illustrate the analytical results obtained in
the previous sections through results of realistic calculations.
We perform PNR calculations after variation of 18O. We use
the SLy4 parametrization [17] of the Skyrme EDF together
with a pairing functional derived from a DI. The Coulomb
exchange part of the functional, usually calculated in the Slater
approximation, is omitted as done in Article II. The SLy4
Skyrme parametrization includes a term of the type Eρρρ1/6

that is perfectly suited to the present discussion.

A. Uncorrected calculations

As explained in Sec. III A, traditional PNR calculations
have been performed using nondiagonal kernels defined
through the prescription E[0, ϕ] ≡ E[ρ0ϕ, κ0ϕ, κϕ0∗], where
E[ρ, κ, κ∗] is the single-reference EDF. Figure 8 shows the

FIG. 8. (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons (top panel) and neutrons (middle panel) as a function of
quadrupole deformation, which for levels in the vicinity of the
Fermi energy resembles a stretched and slightly distorted Nilsson
diagram. The dashed red line at zq = 1 denotes the radius of the
standard integration-contour Rq = 1. The bottom panel shows the
PNR energy EN for two different numbers of discretization points in
the computation of the integrals over the gauge neutron ϕn and proton
ϕp angles.
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PNR energy EN obtained in this way for 18O and displayed
as a function of quadrupole deformation. The calculation is
repeated twice, using 5 and 199 points in the discretization of
the integrals over the two gauge angles.

One observes that the deformation energy surface obtained
with five integration points is smooth and looks physically
reasonable. However, as one increases the number of inte-
gration points, divergences develop, precisely at deformations
where a neutron or a proton single-particle state crosses the
Fermi energy in the underlying SR states, i.e., when the
associated nonintegrable branch point crosses the unit circle
in the complex plane. This is consistent with the discussion
given in Sec. IV D2 for the uncorrected SLy4 parametrization.
Such divergences are at variance with the results obtained
in Article II with the SIII parametrization. Indeed, SIII is of
specific functional form such that all the poles at z = ±zµ

are simple poles. This is notably due to the fact that the
trilinear terms entering SIII do not display products of three
density matrices referring to the same isospin. As explain in
Sec. IV B3, this property leads to a finite Cauchy principle
value as the poles cross the integration circle.

Still, the finite step left in the PNR energy as a pole/branch
cut enters or leaves the integration circle is a pathology shared
by the calculations performed with SLy4 and SIII. Those steps
are better visible in Fig. 9 which displays the gain from
particle-number restoration with respect to the SR energy
(rather than the absolute PNR binding energy) using SLy4.
Note in passing that the reason why the structure around
β2 = 0.7 does not display a typical step can be understood
from the fact that two pairs of levels cross the Fermi energy at
that deformation, as discussed in Article II.

By looking carefully, one can observe an interesting
difference between the steps produced by SIII (see Article II)
and those obtained presently using SLy4. The steps generated
by SLy4 are significantly less steep than those produced by
SIII. This is because, whereas a sharp step is generated by

FIG. 9. Energy gain from particle-number restoration as a
function of quadrupole deformation for two different numbers of
discretization points in the computation of the integrals over the
gauge angles.

an isolated pole leaving or entering the integration circle in
the case of SIII, which occurs over an infinitesimal interval of
deformation, it is generated by a branch cut leaving or entering
the integration circle in the case of SLy4, which happens over
a finite interval of deformation.

B. Correcting the bilinear part

The specificity of SLy4 is to contain a term of the type
Eρρρ1/6

. As discussed in Sec. IV C, one could have hoped
that regularizing the quadratic part of this term through the
correction method proposed in Article I would lead to a
well-behaved PNR energy; i.e., that the remaining fractional
power of the density would not create any pathology, in
particular in view of the fact that the branch point becomes
integrable in this case. Of course, it is important to remember
that the correction method proposed in Article I relies on solid
basis only for terms of the form Eρn

, with n integer. Thus,
regularizing the quadratic part of Eρρρ1/6

in this way is purely
empirical.

As a matter of fact, the results displayed in Fig. 10
demonstrate that proceeding to such a correction does not lead
to a well-behaved PNR energy. The integrability of the branch
points remaining after regularizing the quadratic part of Eρρρ1/6

is such that all the divergences have disappeared. This is a
necessary but not sufficient condition to obtain a well-behaved
PNR energy. Indeed, Fig. 11 clearly demonstrates that the
spurious steps are still present and have in fact not been
reduced by regularizing the bilinear part of Eρρρ1/6

. In addition,
one observes that the corrected results still depend strongly
on the discretization of the integrals over the gauge angles.
More precisely, all terms of the energy functional that are
strictly bilinear have become independent on the number of
discretization points, whereas the term with the extra fractional
power is not. Considering the experience we have gathered

FIG. 10. (Color online) Particle-number-restored energy EN as a
function of quadrupole deformation without and with regularization
of all bilinear terms in the EDF, including the quadratic part of Eρρρ1/6

.
Results are shown for two different numbers of discretization points
in the computation of the integrals over the gauge angles.
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FIG. 11. (Color online) Energy gain from PNR as a function of
quadrupole deformation without and with regularization of all bilinear
terms in the EDF, including the quadratic part of Eρρρ1/6

. Results
are shown for two different numbers of discretization points in the
computation of the integrals over the gauge angles.

about well-behaved PNR energies, such a dependence is a
fingerprint of a ill-defined PNR theory.

As discussed in Sec. IV D2, Figs. 10 and 11 also show
that regularizing the quadratic part of Eρρρ1/6

leads to
the replacement of divergences by nonderivable points in
the PNR potential energy curve. Indeed, kinks are clearly
visible at the deformation where the divergences appeared
before applying the correction method. Using more mesh
points for Q20, ϕp and ϕn, one could resolve even better the
nonderivable character of the energy as a branch point passes
through the integration circle. This pattern relates directly to
the analytical result obtained in Eq. (58).

Finally, note that it is a particularity of the SLy4 interaction
complemented with the pairing interaction chosen here that
the combined correction of all density-independent terms is
always very small in 18O, often even difficult to resolve on the
plots.

C. Shift transformation

The finite steps that arise in the deformation energy surface
are a reminiscence of the violation of the shift invariance of the
PNR energy. Such a violation is unambiguously demonstrated
by varying the radius of the integration contour in Eq. (55);
i.e., by computing Eq. (58) as a function of R.

The upper panel of Fig. 12 shows the PNR energy of 18O
at a deformation Q20 = 600 fm2, obtained using the SLy4
parametrization. The energy is displayed as a function of the
radius of the integration contour used to restore the proton
number. The radius for the neutrons is Rn = 1 in all cases. The
calculation is performed with and without a regularization of
the bilinear part of the functional and for two different numbers
of integration points (taken to be the same for protons and
neutrons). Finally, the bottom panel of Fig. 12 shows the same
quantity obtained from the SIII parametrization at a quadrupole
deformation Q20 = 500 fm2.

FIG. 12. (Color online) Particle-number-restored energy EN as a
function of the radius Rp of the contour chosen to restore proton
number (Rn = 1) and for two different numbers of discretization
points in the computation of the integrals over the gauge angles.
Results are shown before and after regularization of the bilinear part
of the EDF. (Upper panel) At a prolate quadrupole deformation
Q20 = 600 fm2 using the SLy4 parametrization. (Bottom panel)
At a prolate quadrupole deformation Q20 = 500 fm2 using the
SIII parametrization. The corrected SIII curve is independent on
the number of discretization point; hence, only one curve is shown.
The left scale shows the absolute value of the binding energy, whereas
the right scale shows the energy gain from symmetry restoration.

The upper panel of Fig. 12 confirms that, even after
regularizing the bilinear part of Eρρρ1/6

, the PNR energy is
not invariant under shift transformation. Even though the
correction method does remove the divergence, it does not
eliminate the shaped steps as the integration contour goes
through a branch cut. In addition, both the corrected and un-
corrected PNR energies depends strongly on the discretization
of the integrals. Again, those two features are entirely due to
the term in the functional depending on a noninteger power
of the density. After regularization, all terms that are strictly
bilinear become shift invariant. For comparison, the bottom
panel of Fig. 12 shows the PNR energy obtained with SIII in
Article II. We recall that SIII contains only linear, bilinear,
and trilinear terms that are such that all poles at z = ±zµ

are of order one. The corresponding PNR energy is, after
regularization, independent on the contour and the number
of discretization points with a numerical precision better than
1 keV. When restoring the particle number that the SR-EDF
calculation was constrained to, the finite spurious contributions
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are the smallest when using a circle radius close to R = 1 for
the reasons outlined in Article II. Consequently, the corrected
value is rather close to the uncorrected one in such a case.

It is fortuitous that for the deformation Q20 = 500 fm2

in 18O and when using SLy4 the combined correction of all
density-independent terms is very small such that corrected
and uncorrected curves are close at very small values of Rp in
Fig. 12 and even cannot be distinguished within the resolution
of the plot for larger Rp shown.

Just as for the deformation energy curve as a function
of quadrupole deformation, one observes, by comparing the
two panels of Fig. 12, that the steps generated by SLy4 are
significantly less steep than those produced by SIII before
correction (calculated in both cases with enough integration
points to resolve them). This is due to the fact that the steps are
generated by a single pole leaving or entering the integration
circle in the case of SIII, which occurs over an infinitesimal
variation of Rp, whereas they are generated by a branch cut
leaving or entering the integration contour in the case of SLy4,
which happens over a finite interval of variation of Rp.

Just as for the behavior of the deformation energy curve as a
function of quadrupole deformation, the curves obtained with
199 integration points in the upper panel of Fig. 12 show that
the divergences seen before regularizing the quadratic part of
Eρρρ1/6

have been replaced by cusps. Using more mesh points
for Rp and ϕp, one could resolve even better the nonderivable
character of the PNR energy as the integration circle passes the
branch points. This is a direct illustration of the analytical result
obtained in Eq. (58) and is schematically displayed in Fig. 7.

An important by-product of the previous result is that
they invalidate PNR calculations performed using a fully
antisymmetrized two-body interaction that depends on the
medium through a fractional power of the density, e.g., the
Gogny interaction. The problem was further circumvented
in Ref. [3] by using the projected density in place of the
transition density in the density-dependent term of the Gogny
interaction. However, such a procedure singles out one density
factor in the energy kernel in a way that seems highly
arbitrary and not easily extendable to more involved EDFs.
In addition, such a prescription of using the correlated density
into the density-dependent term of the effective vertex leads
to unsatisfactory results for other multi reference calculations;
e.g., calculations including parity restoration and configuration
mixing along the octupole degree of freedom [18].

VI. SUMMARY AND CONCLUSIONS

In Ref. [1], pathologies of calculations aiming at restoring
particle number and performed within the EDF framework
have been highlighted. In Ref. [5], the first article of the present
series, we demonstrated that such pathologies are in fact shared
by all MR calculations, i.e., symmetry restoration and/or
GCM-based configuration mixing calculations, performed
within the EDF framework. In Ref. [5], a formal and practical
solution that applies (i) to any symmetry restoration and/or
GCM-based configuration mixing calculation (ii) to EDFs
depending only on integer powers of the density matrices was
proposed. In Ref. [6], the second article of the present series,
the regularization method was applied to PNR calculations

using an energy functional that depends only on integer powers
of the density matrices; e.g., that contains linear, bilinear, and
trilinear terms.

The limitation of the correction method proposed in Ref. [5]
to energy functionals depending on integer powers of the
density matrices is a critical feature as most functionals found
in the literature contain noninteger powers of the (normal)
density matrix, both in the functional modeling the strong
interaction and in the functional modeling the Coulomb
interaction, due to the Slater approximation to the exchange
term [9]. Such noninteger powers of the density matrices pose
difficulties that go beyond those posed by integer powers:
as transition densities are complex, taking their noninteger
powers amounts to dealing with a multivalued function on
the complex plane. This makes the analysis of the associated
pathologies more involved.

In the present article, the third of the series, the viability of
noninteger powers of the density matrices has been addressed,
building on the analysis already carried out in Ref. [1]. First,
we proposed to reduce the pathological character of terms
depending on a noninteger power of the density matrices by
regularizing the fraction that relates to the integer part of
the exponent, using the method proposed in Ref. [5]. This
amounts to scaling down the extent of the problem to the
one potentially encountered using a fully antisymmetrized
effective interaction depending further on a fractional power
of the density; e.g., the Gogny force. Second, we discussed in
detail the spurious character of the remaining fractional power
of the density (matrix). Both through analytical derivations and
numerical applications (using the SLy4 Skyrme parametriza-
tion), we demonstrated that regularizing the fraction related
to the integer part of the exponent does remove divergences
in the particle-number-restored energy but replace them by
cusps that are as unphysical as the original divergences. In
addition, the spurious steps in the PNR energy and the related
breaking of shift invariance prevail. Such results thus invalidate
PNR calculations performed using a fully antisymmetrized
two-body interaction that depends on the medium through a
fractional power of the density.

Eventually, and because we do not see any well-defined
basis to correct the corresponding pathologies, we conclude
at this point that noninteger powers of the density matrices
are not viable and should be avoided in the first place when
constructing nuclear energy density functionals to be used
in MR-EDF calculations in the future. However, one will
have to restrict the form to rather low integer orders in the
density matrices. For example, the EDF recently proposed
by Baldo et al. [19] includes terms up to fifth power in the
total density ρ(r), which lead to self-interaction terms [20]
that will require a regularization containing quadruple sums
over single-particle states, which will be too costly in realistic
calculations.

Let us make an additional comment regarding the drastic
conclusion to discard noninteger powers of the density matri-
ces altogether. On the one hand, integer powers of the density
matrices appear naturally when constructing the EDF through
ab initio calculations, e.g., through many-body perturbation
theory. On the other hand, noninteger powers of the density
matrices, if not introduced merely on phenomenological
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grounds, do often, if not always, result from interpreting
integrals over momenta up to kF providing the infinite matter
equation of state with contributions of the kind kn

F as density-
dependent term through the use of kF ∼ ρ1/3. Transported
to finite nuclei, where the latter relationship has no rigorous
basis, through some version of the local density approximation,
this leads to an EDF that contains terms of the form ρn/3.
Although such a constructive procedure of the nuclear EDF
does not lead to particular problems in single reference (SR)
calculations, it does so when this procedure is extended to
MR calculations as even the local part of the scalar-isoscalar
transition density matrix is complex, stretching one step too
far the above procedure proceeding through infinite matter and
the use of kF ⇔ ρ1/3. Finally, there are both practical reasons

and formal motivations to conclude that (i) noninteger powers
of the density (matrix) are not viable in (multi reference)
EDF calculations and (ii) parametrizations making only use
of integer powers of the densities need to be constructed in the
very near future. Last but not least, note that such a conclusion
actually extends to any form of the EDF that generates branch
cuts when continued over the complex plane.
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