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Particle-number restoration within the energy density functional formalism
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We give a detailed analysis of the origin of spurious divergences and finite steps that have been recently
identified in particle-number-restoration calculations within the nuclear energy density functional framework.
We isolate two distinct levels of spurious contributions to the energy. The first one is encoded in the definition
of the basic energy density functional itself, whereas the second one relates to the canonical procedure followed
to extend the use of the energy density functional to multi-reference calculations. The first level of spuriosity
relates to the long-known self-interaction problem and to the newly discussed self-pairing interaction process that
might appear when describing paired systems with energy functional methods using auxiliary reference states of
Bogoliubov or BCS type. A minimal correction to the second level of spuriosity to the multi-reference nuclear
energy density functional proposed in [D. Lacroix, T. Duguet, and M. Bender, Phys. Rev. C 79, 044318 (2009)] is
shown to remove completely the anomalies encountered in particle-number-restored calculations. In particular,
it restores sum rules over (positive) particle numbers that are to be fulfilled by the particle-number-restored
formalism. The correction is found to be on the order of several hundreds of keVs up to about 1 MeV in realistic
calculations, which is small compared to the total binding energy but often accounts for a substantial percentage
of the energy gain from particle-number restoration and is on the same energy scale as the excitations one
addresses with multi-reference energy density functional methods.
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I. INTRODUCTION

Methods based on the use of energy density functionals
(EDF) [1] currently provide the only set of theoretical tools
that can be applied to all nuclei but the lightest ones in a
systematic manner irrespective of their mass and isospin.
Nuclear EDF methods coexist on two distinct levels. On
the first level, that is traditionally and inappropriately called
“self-consistent mean-field theory” or Hartree-Fock (HF)
or Hartree-Fock-Bogoliubov (HFB), a single product state
provides the normal and anomalous density matrices the
energy is a functional of. We will call this type of method
a single-reference (SR) EDF approach. On the second level,
traditionally and inappropriately called “beyond-mean-field
methods,” i.e., symmetry restoration and configuration mixing
in the spirit of the generator coordinate method (GCM), the
set of transition density matrices defined from an appropriate
ensemble of product states enter the EDF. We will call such
a method a multi-reference (MR) EDF approach. Although
SR-EDF calculations have many similarities with density
functional theory (DFT) that is widely used in atomic,
molecular, and condensed matter physics [2–8], they also
present key differences, which prohibit the straightforward
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mapping of the concepts of electronic DFT to the nuclear
case [9–11].

The reference state entering a SR-EDF calculation usually
breaks several symmetries of the exact eigenstates of the
nuclear Hamiltonian. This is done on purpose, as it allows
one to incorporate so-called static correlations associated with
collective modes [12–15] at moderate computational cost. One
of the most important categories of correlations that can be
grasped this way are those associated with the formation of
neutron and proton Cooper pairs in the medium.

In an SR-EDF approach, pairing correlations are incorpo-
rated by making the energy a functional of the anomalous
density matrix in addition to the normal one. This amounts to
using an independent quasiparticle state (which will be called
a quasiparticle vacuum in what follows) of BCS or Bogoliubov
type as a reference state instead of a Slater determinant. The
price to pay is breaking the U (1) symmetry in gauge space that
is a feature of eigenstates of the particle-number operator. As
a result the SR state is spread in particle-number space, and
one cannot associate the computed energy, even implicitly,
to a state belonging to a specific irreducible representation
of U (1). In condensed matter physics, for which the BCS
method was originally designed [16], this is usually not much
of a problem. Nuclei, however, are small finite quantum
many-body systems for which two problems arise in this
context: (i) the SR approach does not grasp the so-called
dynamical pairing correlations associated with the fluctuations
of both the magnitude and the phase of the order parameter of
the broken U (1) symmetry. Correlations associated with this
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zero-energy mode may affect any observable that probes the
occupation of levels around the Fermi surface in a significant
way; (ii) when the density of single-particle levels around the
Fermi energy is below a critical value, pairing correlations are
entirely dynamical and cannot be described by the SR method,
in most cases in contradiction with experiment.

All of these limitations can be overcome by performing
multi-reference EDF calculations. Those allow in particular
the restoration of particle number [17–21]. It has been noticed
for some time, however, that particle-number-restored energies
might exhibit divergences [18,22,23] and finite steps [24,25]
whenever a single-particle level crosses the Fermi energy as a
function of a collective coordinate. This problem is particular
to energy density functionals but absent in approaches based
on the use of a genuine Hamiltonian and a correlated wave
function. As pointed out by Anguiano et al. in Ref. [18],
some of the common assumptions and approximations made
in the construction of nuclear EDFs unavoidably lead to such
anomalies, and these authors, as done earlier in Refs. [23,24]
in a different context, advocate to use strict antisymmetric two-
body vertices and to keep all exchange terms when computing
the energy. However, and contrary to what is stated in
Refs. [18,26], using antisymmetric but density-dependent
two-body vertices is not free from pathologies, even when
the divergence introduced by the density-dependent terms
is integrable. There is an additional problem that arises
particularly when such a dependence is taken under the form
of a noninteger power of the density (matrix) [25,27].

Practitioners of EDF methods, however, recognize that it is
desirable to use more general energy functionals. For those,
particle-number restoration (PNR), and the MR formalism
in general, still need to be formulated in a consistent and
unambiguous manner that is free from pathologies. As a
first step into that direction, a thorough analysis has been
recently given by Dobaczewski et al. regarding the poles and
steps contained in a particle-number-restored energy density
functional [25]. In the first of our companion articles [28],
hereafter referred to as Article I, we could connect those
pathologies to an underlying level of spuriosity that is encoded
in the SR energy functional. The associated spurious terms turn
out to relate to self-interaction processes well known in DFT
for condensed matter [29], a problem that was actually studied
beforehand in the nuclear context [30] but was soon forgotten,
as well as to spurious self-pairing processes, whose notion is
introduced in the present article. The common source of both
pathologies is the use of different and non-anti-symmetric
vertices at different places in the EDF violating in this way
the exchange symmetry of Fermi statistics. The existence of
spurious self-interaction and self-pairing in the SR energy
functional is indeed a prerequisite for the appearance of
divergences and steps at the MR level, but it is not its
origin as such. The pathologies that are particular to the
MR level, e.g., particle-number restoration, turn out to be
caused by an unphysical contribution to the weight of the self-
interaction and self-pairing contributions in multi-reference
energy kernels. This is an unforeseen consequence of the
common practice of constructing the multi-reference energy
functional kernel by replacing the density matrices entering
a given SR energy functional by transition density matrices

[31,32] in analogy to the application of the generalized
Wick theorem (GWT) [33,34] within a Hamiltonian- and
wave-function-based approach. Making reference to a Wick
theorem in an energy density functional without having a
genuine operator to relate to is necessarily outside the scope of
that Wick theorem and might produce unexpected results. And,
indeed, using the standard [35] and generalized [33,34] Wick
theorems yields different weights to self-interaction and self-
pairing contributions to the MR energy kernel as demonstrated
in Article I. Only the GWT-motivated procedure produces the
poles that are at the origin of the divergences and steps, thus
introducing a second level of spuriosity. Using a Hamiltonian-
and wave-function-based approach, no problem arises; the
vertices at play are either zero or recombine in a particular
way that cancels out dangerous poles. Our analysis in Article I
was made without reference to a particular MR application and
aimed at the introduction of a proper framework to identify
and separate both levels of spuriosity within any MR-EDF
calculation. It is the aim of the present article to apply the
procedure proposed in Article I to correct for the unphysical
weights in the special case of particle-number restoration using
a particular energy functional the correction can be applied
to. In a third article [27], hereafter called Article III, we
analyze in detail in the context of PNR the reasons why the
pathologies associated with more commonly used functionals
containing noninteger powers of the density (matrix) [25]
are very likely to be uncorrectable. Together with Ref. [25],
Article III demonstrates that the density-dependent two-body
forces that are advertised by some authors to be free of
pathologies [18,21,26] also have their share of problems when
used in MR calculations.

The article is organized as follows: In Sec. II, we introduce
single-reference EDF calculations, paying particular attention
to resemblances and key differences with the HFB method
based on the use of a Hamilton operator. In Sec. III,
we introduce multi-reference EDF calculations appropriate
to restoring particle number, paying particular attention to
resemblances and key differences with the strict particle-
number-projected HFB (PNP-HFB) method based on the use
of a Hamilton operator. In Sec. IV, we discuss the occurrence
of spurious self-interaction and self-pairing processes in SR
and MR calculations. Section V analyzes the occurrence of
spurious self-interaction and self-pairing contributions to the
particle-number-restored EDF using a complex plane analysis
and specifies the correction designed in Article I to that
particular case. Section VI applies the correction scheme to
realistic calculations of finite nuclei. Finally, conclusions are
drawn in Sec. VII. Several appendices complement the article
with derivations and formulas useful for practical applications.

II. SINGLE-REFERENCE EDF APPROACH

Let us first present the basic elements of the single-reference
EDF method that will be needed for our discussion. The HFB
implementation of the single-reference EDF approach relies on
the use of a quasiparticle vacuum |�ϕ〉 as a reference state from
which the normal and anomalous one-body density matrices
entering the energy density functional are calculated. In the
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canonical basis {aµ, a+
µ } that diagonalizes its one-body normal

density matrix, the reference state reads

|�ϕ〉 =
∏
µ>0

(uµ + vµe2iϕa+
µ a+

µ̄ )|0〉, (1)

where |0〉 is the particle vacuum. Throughout this article we
limit ourselves to time-reversal invariant quasiparticle vacua
|0〉 with even-number parity and thus only discuss explicitly
the ground-state of even-even systems. In addition, we do
not mix protons and neutrons when constructing quasiparticle
operators. In particular, this limits the pairing interaction to
particles of the same isospin. Identical assumptions are made
in most, if not all, published work performed using particle-
number-projected energy density functionals so far and are
sufficient for the purpose of the present article.

The single-particle wave functions associated with the pair-
conjugated canonical states (µ, µ̄) is denoted as φµ and φµ̄.
A quantum number ηµ can always be chosen to separate the
single-particle basis into two halves, the “positive” and the
“negative” ones, with each partner of a given conjugated pair
associated to a different half. The normalization of |�ϕ〉 gives
|u2

µ| + |v2
µe2iϕ| = 1. We use phase conventions where the uµ

and vµ are real numbers; hence, u2
µ + v2

µ = 1, which also fixes
the global phase of |�ϕ〉. The angle ϕ in the remaining phase
factor denotes the orientation of the state in the U (1) gauge
space.

The exact eigenstates of the nuclear many-body problem be-
long to a specific irreducible representation of the U (1) group.
By contrast, the product state |�ϕ〉 behaves as a wave packet in
gauge space as it mixes states belonging to different irreducible
representations. The use of such Bogoliubov product states is
at the heart of the symmetry-breaking description of static
pairing correlations based on a single reference state. In spite
of the broken symmetry of the product state, all observables
that are scalars in gauge space still have to be independent
on its orientation in gauge space. This allows one to choose a
convenient angle on the level of SR calculations that simplifies
the calculations, a procedure similar to choosing a major axis
system for quadrupole deformed product states. In the case
of gauge symmetry, a convenient orientation is provided by
ϕ = 0. States at different angles are obtained from this state
applying the rotation operator eiϕN̂ in gauge space

|�ϕ〉 = eiϕN̂ |�0〉 = eiϕN̂
∏
µ>0

(uµ + vµa+
µ a+

µ̄ )|0〉. (2)

A. Energy in the strict HFB approach

As a strict HFB approach, we denote the method that de-
termines the energetically most favored quasiparticle vacuum
|�ϕ〉 through the minimization of the expectation value of a
given Hamiltonian Ĥ in that product state, without any ap-
proximations or generalizations. For the sake of transparency,
the Hamiltonian

Ĥ =
∑
ij

tij c
+
i cj + 1

4

∑
ijkl

v̄ijklc
+
i c+

j clck (3)

is assumed to be given by the sum of kinetic energy term and
a two-body interaction. In Eq. (3) {c+

i } defines a complete set
of single-particle states, whereas v̄ijkl denotes antisymmetric
matrix elements (or vertices) of the two-body interaction in that
basis. The discussion below can be extended without difficulty
to a Hamiltonian containing three-body or higher-body forces,
but this becomes cumbersome and is not necessary for the
purpose of this article.

An important point is that in the context of the strict
HFB approach, we assume that the vertex v̄ijkl does not
depend on density. So-called density-dependent vertices of
Skyrme and Gogny type are widely used in the literature.
However, as pointed out in Ref. [25], discussed in the present
article and insisted on further in Article III, any density-
dependent effective vertices do provide MR energies with (at
least) spurious finite contributions, even though the vertex is
antisymmetric with respect to the remaining single-particle
degrees of freedom and all associated exchange terms are
exactly accounted for in the MR energy kernels.

Using the standard Wick theorem (SWT) [35–37], the
expectation value of Ĥ in the product state |�ϕ〉 can be
evaluated as

E[ρϕϕ, κϕϕ, κϕϕ∗]

≡ 〈�ϕ|Ĥ |�ϕ〉
〈�ϕ|�ϕ〉

=
∑

µ

tµµρϕϕ
µµ +

∑
µν

[
1

2
v̄µνµνρ

ϕϕ
µµρϕϕ

νν + 1

4
v̄µµ̄νν̄κ

ϕϕ∗
µµ̄ κ

ϕϕ
νν̄

]

=
∑

µ

tµµv2
µ +

∑
µν

[
1

2
v̄µνµνv

2
µv2

ν + 1

4
v̄µµ̄νν̄uµvµuνvν

]
,

(4)

where ρϕϕ and κϕϕ are the normal density matrix and
anomalous density matrix (pairing tensor) constructed from
|�ϕ〉, respectively. In the canonical basis of the Bogoliubov
transformation defining |�ϕ〉, these take the simple form

ρϕϕ
µν ≡ 〈�ϕ|a†

νaµ|�ϕ〉
〈�ϕ|�ϕ〉 = v2

µ δµν, (5)

κϕϕ
µν ≡ 〈�ϕ|aνaµ|�ϕ〉

〈�ϕ|�ϕ〉 = uµvµe2iϕ δνµ̄, (6)

κϕϕ∗
µν ≡ 〈�ϕ|a†

µa†
ν |�ϕ〉

〈�ϕ|�ϕ〉 = uµvµe−2iϕδνµ̄. (7)

The expectation value given in Eq. (4) can be seen as a
particular functional of ρϕϕ, κϕϕ , and κϕϕ∗. The symmetries of
the Hamiltonian lead of course to a number of specific proper-
ties of this functional. In particular, because the Hamiltonian
commutes with the particle-number operator, one finds that

E[ρϕϕ, κϕϕ, κϕϕ∗] = E[ρ00, κ00, κ00∗], (8)

which underlines that all states that differ only by a rotation
in gauge space are degenerate. In other words, the energy
functional behaves as a scalar in gauge space as expected.
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B. Energy in the SR energy functional approach

In nuclear physics, strict HFB-type approaches are fre-
quently applied in a restricted shell-model space using
parametrized single-particle energies and an effective Hamil-
tonian as a residual interaction [38–40]. For a multitude of rea-
sons outlined in Article I and references given therein, methods
using the full model space of occupied particles had to resume
so far to the use of (phenomenological) density-dependent
effective interactions [41,42], which sets the stage for what is
nowadays recognized as an approximation to a more general
single-reference EDF formalism. This framework shares many
features with the density functional theory (DFT) widely used
for description of electronic many-body systems [2–8] but
also displays key differences that prohibit the straightforward
mapping of all concepts of electronic DFT to the nuclear
case [9–11].

In the DFT for many-electron systems, constructive
schemes have been established to design the energy functional;
see, for instance, Ref. [5] and references given therein.
In nuclear physics, such a procedure that would suggest
the structure of the functional is still missing, already on
a qualitative level. The reasons are the complexity of the
nucleon-nucleon interaction, on the one hand, and that in-
medium correlations are never small corrections, on the other
hand. In the absence of a constructive scheme, all widely
used nuclear energy functionals were set up keeping an
underlying two-body and sometimes three-body interaction
as guiding principle, making generalizations suggested by
phenomenology and approximating or even omitting terms
that are small but difficult to evaluate. As a consequence,
the structure of these functionals resembles that of Eq. (4),
except that the expectation value E[ρ, κ, κ∗] is replaced by
a functional E[ρ, κ, κ∗]. Considering the simple case of a
bilinear functional for simplicity and comparison purposes,
such a functional can be written as

E[ρ, κ, κ∗] ≡ Eρ + Eρρ + Eκκ

=
∑

µ

tµµv2
µ + 1

2

∑
µν

v̄ρρ
µνµν v2

µv2
ν

+ 1

4

∑
µν

v̄κκ
µµ̄νν̄ uµvµuνvν. (9)

This might appear as an unsusual way to write standard
energy functional but will turn out to be very useful below.
The corresponding explicit expressions for a Skyrme energy
functional are given in Appendix A. The crucial point for
our discussion is that the matrix elements of the effective
vertex v̄ρρ are in general not necessarily antisymmetric for
these energy functionals. Also, for Skyrme functionals, one
almost always chooses different vertices in the particle-hole
(v̄ρρ

µνµν) and particle-particle (v̄κκ
µµ̄νν̄) channels and exploits

broken antisymmetry of v̄ρρ
µνµν to obtain a more versatile

effective interaction, for example, in the spin-orbit [43,44] or
spin-spin parts [45]. The situation is similar for the functionals
by Fayans et al. [46]. By contrast, the philosophy of the Gogny
force is to use the same antisymmetrized density-dependent
vertex anywhere, although in actual calculations terms that
are very small in SR calculations and at the same time

very time-consuming to evaluate are often omitted [47].
As all standard parametrizations of the Skyrme and Gogny
interactions use density-dependent vertices, they cannot be
mapped on a functional that is the strict expectation value of a
many-body Hamiltonian (4). Almost all relativistic mean-field
models that are widely used in the literature are explicitly set
up as Hartree approaches [1,48] without any explicit exchange
terms at all, using phenomenological density dependencies and
nonrelativistic pairing energy functionals.

Note that any local or nonlocal energy functional that
contains only terms proportional to integer powers of the
density matrices can be put into the form of Eq. (9) plus similar
higher-order terms. For the rest of this article, however, we will
assume idealized energy functionals that are linear and bilinear
in the density matrix of a given isospin projection, and possibly
trilinear with the two isospin projections necessarily involved.
We postpone the discussion of functionals with noninteger
powers of the density matrices to Article III.

We will not assume antisymmetry of v̄ρρ in the formal
manipulations throughout the article. Owing to the intrinsic
antisymmetry of κ , however, only the antisymmetric part of the
vertex is probed in the last term of Eq. (9) and one can always
take v̄κκ to be antisymmetric, which we do here. The results
based on a strict HFB method can always be easily recovered
from those derived for a more general bilinear functional
simply by enforcing the antisymmetry of v̄ρρ and by taking
v̄ρρ = v̄κκ = v̄.

III. PARTICLE-NUMBER RESTORATION

To restore good particle number and include the correlations
associated with the corresponding Nambu-Goldstone mode, it
is necessary to extend the EDF framework to a multi-reference
formalism. This extension requires the explicit treatment of
the fluctuations of the gauge angle of the gap field. This is
particularly crucial for situations where the symmetry breaking
is weak or even absent at the SR level, as it is the case, for
instance, around closed shells or at high spin. The variation
after projection (VAP) method [18,26,49–52] is superior in
that respect to the projection after variation (PAV) one because
the latter cannot compensate for the spurious sharp phase
transition occurring at the SR level in the weak symmetry-
breaking regime [18,36,50–52]. An intermediate treatment
consists of performing a projection after a SR+Lipkin-Nogami
(HFBLN) calculation [17,19,20,50]. This corrects for the
principal defect of the PAV method as it guarantees the
presence of pairing correlations in the SR state in the weak-
pairing regime. However, some doubts have been raised in
the literature about the quantitative reliability of this method
[50,53]. The MR calculation could be extended further to
incorporate dynamical pairing correlations associated with
fluctuations of the magnitude of an order parameter that
quantifies the amount of pairing correlations present in the
SR state [53–56].

An operator that projects out an eigenstate of the particle-
number operator N̂ with an eigenvalue N from any many-body
wave function is provided by [57]

P̂ N = 1

2π

∫ 2π

0
dϕ eiϕ(N̂−N). (10)
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For the purpose of the present article, it is sufficient to
consider the simple case of particle-number restoration after
variation. For the sake of transparent notation we discuss the
formal framework assuming one type of particles only. The
extension to two types of particles is straightforward and
will be mentioned only whenever necessary. A normalized
projected HFB state is given by

|
N 〉 =
∫ 2π

0
dϕ

e−iϕN

2πcN

|�ϕ〉, (11)

where the real and positive cN = 〈�0|
N 〉 that reads

c2
N = 〈�0|P̂ N |�0〉 = 1

2π

∫ 2π

0
dϕe−iϕN 〈�0|�ϕ〉 (12)

provides the weight of the normalized projected state in the
normalized SR state it is projected from, whereas

〈�0|�ϕ〉 =
∏
µ>0

(
u2

µ + v2
µe2iϕ

)
(13)

denotes the overlap of a gauge-space-rotated state with the
unrotated one. The integration interval in Eq. (11) can be
reduced to [0, π ] using symmetries of the integral whenever
the SR state |�ϕ〉 has a good number parity quantum number
[36,39,58].

A. Energy in the strict PNP-HFB approach

In the strict PNP-HFB method, the energy is calculated
as the expectation value of the Hamilton operator in the
normalized projected state |
N 〉

EN = 〈
N |Ĥ |
N 〉 =
∫ 2π

0
dϕ

e−iϕN

2πc2
N

E[ϕ]〈�0|�ϕ〉, (14)

where we have used that Ĥ and N̂ commute and that P̂ N

is a projector P̂ N P̂ N = P̂ N . The energy kernel E[ϕ] can be
easily evaluated with the help of the GWT [33,34], which in
the canonical basis of |�0〉 gives

E[ϕ] ≡ 〈�0|Ĥ |�ϕ〉
〈�0|�ϕ〉

=
∑

µ

tµµρ0ϕ
µµ + 1

2

∑
µν

v̄µνµνρ
0ϕ
µµρ0ϕ

νν

+ 1

4

∑
µν

v̄µµ̄νν̄ κ
ϕ0∗
µµ̄ κ

0ϕ
νν̄ . (15)

In this expression, the normal and anomalous transition density
matrices between the ket |�ϕ〉 and the bra 〈�0| are defined as

ρ0ϕ
µν ≡ 〈�0|a†

νaµ|�ϕ〉
〈�0|�ϕ〉 = v2

µe2iϕ

u2
µ + v2

µe2iϕ
δνµ, (16)

κ0ϕ
µν ≡ 〈�0|aνaµ|�ϕ〉

〈�0|�ϕ〉 = uµvµe2iϕ

u2
µ + v2

µe2iϕ
δνµ̄, (17)

κϕ0∗
µν ≡ 〈�0|a†

µa†
ν |�ϕ〉

〈�0|�ϕ〉 = uµvµ

u2
µ + v2

µe2iϕ
δνµ̄. (18)

The functional kernel E[ϕ] defined by Eq. (15) has the exact
same form as the strict HFB energy functional E[ρ, κ, κ∗]
given by Eq. (4) except that the SR density matrix and pairing
tensor [Eqs. (5)–(7)] have been replaced by the transition
ones [Eqs. (16)–(18)]. Also, the HFB functional is recovered
from Eq. (15) for ϕ = 0, which amounts to connecting the SR
energy and MR energy kernels through E[0] = E[ρ, κ, κ∗].

B. Energy in the PNR energy functional approach

Difficulties arise when trying to construct the multi-
reference energy kernel E[ϕ] within a true functional frame-
work and connect it to the single-reference one. At present,
there is no ab initio formalism to derive MR energy functional
kernels, of which the SR functional would be a special case,
and one can only reverse engineer the procedure and extend
the SR energy density functional to the MR level by analogy
with the strict Hamiltonian case. Based on the strict HFB and
PNP-HFB methods described above, EDF practitioners have
used a procedure where E[ϕ] ≡ E[ρ0ϕ, κ0ϕ, κϕ0∗] is postulated
to be the MR energy kernel that corresponds to a given
SR functional [17,18,20,21,25]. In this case, the MR energy
corresponding to particle-number restoration takes the form

EN ≡
∫ 2π

0
dϕ

e−iϕN

2πc2
N

E[ϕ]〈�0|�ϕ〉, (19)

where E[ϕ] denotes the set of MR energy functional kernels
associated with each gauge angle ϕ. A kernel E[ϕ] is a
functional of the bra 〈�0| and of the ket |�ϕ〉 in such a way
that EN depends only implicitly on the projected state [59]
and cannot be factorized into a form similar to the left-hand
side of Eq. (14). We will call this procedure the “use of the
GWT” below, although strictly speaking it is not the GWT that
is applied but a formal analogy to the extension at play in the
strict Hamiltonian case when using the GWT that is exploited.

On the one hand, the standard strategy based on the GWT
analogy to define the nondiagonal functional energy kernel
E[ϕ] from the single-reference functional replacing SR density
matrices by the transition ones guarantees that the MR energy
functional passes all consistency requirements thought of so
far [21]. On the other hand, this procedure is also at the origin
of the divergences and finite steps discussed in Ref. [18,25].
In Article I we proposed the general formalism appropriate
for a remedy of these problems. The remedy is valid for any
type of multi-reference calculation but is limited to EDFs
depending on integer powers of the density matrices as is
further elaborated on in Article III. The goal of the following
sections is to discuss the origin of the problem further and to
illustrate the general regularization procedure in its application
to PNR.

We note in passing that in PNR and all other MR-EDF
calculations the energy is the only observable that is currently
determined from a functional; all other observables that are
routinely calculated within such an approach are obtained
as matrix elements of the corresponding operator between
projected states such that they do not contain spurious
contributions.
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IV. SELF-INTERACTION AND SELF-PAIRING

A. Single-reference level

1. Self-interaction

Microscopic methods for low-energy nuclear structure
physics usually describe a self-bound nucleus in terms of
nucleons characterized by their experimental mass. In such
an approach, a nucleon should not gain energy by interacting
with itself. Its so-called self-interaction energy, which can
be extracted from the one-orbital limit of the interaction part
of the energy functional Eµ ≡ E[ρϕϕ

µµ, 0, 0] in the canonical
basis, should be strictly zero. This requirement is, how-
ever, not fulfilled for most functionals used in electronic
DFT [5,6,29,60–62] or nuclear EDF methods [30]. Energy
functionals with higher-order density dependencies than those
discussed here might also exhibit multiparticle self-energies,
not having the proper n-particle limit of the energy functional
[62].

Let us consider the energy Eµ of a single Fermion occupying
the canonical state φµ, divided by the probability ρϕϕ

µµ = v2
µ of

this state to be occupied in the auxiliary state |�0〉

Eµ

v2
µ

= tµµ + 1

2
v̄ρρ

µµµµv2
µ. (20)

This expression shows that a self-interaction arises whenever
the vertex v̄ρρ is not antisymmetric, v̄ρρ

µµµµ �= 0, which is
impossible when calculating the exact matrix element of a
Hamilton operator but happens for general energy density
functionals. The total one-body self-interaction energy is
obtained summing all individual contributions Eµ.

2. Self-pairing

Beyond the well-known problem of spurious self-
interactions, there exists a similar problem of spurious self-
pairing processes that may arise whenever superfluidity is
incorporated into an energy functional in a DFT or EDF
framework. The rationale behind it is that two Fermions
occupying a pair of conjugated states should not gain extra
binding through the pairing interaction by scattering onto
themselves. This requirement constrains the two-particle limit
of the theory and the contribution of a conjugated pair to
the many-body energy. To the best of our knowledge, the
possibility of self-pairing has never been addressed before.

Self-pairing can be easily identified when isolating the
energy of two fermions occupying a pair of conjugated
states {φµ, φµ̄} in the canonical basis. We define the di-
rect interaction energy of such a pair by removing the
one-body contributions defined through Eq. (20) to Eµµ̄ ≡
E[{ρϕϕ

µµ, ρ
ϕϕ
µ̄µ̄}, {κϕϕ

µµ̄, κ
ϕϕ
µ̄µ}, {κϕϕ∗

µµ̄ , κ
ϕϕ ∗
µ̄µ }] and by dividing the

result by the probability P �
µµ̄ to occupy the pair in the auxiliary

state |�0〉

Eµµ̄ − Eµ − Eµ̄

P �
µµ̄

= 1

2

(
v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

)
v2

µ + v̄κκ
µµ̄µµ̄u2

µ. (21)

The probability P �
µµ̄ to occupy the pair

P �
µµ̄ ≡ 〈�ϕ|a†

µa
†
µ̄aµ̄aµ|�ϕ〉

〈�ϕ|�ϕ〉 = v2
µ (22)

is equal to the probability of each state to be occupied, which
is a particularity of fully paired quasiparticle vacua, Eq. (1). In
the strict HFB case where v̄

ρρ
µµ̄µµ̄ = v̄

ρρ
µ̄µµ̄µ = v̄κκ

µµ̄µµ̄ ≡ v̄µµ̄µµ̄,
the two terms on the right-hand side of Eq. (21) combine into

Eµµ̄ − Eµ − Eµ̄

P �
µµ̄

= v̄µµ̄µµ̄, (23)

using u2
µ + v2

µ = 1. The same result is obtained in a strict HF
method without explicit treatment of pairing correlations. The
equality of the two-body interaction energy (23) in the HF and
HFB case means that a conjugated pair of states {µ, µ̄} does
not gain extra direct binding by scattering onto itself. Genuine
pairing correlations originate from scattering to different pairs
of conjugated states and back.

For most of the standard SR energy density functionals used
for nuclear structure calculations, however, the three terms
in Eq. (21) can in general not be recombined into a single
one because the vertices entering Eρρ and Eκκ are not related,
either by construction or due to approximations. Consequently,
the direct interaction energy of the conjugated pair is not
equal to its zero-pairing limit as it should be, which gives
rise to a spurious self-pairing interaction where one has a
contribution to the energy functional from the scattering of a
pair of conjugated states onto itself.

3. Further discussion

In a composite system consisting of two particle species
such as atomic nuclei, the like-particle self-interaction for a
given particle species is obtained as the one-particle limit of
the interaction energy for this particle species, while keeping
the particle number of the other particle species unchanged.
Otherwise self-interactions in the terms that couple the two
particle species will be missed.

The existence of spurious self-interactions was first recog-
nized in Kohn-Sham DFT for electronic systems [29]. In this
context, the construction of self-interaction-free functionals
has been studied in some detail; see Refs. [6,29,60–62] and
references given therein. It turns out to be not trivial at all
knowing that the standard correction method is formulated
within the frame of so-called orbital-dependent energy density
functionals [63,64] and significantly complexifies the cal-
culations through the modification of both the total energy
and the single-particle equations of motion. The (unknown)
exact Hohenberg-Kohn functional of DFT is of course self-
interaction free. The spurious terms arise when constructing
approximate energy functionals that are tractable for the use
in actual calculations; i.e., self-interaction is one of the prices
to pay for replacing the exact many-body problem by a
much simpler set of coupled one-body problems. It is of
course desirable to work within a theory that conserves the
Pauli principle, but its restoration is mandatory only when its
violation affects observables of interest on a scale comparable
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with or larger than the precision desired and reachable within
a given method. The situation is thus similar to the necessity to
restore other broken symmetries. As a matter of fact, the merits
of self-interaction corrected energy functionals for electronic
DFT are still debated from a phenomenological point of
view, as they improve some observables but at the same time
degrade others when compared to uncorrected functionals; see
Ref. [62] and references given therein.

The same remarks apply to self-pairing. Both self-
interaction and self-pairing processes are actually rooted in
a violation of the Pauli principle at the level of the two-body
(or even higher-order) density matrix in the definition of the
energy functional. It is important to stress that they are solely
a shortcoming of common energy functionals and not of the
auxiliary states of reference used, as the latter are set up as
antisymmetrized product states. In particular, all observables
other than the energy, which are customarily calculated as
expectation values of the corresponding operators, do not
exhibit any explicit spurious contributions, although they
might be indirectly affected through the use of density
matrices that are determined from the solution of a variational
equation that uses an energy functional containing spurious
contributions as an input.

In the nuclear context, the possible contamination of
nuclear energy density functionals by spurious self-energies
has been noticed before [1,30,65,66] but was never studied in
quantitative detail so far.

It has to be stressed that using self-interaction and self-
pairing free energy functionals is not per se equivalent to the
use of an effective Hamilton operator. Indeed, self-interaction,
as usually characterized, and self-pairing, as presently defined,
probe only the exchange symmetry of a particle in the
canonical basis with itself and its conjugate partner, not the
exchange symmetry between all particles. Asking for a full
restoration of the Pauli principle necessarily leads to using a
genuine Hamilton operator [30].

B. multi-reference level

The appearance of self-interaction and self-pairing pro-
cesses persists to MR calculations whereas new spurious
contributions particular to the MR level arise from the
construction of nondiagonal energy kernels. The extension
of the self-interaction and self-pairing concepts to the multi-
reference framework, however, is not at all straightforward. For
instance, the very notion of “occupied” orbitals is ill defined
for transition density matrices between arbitrary quasiparticle
vacua. In the case of particle-number restoration, the situation
is significantly simplified owing to the fact that all vacua
entering the PNR energy (19) share the same canonical

single-particle basis, which consequently also is the canonical
basis of the Bogoliubov transformation linking any pair of
these vacua. As demonstrated in Article I it is precisely
the latter canonical basis of the transformation connecting a
given pair of mixed vacua that must be used to meaningfully
identify self-interaction and self-pairing contributions to the
corresponding multi-reference energy kernel.

1. “Naive” extension of self-interaction

In the context of PNR multi-reference calculations, the
energy of a single Fermion occupying the canonical orbital
φµ divided by the probability ρ
N

µµ to occupy that orbital in the
projected state |
N 〉 is given by

EN
µ

ρ
N

µµ

= tµµ + 1

2
v̄ρρ

µµµµ

1

ρ
N

µµ

∫ 2π

0
dϕ

e−iϕN

2πc2
N

v4
µe4iϕ

u2
µ + v2

µe2iϕ

×
∏
ν>0
ν �=µ

(
u2

ν + v2
νe

2iϕ
)
. (24)

The one-body density matrix ρ
N

of the projected state

ρ
N

µµ ≡ 〈
N |a†
µaµ|
N 〉

〈
N |
N 〉

=
∫ 2π

0
dϕ

e−iϕN

2πc2
N

ρ0ϕ
µµ〈�0|�ϕ〉

= v2
µ

∫ 2π

0
dϕ

e−iϕN

2πc2
N

e2iϕ
∏
ν>0
ν �=µ

(
u2

ν + v2
νe

2iϕ
)
, (25)

is diagonal in the canonical basis of the HFB state it is
projected from, which means that the canonical basis of the
underlying HFB state is also the natural basis of the projected
one.

As for the SR case, the energy (24) reduces to kinetic
energy when antisymmetric vertices v̄ρρ are used. However, an
important aspect specific to the MR case is that the integrand
appearing in Eq. (24) contains a potential (simple) pole for
ϕ = π/2 and v2

µ = u2
µ = 1/2, i.e., when the state µ is located

at the Fermi level and is not more than twofold degenerate in
terms of occupation numbers v2

µ. If the states present a higher
degree of degeneracy, an additional factor in the norm overlap
will cancel out the dangerous denominator.

2. “Naive” extension of self-pairing

In multi-reference EDF calculations, the direct interaction
energy of a conjugated pair as defined above takes the form

EN
µµ̄ − EN

µ − EN
µ̄

P 
N

µµ̄

=
∫ 2π

0
dϕ

e−iϕN

2π c2
N P 
N

µµ̄

[
1

2

(
v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

)
v2

µe2iϕ + v̄κκ
µµ̄µµ̄ u2

µ

]
v2

µ e2iϕ

u2
µ + v2

µ e2iϕ

∏
ν>0
ν �=µ

(
u2

ν + v2
ν e2iϕ

)
, (26)
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where

P 
N

µµ̄ = 〈
N |a†
µa

†
µ̄aµ̄aµ|
N 〉

〈
N |
N 〉 = ρ
N

µµ (27)

is the occupation probability of the pair (µ, µ̄) in the projected
HFB state. The probability P 
N

µµ̄ is equal to the probability

ρ
N

µµ of each state to be occupied as we assume the underlying
SR state to be a fully paired quasiparticle vacuum with even
number parity.

Using a genuine Hamilton operator, for which v̄
ρρ
µµ̄µµ̄ =

v̄
ρρ
µ̄µµ̄µ = v̄κκ

µµ̄µµ̄ ≡ v̄µµ̄µµ̄ the matrix elements entering
Eq. (26) can be recombined in such a way that the potential
pole disappears [18] and that the zero-pairing limit is again
recovered

EN
µµ̄ − EN

µ − EN
µ̄

P 
N

µµ̄

= v̄µµ̄µµ̄. (28)

In the EDF formalism, however, the recombination of terms in
Eq. (26) that gives Eq. (28) can no longer be achieved. In this
case, the integrand in Eq. (26) contains the same kind of pole
as the integrand in Eq. (24).

C. Poles versus “true” self-interaction and self-pairing

In the previous section, we have shown how the self-
interaction and self-pairing persist to the multi-reference EDF
framework in the case of particle-number restoration. What

cannot be deduced from such an extension of the single-
reference case, Eqs. (20) and (21), to the multi-reference
case, Eqs. (24) and (26), is if self-interaction and self-pairing
processes are actually responsible for the poles. Indeed,
recalling our general analysis of possible spurious terms in
MR energy density functionals from Article I, there are in fact
two distinct levels of spuriosity contained in Eqs. (24) and (26),
which are of different origins.

The first level is a consequence of using effective vertices
that are not antisymmetrized, and/or that are different on
the particle-hole and particle-particle channels. In the MR
framework, such spurious contributions appear in the diagonal
energy kernels, which are equivalent to the self-interaction and
self-pairing contributions to the SR energy density functional
discussed in Sec. IV A and also enter the off-diagonal kernels.
Neither contain poles; hence they cannot be at the origin of
the divergences and steps which are the target of the present
work.

In addition to that, a second level of spuriousity arises as
a consequence of constructing nondiagonal energy kernels
in analogy with the generalized Wick theorem, although
strictly speaking the GWT applies only to matrix elements
of operators. As a matter of fact, and as demonstrated in
Article I, using a SWT-motivated procedure rather than a
GWT-motivated one does not lead to the second level of
spuriosity. Taking the example of a bilinear EDF, the use of
the GWT instead of the SWT gives an additional contribution
of the form

EN
CG ≡

∫ 2π

0
dϕ

e−iϕN

2π c2
N

(
Eρρ

CG[ϕ] + Eκκ
CG[ϕ]

) 〈�0|�ϕ〉

=
∑
µ>0

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]
(uµvµ)4

∫ 2π

0
dϕ

e−iϕN

2π c2
N

(e2iϕ − 1)2

u2
µ + v2

µ e2iϕ

∏
ν>0
ν �=µ

(
u2

ν + v2
ν e2iϕ

)
(29)

that is absent in a SWT-motivated procedure and which
contains a pole clearly similar to those discussed in connection
with Eqs. (24)–(26). Having identified the contribution (29)
caused by the use of the GWT, we defined in Article I the
regularized MR energy and energy kernels, respectively, as

EN
REG ≡ EN − EN

CG, (30)

EREG[ϕ] ≡ E[ϕ] − ECG[ϕ]. (31)

Removing EN
CG from Eqs. (24) and (26), one obtains the “true”

MR self-interaction

EN
SI ≡

∫ 2π

0
dϕ

e−iϕN

2π c2
N

Eρρ

SI [ϕ] 〈�0|�ϕ〉

=
∑
µ>0

1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄

) ∫ 2π

0
dϕ

e−iϕN

2π c2
N

[
v4

µ

(
uµ

2 + vµ
2e2iϕ

) + 2 u2
µv4

µ(e2iϕ − 1)
] ∏

ν>0
ν �=µ

(
u2

ν + v2
ν e2iϕ

)
. (32)
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and the “true” self-pairing contribution

EN
SP ≡

∫ 2π

0
dϕ

e−iϕN

2π c2
N

Eκκ
SP [ϕ] 〈�0|�ϕ〉

=
∑
µ>0

[
v̄κκ

µµ̄µµ̄ − 1

2

(
v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

)]∫ 2π

0
dϕ

e−iϕN

2π c2
N

[
u2

µ v2
µ

(
uµ

2 + vµ
2e2iϕ

) + (
u4

µv2
µ − u2

µv4
µ

)
(e2iϕ − 1)

]∏
ν>0
ν �=µ

(
u2

ν + v2
ν e2iϕ

)
.

(33)

both of which belong to the first level of spuriosity and contain
no dangerous poles. The expressions (32) and (33) could
also have been obtained directly from Eqs. (79) and (80) of
Article I.

D. Impact of the poles on PNR energies

In the previous section, we demonstrated that the spurious
contribution EN

CG contains poles. Figure 1 illustrates, through
a realistic calculation of the particle-number-restored defor-
mation energy surface of 18O, the impact of such poles for
a functional containing a fractional power of the density
matrix. The SLy4 parametrization of the standard Skyrme
EDF is used in connection with a density-dependent pairing
energy functional, which was used in many MR calculations
before [67–73]. In practice, the integral over the gauge angle
appearing in Eq. (19) is discretized into a sum using the
Fomenko expansion, as will be explained in Sec. VI B below. It
is important to stress that all observables calculated as operator
matrix elements, e.g., particle number, quadrupole moment,
radius, etc., are converged using five integration points. The
particle-number-restored energy functional, however, does not
converge. Instead, one observes the development of several
localized divergences as one increases the precision of the
calculation, which appear exactly where neutron or proton
levels cross the Fermi energy; i.e., where their occupation
probability is v2 = 0.5. In spite of the evidence for their
appearance presented in Refs. [18,23–25], the divergences
remained undetected so far in our PAV calculations, because,
on the one hand, the appearance of the divergence requires a
number of integration points far above the one used in practical
calculations, and beyond what is tractable in connection with
other projections and mixing of different deformations, and
because, on the other hand, the divergences are sufficiently
localized in deformation space that the area obviously affected
by the pathology is smaller than the typical distance of states
commonly used when calculating energy surfaces and when
mixing states with different deformations.

At this point, three questions arise: (i) do the divergences
seen in Fig. 1 constitute the only pathological manifestation
of the poles? (ii) Do divergences manifest for any type of
functional, i.e., irrespective of the fact that it is bilinear or
trilinear or contains noninteger powers of the density matrices?

(iii) Is the spurious contribution isolated in Eq. (29) responsible
for all problems associated with the poles; i.e., would removing
it from PNR energy kernels properly regularize the MR-EDF
calculation? Answering theses questions will be the aim of

FIG. 1. (Color online) Particle-number-restored deformation en-
ergy surface of 18O calculated with SLy4 and a density-dependent
pairing interaction and the corresponding single-particle spectra
of protons and neutrons as a function of the axial quadrupole
deformation for L = 5 and 199 discretization points of the integral
over the gauge angle (lowest panel). There are clear anomalies that
appear when either a proton or neutron single-particle level crosses
the Fermi energy. The dimensionless quadrupole deformation β2 is
defined in Eq. (66).
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Sec. VI. Before discussing the results obtained using the
method proposed in Article I to regularize MR energy kernels,
we discuss the pathological manifestations of the poles in more
detail through a complex plane analysis, following Ref. [25].

V. COMPLEX PLANE ANALYSIS

The integral over the real gauge angle can be reformulated
as a contour integral in the complex plane, which allows the
analysis of the energy functional in terms of its poles within
the integration contour [25]. In fact, particle-number projection
was first introduced through such complex contour integrals
[57,74]. It was only after Fomenko [75] demonstrated that
a simple trapezoidal rule gives a very efficient discretization
of integrals over the gauge angle that Eq. (11) became the
standard way to formulate and evaluate PNR observables.

A. Analytic continuation

To that aim, one introduces the complex variable z = eiϕ .
As a result, quantities used in the PNR method involve an
integration over the unit circle C1(|z| = 1)1

|
N 〉 =
∮

C1

dz

2iπcN

1

zN+1
|�z〉, (34)

EN =
∮

C1

dz

2iπc2
N

E[z]

zN+1
〈�1|�z〉, (35)

c2
N =

∮
C1

dz

2iπ

1

zN+1
〈�1|�z〉, (36)

whereas the overlap now reads

〈�1|�z〉 =
∏
µ>0

(
u2

µ + v2
µz2). (37)

Finally, the transition density matrix and pairing tensor
extended to the complex plane become

ρ1z
µν = v2

µz2

u2
µ + v2

µz2
δνµ, (38)

κ1z
µν = uµvµ

u2
µ + v2

µz2
δνµ̄, (39)

κz1∗
µν = uµvµz2

u2
µ + v2

µz2
δνµ̄. (40)

B. Energy functional kernels

Taking advantage of the Cauchy residue theorem, going to
the complex plane allows the calculation of all quantities of

1We abusively replace the gauge angle ϕ by the complex variable z

in all our expressions; i.e., SR states characterized by the gauge angle
ϕ, |�ϕ〉, are extended into |�z〉 to denote SR states anywhere on the
complex plane. In particular, the unrotated SR state, denoted as |�0〉
when using ϕ as a variable, is written as |�1〉 when using z as a more
general variable.

z+µ = +i |
| |

|

||
| |

uµ
vµ

z−µ = −i
uµ

vµ

eiϕN̂

eηN̂

FIG. 2. Schematic view of the analytical structure of the transition
densities defined in Eqs. (38)–(40) and of the PNR functional energy
kernel E[ϕ] in the complex plane. Poles marked with filled circles
are within the standard circular integration contour of radius R = 1,
whereas those outside are marked with open circles. The cross marks
the location of the SR energy functional at z = 1. The operator
eiϕN̂ produces a rotation in gauge space, whereas eηN̂ is a shift
transformation as defined in Eq. (45).

interest in terms of poles of the integrand located inside the
integration contour. For the norm

c2
N = Res(0)

⎡
⎣ 1

zN+1

∏
µ>0

(
u2

µ + v2
µz2

)⎤⎦ (41)

or any other operator matrix elements between projected states,
only the pole at z = 0 contributes.

The situation is different for the PNR energy as additional
poles at finite z±

µ = ±i|uµ|/|vµ| enter the energy kernel E[z].
Thus, Eq. (35) takes the form

EN =
∑

zi=0,|z±
µ |<1

1

c2
N

Res(zi)

⎡
⎣ E[z]

zN+1

∏
µ>0

(
u2

µ + v2
µz2

)⎤⎦
(42)

with contributions from the pole at the origin and from all
pairs of “hole-like” poles at z±

µ . The situation is schematically
depicted in Fig. 2. The location of the pole associated to a given
pair (µ, µ̄) moves along the imaginary axis as the occupation
v2

µ changes with deformation. When the corresponding pole
crosses the unit circle, either entering or leaving the Fermi sea,
the integrand is nonanalytical on the integration contour and
the integral diverges.

The point has now come to realize that the divergences
constitute the most obvious part of the problem but do not
contain the entire problem. As can be seen from Eq. (42), the
poles at |z±

µ | < 1 contribute to the energy when using an energy
functional that contains self-interactions and self-pairing. On
the other hand, only the pole at the origin contributes in the
strict PNP-HFB/Hamiltonian framework as the poles at |z±

µ | do
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not exist in this case. Consequently, one has to ask the question
whether the contributions from the poles at 0 < |z±

µ | < 1 to
the projected energy are physical, in particular when realizing
that the contribution of a given pole can be many orders of
magnitude larger than the total energy gain from PNR [25]. In
addition, a pole at finite |z±

µ | entering or leaving the integration
circle not only provokes a divergence but also provides the
PNR energy with a finite step after the crossing is completed
[25]. Looking carefully at the potential energy surface obtained
using L = 199 integration points, such a step can be seen
in Fig. 1; i.e., compare the energy before and after the
crossings at β2 = +0.22 and β2 = −0.3. As a matter of fact,
the binding energy jumps from one potential energy surface to
another.

C. Spurious contributions

In Sec. IV C, we have identified EN
CG as the only possible

source of spurious poles. In order to obtain a deeper insight to
its content, we rewrite Eq. (29) as

EN
CG

≡
∮

C1

dz

2iπc2
N

ECG[z]

zN+1

∏
µ>0

(
u2

µ + v2
µz2)

=
∑
µ>0

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]

× (uµvµ)4

2iπc2
N

∮
C1

dz

zN+1

(
z2 − 1

)2

u2
µ + v2

µz2

∏
ν>0
ν �=µ

(
u2

ν + v2
νz

2
)
, (43)

and define in passing the spurious contribution ECG[z] to
the MR energy kernel over the entire complex plane. From
Eq. (43), the spurious contribution of each pole to the PNR
energy can be calculated. As for the total energy, the poles of
the integrand are located at z0 = 0 and z±

µ = ±i|uµ|/|vµ|. This
has the important consequence that removing EN

CG from EN

does not only extract the contribution of the poles at |z±
µ | < 1

but also a spurious contribution of each conjugated pair (µ, µ̄)
to the physical pole at z0 = 0. The latter could not have simply
been guessed from the analysis of the analytical structure of
E[z] in the complex plane. As a matter of fact, the spurious
contribution from the pole at z0 = 0 is absolutely essential
for the internal consistency of EN

CG. On the one hand, it was
shown in Ref. [25] that the energy associated with a single
pole at |z±

µ | < 1 can be gigantic (away from where it might be
divergent). On the other hand, the total spurious energy hidden
in a PNR method cannot be larger than the energy gain from
particle-number restoration itself, which is on the order of at
most a few MeV. It is only the combined contribution from the
poles at z0 = 0 and z±

µ , which nearly cancel each other, that
will give reasonable values to the total spurious energy EN

CG as
will be exemplified below.

The residue for the pair of poles at |z±
µ | contained in Eq. (43)

can be evaluated analytically

ReN
CG(z±

µ ) ≡
∑
zi=z±

µ

Res(zi)

⎡
⎣ (z2 − 1)2 ∏

ν>0
ν �=µ

(
u2

ν + v2
νz

2
)

v2
µzN+1

(
z − i

|uµ|
|vµ|

)(
z + i

|uµ|
|vµ|

)
⎤
⎦

= − 1

v6
µ

(
vµ

uµ

)N+2 1 + (−1)N

2iN

∏
ν>0
ν �=µ

u2
νv

2
µ − v2

νu
2
µ

v2
µ

.

(44)

Note that ReN
CG(z±

µ ) is zero if projecting on an odd particle
number N as the underlying reference state (1) has been chosen
to have an even number-parity quantum number [39,58]. The
generalization of the present discussion to the case one- (or
2n + 1) quasiparticle states with an odd number parity is
straightforward but not important for the purpose of this
article.

The total contribution from the pair of poles 0 < |z±
µ | < 1

to the PNR energy is then obtained by replacing the integral
in Eq. (43) by 2iπReN

CG(z±
µ ), where ReN

CG(z±
µ ) is given by

Eq. (44). We will discuss the individual contributions from the
poles in Sec. VI below. Note that calculating the residue of
the pole at z0 is much more involved because it is a pole of
order N + 1. Its residue can in fact be calculated analytically
through a recursive formula, which, however, involves a sum
over such a large number of terms that it is of no practical
use and is not reported here. In any case, one can access
the spurious contribution from the pole z0 by subtracting the
analytic expression of Eq. (44) from a numerical evaluation of
the full expression given by Eq. (29).

D. Properties under shift transformation

The interpretation of the poles at z±
µ �= 0 becomes clearer

when looking at the properties of the PNR energy functional
under a so-called shift transformation [25]. In the present
article, we choose a slightly different definition of the shift
transformation from the one used in Ref. [25]

|�ϕ−iη〉 ≡ eηN̂ |�ϕ〉, (45)

such that the shift transformation operator e(η+iϕ)N̂ used in
Ref. [25] is the product of ours (45) and a rotation in gauge
space.2 In contrast to a gauge-space rotation that is unitary, the
shift transformation (45) is nonunitary and changes the norm
of the product state.

In the complex plane, the shift transformation (45) cor-
responds to a radial shift of z from z = eiϕ to z′ = eηeiϕ ; see
Fig. 2. Thus, projecting a shifted HFB state on particle number
amounts to changing the radius of the integration circle from

2Starting from a circular contour, the additional rotation in the
definition of Ref. [25] does not make any difference. The situation
would have been different if we had started from a noncircular
contour.
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R = 1 to R = eη [25]

P̂ N |�ϕ−iη〉 =
∮

C1

dz′

2iπ

1

(z′)N+1
|�Rz′ 〉

=
∮

CR

dz

2iπ

RN

zN+1
|�z〉, (46)

where we have made the substitution z′ = eiϕ in the first line
and the substitution z = Rz′ in the second one. Both expres-
sions will turn out to be useful below. The overlap between the
non-normalized projected SR state and its counterpart shifted
along the real axis is given by

c2
N (R) ≡ 〈�1|P̂ N |�R〉 = c2

NRN (47)

with c2
N as defined through Eq. (12); i.e., c2

N ≡ c2
N (1).

All normalized projected matrix elements are shift invariant
if the operator Ô in question commutes with N̂ . Just as
the exact ground-state energy, its approximation obtained
through the particle-number-restored expectation value of the
Hamilton operator is shift invariant. On the other hand, this
is not the case for standard particle-number-restored energy
density functionals [25]. The violation of shift invariance is
obviously a consequence of the presence of the poles at finite
z±
µ contained in the PNR energy kernel constructed on the

basis of the GWT. For a given spectrum of poles z±
µ the energy

EN changes by a finite quantity whenever the integration
circle crosses a pair of poles |z±

µ | in the course of a shift
transformation. As a result, the PNR-EDF is shift invariant
only over a finite range of values of the shift parameter η [25].
This result clearly points to the unphysical nature of these
poles.

E. Sum rules

One might wonder where the energy that is added/removed
when crossing a pole with the integration contour comes
from/goes to. In the present section, two different sum rules
involving PNR energies EN extracted from a given SR
functional are carefully derived and discussed to answer such
a question.

1. Radius-weighted sum rule

As it is introduced in Ref. [25], we first discuss the char-
acteristics of the radius-weighted sum rule

∑
c2
N (R)EN (R),

although we already insist here that the physical sum rule of
interest is the non-radius-weighted one discussed in Sec. V E2
below. The number R appearing in the sum rule is taken to be
real even though it is possible to formulate the sum rule using
an arbitrary complex number of norm R [25]. Our conclusions
will be insensitive to this detail.

First, let us recall how such sum rules arise in the operator-
and wave-function-based context. Inserting the complete set

of normalized particle-number-projected states3∑
N � 0

|
N 〉〈
N | =
∑

N � 0

P̂ N = 1 (48)

into an unprojected shifted matrix element of an operator Ô

that commutes with N̂ gives

〈�1|Ô|�R〉 = 〈�1|ÔeηN̂ |�1〉

=
∑

N � 0

〈�1|ÔeηN̂ |
N 〉 〈
N |�1〉

=
∑

N � 0

c2
N (R) ON, (49)

where we have used that eηĤ |
N 〉 = RN |
N 〉 and define
ON = 〈�1|Ô|
N 〉/〈�1|
N 〉. Equation (49) expands the
shifted SR matrix element O[R] ≡ 〈�1|Ô|�R〉 in terms of
average values ON of the operator in all normalized projected
states. Applied to the Hamilton operator, Eq. (49) reads

E[R] =
∑
N>0

c2
N (R)EN, (50)

and provides for η = 0 (R = 1) that the strict HFB energy
decomposes into strict PNP-HFB energies (with N > 0)
weighted by the probability to find the normalized projected
states into the SR state. In Eq. (50), the sum could be further
reduced to N > 0 as the contribution from the term N = 0
is strictly zero, i.e., c2

0E
0 = E[z = 0]

∏
ν>0 uν = 0. Such a

result relies on the fact that only the physical pole at z = 0
contributes to the integral providing EN .

Let us now come to the EDF context and lay out some
specificities that are crucial to provide a meaningful discussion
of sum rules. (i) In Eq. (50), it was not necessary to specify
the integration contour used to calculate EN as the latter is
shift invariant. In the EDF context where the shift invariance
might be broken, it is mandatory to specify the contour
employed. Consequently, the notation EN (R) is used whenever
necessary to characterize that a circular contour CR of radius
R is employed to calculate PNR energies. (ii) There is no
equivalent to “inserting a complete set of states” in the EDF
context as one directly postulates the PNR energy under the
form of a functional built from one-body transition density
matrices and integrated over the gauge angle and not from
the expectation value of a Hamilton operator in projected
many-body wave functions. As a consequence, the existence of
a sum rule similar to the one discussed for operators is neither
obvious nor trivial. By contrast to the above derivation, one
has to start from the weighted sum over PNR energies and
see if and how it recombines in the same manner as for an
operator matrix element. To obey a sum rule analogous to
the one provided by Eq. (50) can thus be demanded as a

3The fact that one does not need to sum over N < 0 can be seen as
a consequence of the fact that |
N 〉 = 0 for N < 0 as a result of the
disappearance of the physical pole at z = 0 in the contour integral
of Eq. (34). Note that the normalized projected-state on N = 0 is
|
0〉 = |0〉.
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consistency requirement for MR energy density functionals.
To recover the SR energy from such a sum rule, it is a
necessary condition (but not sufficient) that the MR energy
kernel E[z] is set up such that it gives back the SR energy
functional E[ρ, κ, κ∗] for z = 1, as assumed throughout this
article. (iii) The sum rule considered in the present section
actually differs from the one discussed in Ref. [25]. Indeed,
it is mandatory in the EDF context to make the sum running
over both positive and negative “particle numbers.” As will be
shown below, the latter is crucial to establish the expected sum
rule when individual particle-number-restored energies EN are
not shift invariant, i.e., when MR energy kernels E[z] possess
spurious poles at finite z±

µ . Indeed, the product c2
N (R) EN (R)

is different from zero in this case for N � 0 because, although
the physical pole at z = 0 disappears from the integrand as
it should, the poles at finite z±

µ contribute. This is certainly
the most direct proof of the nonphysical nature of such poles
and nonregularized energy functionals. In the context of the
real-space derivation of Ref. [25], obtaining the appropriate
sum rule calls for using the correct Fourier decomposition of
the periodic delta function over all irreducible representations
of U (1) including those characterized by negative integers N ;
i.e.,

∑+∞
N=−∞ e−iϕN = 2πδ2π (ϕ). In the following we proceed

in the complex plane to establish the needed sum rules.
First, the change of variable z = Rz′ is performed to recover

an integration over the unit circle

+∞∑
N=−∞

c2
N (R)EN (R) =

+∞∑
N=−∞

∮
C1

dz

2iπ

E[Rz]

zN+1
〈�1|�Rz〉.

(51)

We recall that EN (R) is proportional to 1/c2
N (R), Eq. (19). As a

consequence, c2
N (R) = 0 alone is not a sufficient condition that

the contribution of a given N to the left-hand side of Eq. (51)
vanishes, as c2

N (R)EN (R) might remain finite. We will come
back to this below.

To invert the summation and the integral in Eq. (51) and
perform the summation explicitly, the power series must be
(uniformly) converging on the integration contour. To ensure
this property, one has to separate the sums over positive and
negative N and use the (local) shift invariance of EN to scale
the integration radius appropriately in each of the two terms
thus generated. Using two infinitesimal shift transformations
characterized by η+ > 0 (η− < 0) for N > 0 (N � 0), the
right-hand side of Eq. (51) splits into two geometric series
converging separately and uniformly on the corresponding
integration contours C1+ (C1−). Performing the summation of

both geometric series, one obtains

+∞∑
N=−∞

c2
N (R)EN (R)

=
[∮

C1+
−

∮
C1−

]
dz

2iπ

E[Rz]

z(z − 1)
〈�1|�Rz〉. (52)

The physical pole at z = 0, which is of order N + 1 in EN ,
has transformed into two simple poles at z = 0 and z = 1 in
both integrals in Eq. (52). Note in passing that the pole at z = 0
would have not appeared if we had grouped the component
N = 0 to the sum over positive numbers. The pole at z = 1
is on the unit circle and is thus located inside of C1+ , but
outside of C1− . Thus, it contributes to the first integral only
in Eq. (52) and provides the sum rule with the contribution
E[R]〈�1|�R〉 that represents the transition kernel involving
the original HFB state |�1〉 and the state |�R〉 shifted along
the real axis to z = R.

In the strict PNP-HFB method, this is the only contribution
to Eq. (52) as the residue of the simple pole at z = 0, which
corresponds to the contribution from the N = 0 component,
is zero for the reason explained earlier. In any case, such a
pole contributes to both integrals in Eq. (52) such that any
finite residue would have canceled out anyway. Thus, the sum
rule (50) is recovered.

The question is whether this still holds in the EDF context
As a matter of fact, the contribution from the poles of
E[z] at z±

µ depends on the original contour CR and on the
infinitesimal shift transformations leading to Eq. (52). If
the shift transformations are such that no pole appears in
between the two contours C1− and C1+ , all poles with |z±

µ | < R

contribute to both integrals and cancel out in Eq. (52), whereas
all poles with |z±

µ | > R do not contribute to either of them. This
proves that, except for the ill-defined case of a pair of poles
sitting on the original integration circle CR , one can always
perform two infinitesimal shift transformations to prove that

+∞∑
N=−∞

c2
N (R)EN (R) = E[R]〈�1|�R〉. (53)

Equation (53) thus expresses that the expected sum rule is
found to be valid, even for contaminated and yet uncorrected
EDFs, i.e., using energy kernels constructed on the basis of
the GWT, at the price of including the contributions from
unphysical components (N � 0).

Applying the same derivation as above to the spurious
contribution isolated in Eq. (43), one obtains

+∞∑
N=−∞

c2
N (R) EN

CG(R) = ECG[R] 〈�1|�R〉

= (R2 − 1)2
∑
µ>0

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]
(uµ vµ)4

u2
µ + R2 v2

µ

∏
ν>0
ν �=µ

(
u2

ν + R2 v2
ν

)
, (54)
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which is zero for R = 1 as z = 1 is the only point in the
complex plane where the GWT-related spurious contributions
to the MR energy kernel is zero.

It is crucial to analyze further the cancellation of the
contribution of spurious poles in Eqs. (52) and (53). Indeed,
such a cancellation relies on the original summation over
both positive and negative “particle numbers” in the definition
of the sum rule. If one sums over positive particle numbers
only, all pairs of poles situated inside CR contribute to the
sum rule. This is puzzling as it is clearly unphysical to
consider negative “particle numbers.” Indeed, one necessarily
has c2

N (R)EN (R) = 0 for N � 0 when employing a genuine
Hamiltonian. However, the product c2

N (R)EN (R) is different
from zero for N � 0if E[z] possesses poles at finite |z±

µ | < R.
This is to our opinion the most direct way of stating the
nonphysical nature of those poles. In any case, and as proven
above, one can at least recover a sum rule for uncorrected
functionals at the price of summing over both positive and
negative particle numbers. If summing over positive values
only, one obtains, using our example of a bilinear functional,

∑
N>0

c2
N (R)EN (R) − E[R]〈�1|�R〉

=
∑

|z±
µ |<R

Res(z±
µ/R)

⎡
⎣ E[Rz]

z(z − 1)

∏
µ>0

(
u2

µ + v2
µR2z2

)⎤⎦

=
∑
µ>0

|z±µ |<R

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]

× u2
µR2v2

µ

u2
µ + R2 v2

µ

∏
ν>0
ν �=µ

u2
νv

2
µ − v2

νu
2
µ

v2
µ

, (55)

which shows that the physical sum rule (N > 0) is broken by
a finite amount that relates directly to the presence of spurious
poles at finite z±

µ inside the original integration circle CR .
Note again that the simple pole at z = 0 does not contribute
as its residue is zero. Equation (55) proves that the sum rule
derived in Ref. [25] is incorrect for the cases of interest. In
particular, computing Eq. (55) for R = 1 provides the nonzero
amount by which the decomposition of the SR-EDF into its
physical PNR components (N > 0) is broken, already for
the standard integration circle. However, as we will show in
Sec. VI D4 below, the contribution from N � 0 is several orders
of magnitude smaller than the contribution from N > 0 in
realistic cases, such that it might pass as numerical noise to
the unsuspecting eye.

Subtracting Eq. (54) from Eq. (53) provides the quantity∑+∞
−∞ c2

N (R)[EN (R) − EN
CG(R)] by which the sum rule is

modified when regularizing the MR energy kernels. One
observes that the nonphysical components are zero, i.e.,
c2
N (R)EN

REG(R) = 0 for N � 0, and that the sum rule matches
the regularized kernel at z = REREG[R] 〈�1|�R〉.

2. Non-radius-weighted sum rule

The sum rule (53) is of particular interest when the unit
circle C1 is used as an integration contour to define PNR
energies. Indeed, Eq. (53) reduces in this case to

+∞∑
N=−∞

c2
NEN (R = 1) = E[z = 1] = E[ρ, κ, κ∗], (56)

which expresses that the SR-EDF decomposes into PNR ener-
gies obtained for all possible “particle numbers” N � 0. This
decomposition actually relies on the (required) connection
between the SR-EDF and the MR energy functional kernel;
i.e., E[z = 1] = E[ρ, κ, κ∗]. Equation (56) is valid prior to
any regularization of the PNR energy kernel, as long as the
sum runs over both positive and negative particle numbers.
The null sum rule (54) at R = 1 shows that regularizing
the PNR-EDF method through the removal of EN

CG from EN

consists, for this radius, of reshuffling contributions among
different particle-number-restored energies, in such a way
that the decomposition of the SR-EDF into its physical PNR
components (N > 0) is fulfilled. Note that the regularized sum
rule matches the SR-EDF precisely because the regularization
does not modify the energy kernel E[z] for z = 1.

Still, the radius-weighted sum rule considered in Sec. V E2
and in Ref. [25] does not allow us to study the shift invariance
of Eq. (56), which is the real question of interest. Indeed,
what matters is whether the standard decomposition of the SR-
EDF into c2

N -weighted PNR energies is valid independently
on the radius of integration chosen initially to compute EN . In
a Hamiltonian and wave-function-based framework, such an
invariance reflects the trivial identity

〈�1|Ĥ |�1〉 =
∑
N>0

〈�1|Ĥ |
N 〉
〈�1|
N 〉 |〈�1|
N 〉|2

=
∑
N>0

〈�1|Ĥ eiηN̂ |
N 〉
〈�1|eiηN̂ |
N 〉 |〈�1|
N 〉|2. (57)

Translated to the functional framework, this amounts to
considering the non-radius-weighted sum rule

+∞∑
N=−∞

c2
N (1)EN (R) =

+∞∑
N=−∞

∮
CR

dz

2iπ

E[z]

zN+1
〈�1|�z〉, (58)

where c2
N (1) = c2

N and where the circle of integration CR is the
one chosen to calculate PNR energies. Again, the power series
must be split into two parts to perform the summation over
particle numbers explicitly. The initial circle of integration
CR being above/below the unit circle, one needs to perform a
finite shift transformation to bring the circle associated with
negative/positive particle numbers on the other side of the
unit circle to make the corresponding series convergent. If
particle-number-restored energies are shift invariant, one can
proceed without any difficulty and obtain the trivial result
that the sum rule

∑+∞
N=−∞ c2

NEN (R) = E[ρ, κ, κ∗] is valid
independently on the original radius R. This is of course
the case for a Hamiltonian- and wave-function-based PNR
method that, once again, would only require the summation
over positive particle numbers in the first place.
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Of course, problems arise if particle-number-restored ener-
gies are not invariant as the shifted circle crosses a spurious
pole at z±

µ , i.e., if there are poles z±
µ located in between CR and

C1. Indeed, proceeding to the required shift transformation

brings an extra contribution to the sum rule in this case.
Exemplifying the problem for a bilinear functional and an
initial radius R > 1, one obtains

+∞∑
N=−∞

c2
N EN (R) =

[∮
CR

−
∮

C1−

]
dz

2iπ

E[z]

z(z − 1)
〈�1|�z〉 + 2iπ

0∑
N=−∞

∑
1<|z±

µ |<R

Res(z±
µ )

⎡
⎣ E[z]

zN+1

∏
µ>0

(
u2

µ + v2
µz2

)⎤⎦

= E[ρ, κ, κ∗] +
+∞∑

N=−∞
c2
N EN

CG(R), (59)

with

+∞∑
N=−∞

c2
N EN

CG(R) =
∑
µ>0

1<|z±µ |<R

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]
u2

µ v2
µ

∏
ν>0
ν �=µ

u2
νv

2
µ − v2

νu
2
µ

v2
µ

+
∑
µ>0

1<|z±µ |<R

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

) − v̄κκ
µµ̄µµ̄

]
(uµvµ)4

0∑
N=−∞

ReN
CG(z±

µ ), (60)

where ReN
CG(z±

µ ) is given by Eq. (44) and where the sums run
over all pairs of poles located in between the unit circle C1

and the integration circle CR . Note that, in agreement with
Eq. (54), the sum rule (60) is zero for R = 1 as no pole resides
between CR and C1 in this case. However, it is easy to see
from Eq. (44) that

∑
N � 0 ReN

CG(z±
µ ) is a diverging geometric

series of common ratios |z±
µ | > 1 for R > 1; i.e., the sum

rule is broken by a diverging amount as soon as poles are
located in between the integration circle CR and the unit circle
C1. One can check that the situation is similar if R < 1 and
the conclusion identical. Regularizing the PNR-EDF through
the removal of EN

CG(R) amounts to transferring the second
term in the right-hand side of Eq. (59) to the left-hand side.
Doing so restores the physical value (E[ρ, κ, κ∗]) and the
shift invariance of the sum rule as the shift invariance of
each individual PNR energy EN (R) is actually restored. As
c2
NEN

REG(R) = 0 for N � 0, the sum rule is in fact restored
and made shift invariant by summing over positive particle
numbers only

∑
N>0

c2
NEN

REG(R) = E[ρ, κ, κ∗]. (61)

Last but not least, it is of interest to look at the nonregularized
sum rule obtained by summing over physical components only
(N > 0). In this case, the physical sum rule calculated for

R > 1 is broken by a finite amount

+∞∑
N=1

c2
NEN (R) =

∮
CR

dz

2iπ

E[z]

z(z − 1)
〈�1|�z〉

= E[ρ, κ, κ∗] +
+∞∑
N=1

c2
NEN

CG(R), (62)

with

+∞∑
N=1

c2
NEN

CG(R)

=
∑
µ>0

|z±µ |<R

[
1

2

(
v̄ρρ

µµµµ + v̄
ρρ
µ̄µ̄µ̄µ̄ + v̄

ρρ
µµ̄µµ̄ + v̄

ρρ
µ̄µµ̄µ

)

− v̄κκ
µµ̄µµ̄

]
u2

µ v2
µ

∏
ν>0
ν �=µ

u2
νv

2
µ − v2

νu
2
µ

v2
µ

, (63)

where the sum runs over all pairs of poles located inside the
integrations circle CR . This time, however, and as already made
clear above, the sum rule (56) is not even recovered for R = 1
as the last term of Eq. (62) does not go to zero. Regularizing the
PNR-EDF through the removal of EN

CG amounts to transferring
the second term in the right-hand side of Eq. (62) to the
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left-hand side. Once again, doing so restores the physical value,
i.e., E[ρ, κ, κ∗], and the shift invariance of the sum rule.

3. Main conclusions

The first conclusion is that the decomposition of the
SR energy E[ρ, κ, κ∗] into its physical (N > 0) particle-
number-restored components is (i) always fulfilled for a
Hamiltonian- and wave-function-based method, whatever the
chosen integration circle is, whereas it is (ii) broken by an
amount that depends on the chosen integration contour for an
EDF-based PNR method if MR energy kernels E[z] contain
poles at finite z±

µ but (iii) recovered for any value of R after
regularizing EN through the removal of EN

CG.
The second conclusion is that the decomposition of

E[ρ, κ, κ∗] involving unphysical components (N � 0) is (i)
always fulfilled in a Hamiltonian- and wave-function-based
PNR method as unphysical components do not contribute
anyway (ii) fulfilled in the EDF context if integrating over
the unit circle C1, even for MR energy kernels E[z] plagued
by poles at finite z±

µ (iii) fulfilled for any integration circle CR

by the regularized EDF-based PNR method, noting in addition
that unphysical components no longer contribute.

VI. APPLICATIONS

A. General remarks

As seen in Sec. IV there are two distinct classes of spurious
contributions to a multi-reference energy density functional.
The first one represents the “true” self-interaction and self-
pairing processes that already appear at the single-reference
level. It does not provide MR energy kernels with poles; hence,
it does not cause divergences or steps in the PNR energy and
does not break its shift invariance. The second one is due to
the use of the GWT out of its context to define MR energy
functional kernels from an underlying SR-EDF that contains
self-interaction and self-pairing contributions.

As outlined in Sec. IV A1, correcting consistently for the
standard (true) self-interaction EN

SI , Eq. (32), is not an easy
task; the correction enters the variational equations already on
the single-reference level and leads to a state-dependent single-
particle field [29,60–62]. The same would hold regarding the
correction for true spurious self-pairing EN

SP, Eq. (33). For
that reason, and because such spurious contributions are not
responsible for divergences and steps in the PNR energy, we
concentrate here on EN

CG, Eq. (29) which is at the origin of the
specific and dramatic pathologies encountered in PNR-EDF
calculations. Note that subtracting EN

CG from the PNR energy
will also modify the variational equations of a VAP calculation.
Here, we confine ourselves to an analysis of the poles and of
their impact on the particle-number-restored energy after the
variation. In this case, EN

CG is easily subtracted a posteriori.
There is one important limitation to the applicability of the

regularization method proposed in Article I and applied in the
present work. Although it is straightforward to extend Eq. (29)
to an EDF depending on any integer powers of the density
matrices, this is not the case for EDFs depending on noninteger

powers of the densities. This is a significant limitation,
considering that most successful modern functionals use
density dependencies of noninteger power.4 Indeed, this allows
them to provide a good description of the most important
nuclear matter properties with a very small number of terms
and coupling constants to be adjusted phenomenologically [1].
Also the widely used Slater approximation to the Coulomb ex-
change term falls into the category of a density-dependent term
of noninteger power. We analyze the spurious contributions to
such category of functionals in Article III, complementing
the study of Dobaczewski et al. [25]. In the present work,
however, we use instead the particular early parametrization
SIII [77] of the Skyrme EDF that contains only bilinear and
trilinear terms in the normal density matrix. We complement
the SIII energy functional with a density-independent local
pairing functional that is bilinear in either the neutron or proton
anomalous density matrix. For the Coulomb energy functional,
we consider only the direct term and neglect the approximate
exchange term that was considered in the fit of SIII. As a
consequence, all calculated nuclei will be underbound by a few
MeV, but this is of no importance for the purpose of the present
article. Having said that, it is clear that the construction of
high-precision correctable EDFs, i.e., only containing integer
powers of the density matrices, represents an important task
for the future.5

The calculation of the various contributions to the correc-
tion EN

CG is outlined in Appendix A. The trilinear terms in the
SIII functional are motivated by a local zero-range three-body
force that excludes terms of third order in the same nucleon
density; it only contains terms of the kind ρ2

n(r)ρp(r) and
ρ2

p(r)ρn(r). From a practical point of view, the absence of a
genuine term of third power in the same density matrix has
the advantage that we do not have to invoke the corresponding
correction term outlined in Article I. Instead, the correction of
the trilinear terms has the structure of the one of bilinear terms
times the projected density of the other species as outlined in
Appendix B1.

B. Numerical implementation

In practice, the integrals over gauge angles are discretized
with a simple n-point trapezoidal formula

1

π

∫ π

0
dϕ f (eiϕ) ⇒ 1

L

L∑
l=1

f
(
ei πl

L

)
, (64)

where we assume the projection of a state with even number
parity on even particle number to reduce the integration interval
to [0, π ]. As was shown by Fomenko [75], this simple scheme

4An exception is the relativistic functional [76] used in the MR
calculations of Nikšić et al. [20].

5In practice, one will have to restrict the form to rather low orders
in the density matrices. For example, the EDF recently proposed by
Baldo et al. [78] includes terms up to fifth power in the total density
ρ(r), which clearly lead to self-interaction terms [30] that will require
a regularization containing quadruple sums over single-particle states,
which might be too costly in realistic calculations.
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eliminates exactly all components from the SR state that differ
from the desired particle number N by up to ±2(L − 1)
particles. Although the spread in particle number is large
compared to the total particle number, even small values for L,
ranging from 5 in light nuclei to 13 in heavy ones, are sufficient
to obtain a converged projected state.

It is customary to use an odd number of discretization
points L in the interval [0, π ] to avoid numerical problems
that may appear at φ = π/2. This practice does not relate
to the real divergences of the energy functional contained
in EN

CG that we discuss here but avoids the implicit division
of u2

µ + v2
µeiπ/2 contained in an operator kernel by the same

factor in the normalization factor c2
N when evaluating projected

operator matrix elements (as, for example, particle number,
deformation, or radii), which numerically will not give the
analytical result 1 when u2

µ comes very close to v2
µ. Of course,

the numerical representation of the pole contained in the
energy functional would not be very precise in this case either.

With a small modification, the discretization (64) can
also be used to represent complex contour integrals with an
arbitrary radius R∮

CR

dz

2iπ
f (z) =

∫ π

0

dϕ

π
f (R eiϕ) ⇒ 1

L

L∑
l=1

f
(
R ei πl

L

)
, (65)

which we will use to examine the properties of the energy
functional under shift transformations.

For all results shown below, the SR calculations used as a
starting point were performed with an approximate particle-
number projection before variation within the Lipkin-Nogami
approach to ensure that pairing correlations are present in all
SR states. Otherwise, pairing correlations would collapse in
the SR state whenever there is a large gap in the single-particle
spectrum around the Fermi surface.

The dependence of various quantities on axial quadrupole
deformation is shown in function of the dimensionless defor-
mation of the mass density distribution β2 defined as

β2 =
√

5

16π

4π

3R2A
〈2z2 − y2 − x2〉, (66)

where R = 1.2A1/3 fm.

C. 18O

As a first example we discuss 18O. It has the advantage that
the density of single-particle levels around the Fermi energy
is sufficiently low that the impact of the spurious contribution
brought by each single-particle level to the projected energy
can be studied separately without having them interfere too
much. The integration radius Rq = 1 is used until we come to
discussing shift invariance.

1. Convergence of operator matrix elements

Before we enter the discussion of the energy functional, we
demonstrate the convergence of the particle-number projection
method for observables that are calculated as expectation
values of the corresponding operators in the projected states.

FIG. 3. (Color online) Dispersion of the proton and neutron
number of the unprojected SR state and the particle-number-projected
SR using 3, 5, or 7 discretization points of the gauge-space integrals
as a function of their deformation. For 5 points the projected state
is sufficiently converged; for 7 and more points (not shown) the
dispersion cannot be distinguished from numerical noise.

In the context of particle-number projection, the most sensitive
observable is the dispersion of particle number 〈�N2〉 =
〈N̂2〉 − 〈N̂〉2, a two-body operator that provides a measure
for the quality of the particle-number-projected state as it has
to be zero for an eigenstate of the particle-number operator.
For an (unprojected) SR state, 〈�N2〉 is proportional to its
spread in particle-number space [79]. One can see in Fig. 3 that
the Fomenko discretization converges quickly, already L = 5
gives excellent results for 18O, and for L � 7 the dispersion of
particle number cannot be distinguished from numerical noise.

2. Regularized PNR energy

Unlike any operator expectation value, particle-number-
restored energies do not converge when increasing the number
of discretization points in the gauge-space integrals, as already
demonstrated in Fig. 1 for the parametrization SLy4. Figure 4
shows the projected deformation energy curve of 18O, now
calculated with SIII. What appears to be a smooth deformation
energy curve when calculating it with L = 5 develops steps
and discontinuities when increasing the number of discretiza-
tion points to 199, i.e., when one starts to resolve the poles at
finite z±

µ close to the integration contour [25]. For example,
at small prolate and oblate deformation β2 ≈ ±0.15, the
energy jumps from a lower deformation curve around the
spherical point to a higher-lying one at larger deformation.
Using a small number of discretization points provides a curve
that smoothly interpolates between the two energy curves
distinguished with L = 199. Figure 4 also displays, as a
function of the deformation, the poles at |z±

µ | = |uµ/vµ| that
enter uncorrected energy kernels for protons and neutrons.
We follow Dobaczewski et al. [25] and plot z± instead of a
Nilsson diagram of single-particle energies, as divergences and
steps appear where poles cross the integration contour. Note
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.................. . ...............
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FIG. 4. (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons (top panel) and neutrons (middle panel), which for levels
in the vicinity of the Fermi energy resembles a stretched and slightly
distorted Nilsson diagram. The dashed red line at z = 1 denotes the
radius of the standard integration contour R = 1. The bottom panel
shows the particle-number-projected quadrupole deformation energy
for L = 5 and 199 discretization points for the integral in gauge space.
The insert shows a close-up of the steps at small deformation.

again that the radius of the latter can be chosen to be different
from the standard value Rq = 1 that is equivalent to the Fermi
energy.

In Fig. 4, however, we do not yet make use of the freedom
to modify the integration contour and use the standard values
Rp = Rn = 1. It can be seen that the two steps developing at
β2 ≈ ±0.15 coincide with a pair of neutron levels originating
from the spherical νd5/2+ shell that enters the integration
contour either at the prolate or the oblate deformation. It is
noteworthy that the steps are not completely sharp even when
using L = 199 points for the calculation, as can be seen from
the markers in the insert in the lowest panel. There also is a step
at β2 = −0.5 that coincides with a pair of proton levels from
the πp1/2− shell leaving the integration contour. A particular
case is the discontinuity at β2 = 0.7 that coincides with the
crossing of two different pairs of proton levels right on the
integration contour.

It is worth noting that no divergence is seen in the PNR
energy surface displayed in Fig. 4. This is at variance to Fig. 1.

FIG. 5. (Color online) Correction for neutrons (top panel) and
protons (middle panel) and energy gain from projection without and
with correction for 18O as a function of quadrupole deformation for
5 and 199 discretization points for the integrals in gauge space. The
corrected energy gain in independent on the discretization of the
integrals when 5 or more angles are used. All panels share the same
energy scale.

Indeed, SIII corresponds to a specific functional form such that
poles at z = z±

µ are simple poles. This is due to the fact that the
trilinear terms entering SIII do not contain products of three
density matrices referring to the same isospin. As explained in
Article III, this leads to a finite Cauchy principal value as the
poles cross the integration circle. Divergences appear only for
poles of higher order.

The effects of particle-number restoration on the energy is
partly masked in Fig. 4 by the genuine evolution of the energy
with deformation. To obtain a clearer picture, we show in
the lower panel of Fig. 5 the energy gain from particle-number
restoration, obtained as the difference between the MR and SR
energy functionals for a given deformation of the SR state. For
a cleaner comparison, the LN correction is removed from the
SR energy. The steps and discontinuities already seen in Fig. 4
appear when increasing L from 5 to 199. The two upper panels
show the correction EN

CG, Eq. (29), separately for protons and
neutrons. The lower panel also shows the energy gain for the
regularized PNR energy surface EN

REG obtained by subtracting
the neutron and proton corrections EN

CG from the uncorrected
PNR energy EN for a given value of L. The correction has
many interesting and appealing features

(i) The regularized PNR energy EN
REG is independent on the

discretization of the integral; it is identical, within the
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numerical accuracy, for L = 5 and 199. As a result, only
one curve is shown in Fig. 5.

(ii) The previous result confirms that the entire dependence
of the (uncorrected) PNR energy on the discretization of
the gauge space integral is contained in EN

CG.
(iii) Looking separately at protons and neutrons, the corre-

sponding correction EN
CG is largest when a pole of a given

nucleon species is close to the integration contour (R = 1
here). However, the correction is different from zero for
the deformations in between; i.e., the spurious nature of
the poles is also felt when being away from divergences
and steps.

(iv) All terms in the energy functional (central, spin-orbit,
pairing, Coulomb, etc.) contribute to EN

CG, with slightly
different magnitudes and different signs, so one has to
strictly correct for all of them. This is not unexpected
as the source of the spuriosity we focus on here is the
weight the matrix elements v̄ρρ and v̄κκ are multiplied
with in Eq. (29), not the matrix elements themselves.

(v) The correction depends strongly on the deformation and
will have a non-negligeable impact on the topology of
the deformation energy curve. The regularized energy
gain from projection is a much smoother function of
deformation than the uncorrected one, meaning that
regularized particle-number restoration will provide
potential energy surfaces with less pronounced structures
than uncorrected PNR.

(vi) The correction EN
CG is of the order of 1 MeV. Of course it

has to be smaller than the energy gain from particle-
number restoration, which is a few MeV. For 18O,
however (and when calculated with SIII), the spurious
contribution to the uncorrected energy can be as large
as 50% of the total energy gain at some deformations.
Also, one MeV error on the mass is larger than the
targeted accuracy from EDF methods. In addition, and
as exemplified below, the correction to the mass varies
from nucleus to nucleus.

(vii) The regularized PNR energy gain can be both larger and
smaller than the uncorrected one. In all cases we have
looked at so far, however, an increase obtained from
the correction rests always very small, while a reduction
from correction might be quite substantial, but this might
not always be the case.

The corrected deformation energy surface of 18O is shown
in Fig. 6 together with the uncorrected ones obtained with
L = 5 and 199 as was already displayed in Fig. 4. It is
striking to see that the corrected PNR energy surface has
less structure than the uncorrected ones; its curvature changes
now monotonically and the shoulder at β2 = 0.6, which
always appears as a secondary minimum in SR calculations
without pairing for oxygen isotopes, disappears completely.
The latter does not mean a priori that a regularized PNR
plus configuration mixing calculation will no longer give a
collective state located at this deformation as it was obtained
for 16O [71] and 20O [72] using SLy4. This question needs
to be addressed in the near future by performing regularized
MR calculations including quadrupole shape configuration
mixing.

FIG. 6. (Color online) Corrected (solid line) and uncorrected
(dotted and dashed lines) particle-number-projected quadrupole
deformation energy for 18O, calculated with L = 5 and 199 discretiza-
tion points of the integral in gauge space. The corrected curves are
identical.

D. Detailed analysis of spurious contributions

1. Contributions of individual poles

After discussing the behavior of the contaminated and
regularized PNR energies of a nucleus as a function of its
quadrupole deformation, it is instructive to investigate the
contribution εµ of each canonical pair (µ, µ̄) to the unphysical
energy EN

CG that contaminate uncorrected MR energies EN .
Formally, each pair of single-particle levels provides a spurious
contribution ε0

µ through the pole at z = 0, in addition to
the contribution ε±

µ associated with the unphysical poles at
finite z±

µ = ±i|uµ/vµ|, if the latter are located inside of the
integration contour of radius Rq . In the end, one can rewrite
Eq. (43) as

EN
CG ≡

∑
µ>0

εµ ≡
∑
µ>0

ε0
µ +

∑
µ>0

|z±µ |<R

ε±
µ . (67)

The total contribution εµ is calculated numerically through
Eq. (29) and might depend on the number of discretization
points L used for the gauge-space integral. The partial contri-
bution ε±

µ can be evaluated using the analytical expression for
the residue of the poles, Eq. (44), which does not depend on the
discretization of the gauge-space integrals. Finally, ε0

µ is equal
to εµ when |z±

µ | > R, whereas for |z±
µ | < R it can be estimated

through ε0
µ = εµ − ε±

µ . As ε±
µ is calculated analytically while

εµ is obtained numerically, the values obtained for ε0
µ might

not be very precise when |z±
µ | ≈ R.

It turns out that only a few pairs of levels located close to the
Fermi level give a nonzero contribution to EN

CG. The relative
size and behavior of these contributions as the spectrum of
poles changes can be understood by analyzing Eqs. (43)
and (44) for a few idealized cases. For this discussion, the
combination of matrix elements entering the expression of EN

CG
can be ignored. The values of the matrix elements depend of
course on the actual pair of conjugated states they refer to and
thereby scale the contribution of a given level to EN

CG. However,
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FIG. 7. (Color online) Spurious energy from the single-particle
orbits that correspond to the spherical neutron d5/2+ level in 18O as a
function of quadrupole deformation (see text).

the matrix elements do not show a particular dependence on
µ that determines the limit of εµ for completely occupied or
unoccupied levels. Therefore it is sufficient to concentrate on
the occupation-number-dependent weight factors in Eqs. (43)
and (44).

Figure 7 separates the various contributions to EN
CG for

the three pairs of canonical orbits that originate from the
spherical neutron d5/2+ level in 18O. The top panel of Fig. 7
displays the location of the three poles of interest on the
imaginary axis. Those three pairs of poles are explicitly labeled
by the jz quantum number denoting the projection of the
angular momentum on the symmetry axis. Other poles are
left unmarked. The three other panels show εµ, ε0

µ, and ε±
µ for

the three pairs of d5/2+ levels only, as these entirely determine
the neutron contribution to EN

CG for the deformations shown.6

The second panel from the top shows ε±
µ . Solid lines denote

ε±
µ when the corresponding pole is inside the integration

contour (Rn = 1 here), while dotted lines denote ε±
µ when

the pole is outside. Only the former of the two contributes
to EN

CG. As ε±
µ is usually finite when the corresponding pole

crosses the integration contour, its size determines the step left
in the PNR deformation energy curve. To understand how ε±

µ

changes as a function of the location of the corresponding pole
z±
µ within the spectrum of the other poles, Eq. (44) has to be

analyzed further. The product over ν �= µ in this expression
can be estimated by first considering that there are kr pairs
of levels with |z±

ξ | 
 |z±
µ |, such that their contribution to the

product can be approximated by

kr∏
ξ=1

u2
ξ v

2
µ − v2

ξ u
2
µ

v2
µ

≈ (−)kr |z±
µ |2kr

kr∏
ξ=1

v2
ξ . (68)

For a small number kf of pairs of levels, |z±
ν | is of the same

order as |z±
µ | such that the full factor in the product has to be

kept. Finally, all remaining levels are such that |z±
µ | 
 |z±

λ |
and the product can again be simplified

∞∏
λ=kr+kf +1

u2
λv

2
µ − v2

λu
2
µ

v2
µ

≈
∞∏

λ=kr+kf +1

u2
λ. (69)

In practical calculations one works with a limited number
of pairs of levels kt in the basis. This cutoff, however, has no
consequence for the contribution ε±

µ from a pair of levels (µ, µ̄)
below the cutoff, as for all reasonable cutoffs the discarded
pairs of levels contribute a factor 1 to the product in Eq. (44).
Altogether one obtains

ε±
µ ∝ u4

µv4
µ ReN

CG(z±
µ )

≈ (−)kr+N/2+1 u2
µ |z±

µ |2kr−N

kr∏
ξ=1

|z±
ξ

|
|z±µ |

v2
ξ

×
kr+kf +1∏

ν=kr +1
ν �=µ

u2
ν

(
1 − |z±

µ |2
|z±

ν |2
)

kt∏
λ=kr +kf +1

|z±µ |
|z±
λ

|

u2
λ, (70)

where we assume even particle number N . Equation (70)
allows for the complete explanation of the global behavior
of ε±

µ seen in Fig. 7.
First, for a bilinear functional as discussed here, ε±

µ is zero
whenever the pair of levels (µ, µ̄) is degenerate with another
pair (ν, ν̄), i.e., |z±

µ | = |z±
ν |, as in this case the middle product

in Eq. (70) contains a factor zero. In fact, this is a direct
consequence of the disappearance of the pole at z±

µ in the PNR
energy kernel, as the dangerous remaining denominator is now

6At large oblate and prolate deformation, the ε±
µ of the other levels

approaching z = 1 are of the same order as those shown but make the
plot difficult to read and do not add crucial information.
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canceled by an additional factor in the norm kernel.7 This
alone already indicates that the contribution ε±

µ of a given pair
of levels might fluctuate rapidly when the spectrum of poles
|z±

µ | changes as a function of a collective coordinate. The (−)kr

factor in Eq. (70), whose sign depends on the number of pairs
of levels kr located below the pair (µ, µ̄), makes ε±

µ to change
sign through a crossing with another pair. Figure 7 contains
several such examples. The downsloping jz = 1/2+ substate
from the d5/2 spherical shell crosses with an upsloping level
at large prolate deformation. There, ε±

µ changes its sign as kr

changes by 1 through the crossing. At spherical deformation,
where the three pairs of d5/2 levels are degenerate, each of
them crosses with the two others and kr changes either by 2
(for the jz = 1/2+ and jz = 5/2+) or 0 (for the jz = 3/2+),
such that the corresponding ε±

µ do not change their sign. A very
particular case is the subsequent crossing of the upsloping jz =
5/2+ level with two other levels within a very small interval
around β2 ≈ 0.63. As the three levels do not cross at exactly
the same deformation, ε±

µ changes its sign twice in a tiny
deformation interval, oscillating between values far outside
the vertical energy interval shown, that cannot be resolved by
what appears as a single vertical (red) dotted line in the plot at
β2 = 0.67.

Second, let us consider the case of a pair (µ, µ̄) that is
well separated from all others. Thus, there remains only two
categories of “other” states in Eq. (70), kr pairs of levels (ξ, ξ̄ )
with |z±

ξ | 
 |z±
µ | and kt − kr − 1 pairs of levels (λ, λ̄) with

|z±
λ | � |z±

µ |. One has still to distinguish between the two cases
where |z±

µ | is larger or smaller than 1.
We start with the case |z±

µ | = |uµ/vµ| > 1 for which the
u2

µ factor in Eq. (70) rapidly converges toward 1 as |z±
µ |

increases. In this case, the number of pairs below the pair
(µ, µ̄) is larger than half the particle number; i.e., kr > N/2.
For kr = N/2 + 1, |ε±

µ | grows linearly with |z±
µ | for |z±

µ | > 1,
for kr = N/2 + 2 it grows quadratically, etc., but always only
until it approaches another level, where |ε±

µ | goes back to
0 as a consequence of the degeneracy as described above.
After the crossing, however, |ε±

µ | grows again, although one
of the u2

λ ≈ 1 factors in Eq. (70) has changed into a v2
ξ 
 1

factor at the crossing. At the same time, the number of pairs
kr below the pair (µ, µ̄) has grown by one such that after
the crossing there is an additional |z±

µ |2 = u2
µ/v2

µ factor that
overcompensates the effect of the occupation factor v2

ξ from the
level just crossed, as v2

ξ > v2
µ and v2

µ < 1/2 give v2
ξ u

2
µ/v2

µ > 1.
For the simultaneous crossing with more than one level, the

7This results holds for any bilinear functional in the density matrix
of a given isospin, even if it is multiplied with the densities of the other
one. When allowing for higher-order functionals, however, a term of
order n in the density matrix can generate a pole at z±

µ of order (at
most) (n − 1). For ε±

µ to be 0, one needs the pole at z±
µ to disappear

altogether, which requires (n − 1) additional factors from the norm
kernel to cancel the denominator (u2

µ + v2
µz2)−(n−1). Thus, the pair of

interest (µ, µ̄) needs to be degenerated (at least) with (n − 1) other
pairs for ε±

µ to be 0. As a consequence, ε±
µ will not be 0 at a simple

level crossing when working with a trilinear (or higher-order) energy
functional in the same isospin.

net effect is the product of the change brought by each crossed
level. For poles far from the Fermi level, the values of ε±

µ can be
very large. For example, the ε±

µ of the jz = 5/2+ level reaches
about 550 MeV around β2 = 0.42 where the corresponding
pole |z±

µ | is well isolated in the spectrum, drops below zero,
and rises immediately back when it crosses a pair from a
higher-lying spherical j shell and quickly rises to values larger
than 105 MeV, dropping back to zero right away as the pole
crosses the next pair and quickly gaining a value again several
orders of magnitude larger. The sheer size of these values that
quickly grow beyond any physical scale that appears in the
EDF description of nuclei clearly shows that ε±

µ alone cannot
be a meaningful quantity in a well-defined theory. The only
reason why the ε±

µ of these high-lying levels with |z±
µ | � 1 do

not make EN
CG incommensurably large is that the corresponding

poles are outside of the standard integration circle and thus do
not contribute. We will come back to this when discussing
PNR with shifted contour integrals below.

For a sufficiently isolated level below the Fermi level,
|z±

µ | = |uµ/vµ| < 1, |ε±
µ | also tentatively grows when |z±

µ |
goes toward 0. This is now a consequence of the fact that
kr � N/2, such that ε±

µ scales with powers of the inverse of
|z±

µ |. At each crossing with a lower lying pair of levels, the
additional u2

λ 
 1 factor is overcompensated by the additional
|z±

µ |−2 factor from the decreasing number of pairs kr below.
Again, ε±

µ goes to 0 at level crossings and changes its sign
depending on the number of pairs crossed.

An important consequence of Eq. (70) and the discussion
above is that the ε±

µ of an isolated pair is smallest when there
are exactly kr = N/2 pairs of other levels below it, which
is usually the case for a level with its pole z±

µ close to the
Fermi level. A side effect is that the spurious step due to a pair
crossing the integration contour remains rather small when the
latter is chosen as the unit circle. This is to put in perspective
with the rather small spurious steps observed in Fig. 5 and
contaminating the unregularized PNR energy computed using
a unit integration circle. We will see in the following that
the situation would have been more dramatic if we had used
different contours.

As discussed in Sec. V, poles at finite z±
µ entering or leaving

the integration contour are the origin of the spurious steps in
PNR energy surfaces, as the corresponding (usually finite) ε±

µ

is suddenly added to or removed from EN
CG, respectively. In

the second panel of Fig. 7, contributions from poles inside
or outside the standard integration contour of radius R = 1
are plotted as solid or dotted lines, respectively, to make this
distinction. The third panel from the top also shows ε±

µ with
solid lines but now only when it actually contributes to EN

CG.
The dotted lines represent −ε0

µ such that the distance between
the curves for ε±

µ and −ε0
µ provides the total contribution εµ

from the pair (µ, µ̄) to EN
CG.8

The results for the neutron levels depicted in Fig. 7 suggest
that ε±

µ converges toward −ε0
µ when z±

µ goes to zero, i.e., for
deeply bound levels far below the Fermi energy, such that the

8The spikes of ε0
µ at the deformations where the contribution from

ε±
µ to EN

CG jumps to 0 are of numerical origin.
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total contribution εµ is zero for deeply bound levels. When z±
µ

approaches the Fermi energy from below, ε±
µ and −ε0

µ slowly
grow apart. Still, for all examples we have looked at, ε0

µ and
ε±
µ remain of similar size, but opposite sign, and have a similar

dependence on deformation around the Fermi energy, z±
µ ≈ 1.

They do not cancel exactly when the pole at z±
µ approaches the

Fermi level but the difference between ε±
µ and −ε0

µ remains
much smaller than the individual contributions and provides
the finite and smoothly varying spurious energy EN

CG between
the steps. For levels far above the Fermi level, ε0

µ goes to zero.
Also, the pole z±

µ is beyond the integration contour and ε±
µ does

not contribute to εµ either. Consequently, levels far above the
Fermi energy do not contribute to EN

CG for standard integration
contours at Rq = 1.

The behaviors described above can be understood as
limiting cases of the factor u4

µv4
µ times the contour integral

in Eq. (43). Omitting unimportant prefactors, one obtains for
|z±

µ | → 0, that is, for u2
µ ≈ 0 and v2

µ ≈ 1, that

εµ = ε0
µ + ε±

µ

∝ u4
µv4

µ

∮
C1

dz

2iπ

1

zN+1

(z2 − 1)2

v4
µz4

∏
ν>0

(
u2

ν + v2
νz

2
)

∝ |z±
µ |4 (

c2
N − 2c2

N+2 + c2
N+4

)
→ 0, (71)

whereas for |z±
µ | → ∞, that is, for u2

µ ≈ 1 and v2
µ ≈ 0, one

has

εµ = ε0
µ

∝ u4
µv4

µ

∮
C1

dz

2iπ

1

zN+1

(z2 − 1)2

u4
µ

∏
ν>0

(
u2

ν + v2
νz

2
)

∝ |z±
µ |−4

(
c2
N−4 − 2c2

N−2 + c2
N

)
→ 0. (72)

where the cN denote in both cases the amplitudes of the
normalized projected states with particle number N in the
SR state, Eq. (42), all of which are usually nonzero and
independent of µ. The key element to obtain both limits is that
the integral over the gauge angle becomes simply proportional
to v−4

µ ≈ 1 or u−4
µ ≈ 1, respectively. As a result, the prefactor

u4
µv4

µ dominates and drives εµ toward zero in both cases. As a
consequence, one indeed finds as a general rule that

εµ = ε0
µ → 0 for z±

µ → ∞, (73)

εµ = ε±
µ + ε0

µ → 0 for z±
µ → 0, (74)

as suggested by the numerical results in Fig. 7.
Unlike ε±

µ , the contribution ε0
µ to the physical pole at z = 0

is not a priori suppressed for degenerate levels and might have
a nonzero value. For deep-hole states, this seems contradictory
with the previous proof that εµ = ε±

µ + ε0
µ goes to zero. In fact,

when the pair (µ, µ̄) crosses another one (ζ, ζ̄ ), not only the
pole at z±

µ is removed but the residue of the pole at z = 0 is
strongly affected by the disappearance of the corresponding
denominator. As a result, ε0

µ also goes toward zero as ε±
µ goes

to zero. Indeed, εµ right at the crossing behaves as

εµ = ε0
µ

∝ u4
µv4

µ

∮
C1

dz

2iπ

1

zN+1
(z2 − 1)2

∏
ν>0

ν �=µ,ζ

(
u2

ν + v2
νz

2
)

= u4
µv4

µ

(
c2
N−4[µ, ζ ] − 2c2

N−2[µ, ζ ] + c2
N [µ, ζ ]

)
, (75)

where c2
N [µ, ζ ] denotes a modified norm obtained by removing

the contributions of both pairs (µ, µ̄) and (ζ, ζ̄ ) from the usual
norm kernel

c2
N [µ, ζ ] ≡

∮
C1

dz

2iπ

1

zN+1

∏
ν>0

ν �=µ,ζ

(
u2

ν + v2
νz

2
)
. (76)

Considering either rather deep-hole or highly lying single-
particle states, the prefactor (uµvµ)4 appearing in Eq. (75)
makes εµ = ε0

µ to be small.
The bottom panel of Fig. 7 shows the total contribution

εµ of each selected pairs to EN
CG. One can now clearly see

that there is more to the spurious energy than just the steps
and the divergences (the latter of which do not appear for
the particular functional used here). The poles z±

µ associated
to the jz = 3/2+ pair remain outside the integration contour
for all deformations. Thus, it does not produce a step as the
corresponding ε±

µ never contributes to EN
CG. Still, this level

gives a small contribution ε0
µ to the spurious energy through

the pole at z = 0, which happens to be slightly larger for prolate
deformations than for oblate ones.

Starting on the oblate side, only the pole at z = 0 contributes
at first to the spurious energy from the jz = 1/2+ pair of
levels. The corresponding ε0

µ increases slowly from zero
with increasing β2. The moment the corresponding poles
z±
µ enter the integration contour at β2 = 0.15, ε±

µ suddenly
contributes to the spurious energy. We already saw that the
finite value of ε±

µ at this point determines the step. As ε±
µ

approaches −ε0
µ when the 1/2+ levels become more and

more occupied with increasing prolate deformation, the total
contribution εµ of the 1/2+ pair to EN

CG now decreases after
the step. With the total contribution εµ increasing on one
side of the step and suddenly decreasing on the other, the
curvature of the spurious energy is different on both sides of a
step. As a consequence, removing EN

CG modifies the improper
curvature of the uncorrected deformation energy surface that
is visible in Fig. 6, even when the steps themselves are not
numerically resolved. The regularized deformation energy
surfaces show much less structure; in 18O to the extreme that
the curvature of the corrected energy surface is now positive
for all deformations as shown in Fig. 6. The contribution from
the 5/2+ levels to the spurious energy behaves very much
as the one from the 1/2+ levels with oblate and prolate sides
exchanged. The sum of the three individual contributions gives
the neutron correction shown in the top panel of Fig. 5 for
L = 199.

We have seen that for a bilinear functional, the steps are
always the consequence of a pair of single poles z±

µ crossing
the integration contour and have the size of the corresponding
ε±
µ at that crossing. The steps cannot add up for a bilinear

functional as, for degenerate poles with µ �= µ′, z±
µ = z±

µ′
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FIG. 8. (Color online) Same as Fig. 7, but for the proton 1/2+

and 1/2− levels that give the dominant contributions to the proton
correction at prolate deformation and cross at the Fermi energy at
β2 = 0.67.

directly lead to ε±
µ = ε±

µ′ = 0. This does not mean, however,
that there is no spurious contribution to the PNR energy when
two poles cross the integration contour simultaneously, as the
corresponding ε0

µ and ε0
µ′ are in general nonzero. In fact, Fig. 5

demonstrates clearly that, in our calculation of 18O with SIII,
the spurious energy EN

CG is largest exactly where two proton
levels cross at the Fermi energy at β2 = 0.67. The contribution
of these two pairs of levels to EN

CG, which also happen to be
the only proton levels that have a finite contribution at prolate
deformation, is analyzed in Fig. 8. There are a number of
interesting differences with Fig. 7: (i) The contribution ε±

µ

does not vanish at spherical shape for the 1/2− levels for
a bilinear functional. Indeed, the spherical p1/2 shell is only
doubly degenerate, which does not suppress the corresponding
ε±
µ . In fact, only s1/2 and p1/2 levels with poles z±

µ below the
integration contour provide nonzero ε±

µ at spherical shape. (ii)
Both pairs cross right at the Fermi energy at β2 = 0.67. For
the standard choice Rp = 1, their poles z±

µ thus cross on the
integration contour. As a result, ε±

µ from both pairs are zero
and change sign at the crossing. (iii) The derivative of ε±

µ is
not zero for both pairs when they simultaneously cross the
Fermi energy. By contrast, ε0

µ slowly approaches zero such

that the total contribution εµ is quite large for the two proton
pairs. When the poles z±

µ approach the integration contour
from below, the distance between ε±

µ and ε0
µ grows for both

pairs. After the poles have crossed the contour, only the ε0
µ

contribute. Finally, the total contribution εµ from each pair
that crosses with another at the integration contour is largest at
the crossing and decreases toward zero on both sides. The sum
of the two individual contributions gives the proton correction
shown in the middle panel of Fig. 5 for L = 199; all other
proton levels are too far away from the Fermi level to provide
any visible contribution.

One can take advantage of the fact that only a very limited
number of levels actually contributes to EN

CG to reduce the
numerical effort. Evaluating the necessary matrix elements
v̄ρρ and v̄κκ only for those levels for which the weight is
significantly different from zero is particularly welcome for
the expensive contribution from the Coulomb interaction.

2. Shift invariance

In their recent article, Dobaczewski et al. [25] pointed out
that the (uncorrected) PNR energy density functional is not
shift invariant, i.e., PNR energies depend on the radius chosen
for the contour integral in the complex plane. As outlined
in Secs. V D and V E, the source of violation of the shift
invariance is the contribution ε±

µ from the poles at z±
µ inside the

integration contour CR to the spurious energy EN
CG in Eq. (67).

Each time a pole z±
µ enters or leaves the integration contour

when changing its radius, EN
CG changes by the amount ε±

µ . This
is illustrated in Fig. 9 for 18O at β2 = 0.371. The radius of the
contour used for neutrons is held fixed at Rn = 1, whereas the
radius of the contour used for the protons is varied. The three
steps visible in Fig. 9 correspond to the three proton poles

FIG. 9. (Color online) Projected energy for 18O at the deformation
β2 = 0.371 as a function of the radius Rp of the integration contour
calculated without and with correction using 5 and 199 angles. The
energy scale on the left gives the absolute energy, the scale on the
right the energy gain from projection. The insert magnifies the curves
around Rp = 1. The regularized PNR energy in independent on the
discretization of the integrals when 5 or more angles are used. The
integration contour for projection on neutron number is Rn = 1 in all
cases.
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located at 0.1 < z±
µ < 10 visible in Fig. 4 for the deformation

of interest.
An interesting feature of the steps is that their size grows as

the integration contour is shifted away from Rp = 1 [25], i.e.,
away from the Fermi level. The reason is easy to understand
from the discussion of Eq. (70) given in the previous section:
ε±
µ increases as |z±

µ | moves away from 1 (as long as it is
separated from other poles) and as the difference between the
number kr of pairs of states below (µ, µ̄) and half the number
of particles N/2 one is restoring grows.

Using the small number of L = 5 discretization points for
the gauge-space integral does not resolve the steps in the
uncorrected PNR energy; only with much larger L one obtains
sharp steps. By contrast, and as seen in Fig. 9, the regularized
PNR energy is constant within a numerical precision of the
order 1 keV as Rp is modified and L increased beyond 5.

3. Distribution of weighted PNR energies

As a next step, we analyze how the spurious energy EN
CG(R)

affects the distribution of non-normalized PNR energies
c2
N (R)EN (R) and c2

N (1)EN (R) as a function of the particle
number one restores. Of course, restoring other particle
numbers than the one that the underlying SR state was
constrained in average to is not very useful for practical
applications. The purpose of the exercise, however, is to shed
further light on the nature of the spurious energy EN

CG(R),
especially through testing sum rules associated with such a
decomposition over N . For the latter test to be meaningful,
and as explained in Sec. V E, it is essential to include zero and
negative particle numbers in the analysis.

Starting with a SR calculation for 18O, the average proton
and neutron number are small enough that nonzero values of
the quantities of interest for negative particle numbers can be
unambiguously detected in the tail of the distribution when
performing a numerical calculation. Of course, an SR state
with even number-parity quantum number, as assumed here,
can only be projected on even particle number such that the
weight c2

N (R) and any operator matrix elements are obviously
zero for odd N . In addition, the contributions to EN (R) from
the spurious poles, see Eq. (44), and from the physical pole9

are zero for odd N when restoring particle number from a
SR state with an even-number parity quantum number. As a
consequence, we can limit ourselves here to looking at even
particle numbers.

For the sake of transparency, and to avoid double sums
over N and Z as well as the interference of the corresponding
terms when analyzing the sum rules, we limit ourselves to
the restoration of proton number in this section and in the
following one. We start with the same SR state calculated for
18O with β2 = 0.371 as in Fig. 9 but without restoring neutron
number, which is constrained to an average value of N = 10.
The restoration of proton number is performed using L = 199
integration points. In what follows, we discuss the interaction

9The Laurent series centered at z = 0 of the integrand in Eq. (35)
does only contain even powers for odd N . As a result, such a pole
does not contribute to EN (R).

FIG. 10. (Color online) Weight c2
Z(Rp = 1) = |〈
Z|�1〉|2 of the

normalized proton-number-projected states in the SR HFB state
(upper panel), the weighted spurious energy c2

Z(Rp = 1)EZ
CG(Rp =

1) (middle panel), the nonregularized weighted PNR energies
c2
Z(Rp = 1)EZ(Rp = 1) and regularized c2

Z(Rp = 1)EZ
REG(Rp = 1)

(lower panel). All results are obtained using the same SR state
calculated for 18O at a deformation of β2 = 0.371 as auxiliary state.
The neutron number is not restored.

part of the EDF only, i.e., the EDF without kinetic energy
and without the one-body center-of-mass correction used in
connection with SIII. Both are expectation values of one-body
operators and therefore free of spurious contributions. As
before, the Coulomb exchange term is omitted from the energy
functional.

First, we discuss the standard case with an integration
contour at Rp = 1. The upper panel of Fig. 10 displays
the distribution of the weights c2

Z(Rp = 1) = |〈
Z|�zp=1〉|2,
Eq. (12), of the normalized proton-number projected states in
the SR state. As expected, c2

Z(1) is peaked at Z = 8 and falls
off quickly to numerical noise. Components with Z > 14 and
Z < 2 cannot be numerically distinguished from zero. In the
former case and for Z = 0 it is a consequence of these proton
numbers being too far from the average proton number such
that c2

Z(1) becomes too small to be distinguished from zero
within the numerical precision of our code, while for Z < 0
the proton-number projected states |
Z〉 are strictly zero for
analytical reasons.

The lower panel of Fig. 10 shows the interaction part
of weighted PNR energies before and after applying the
regularization method. The distribution of absolute values of
c2
Z(1)EZ(1) does not follow the distribution of the weights

c2
Z(1) displayed in the upper panel. Instead, it has a long tail

that spreads visibly to Z = −20 and Z = 34, before it can no
longer be distinguished from numerical noise. In these tails, the
values of c2

Z(1)EZ(1) have alternating signs, which is clearly
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unphysical. Only the regularized quantity c2
Z(1)EZ

REG(1) falls
off in the same manner as c2

Z(1) does and is numerically zero
for Z � 0. This underlines again the spurious nature of EZ

CG,
that is shown separately in the middle panel of Fig. 10. In the
present example, c2

Z(1)EZ
CG(1) has alternating signs throughout

the entire interval of Z. This does not always have to be the
case; in some other examples we have looked at, this happens
only for particle numbers that are a at least a few units away
from the average particle number of the underlying SR state.

For Z � 0, nonzero c2
Z(1)EZ(1) are entirely spurious with

EZ(1) = EZ
CG(1); i.e., they originate entirely from spurious

poles at finite z±
µ . The same situation applies to the tail of

the distribution of c2
Z(1)EZ(1) for large positive Z.

As a second example, we show in the three upper panels of
Fig. 11 the same quantities as in Fig. 10 but obtained employing
an integration contour of radius Rp = 2.5. By contrast to
before (Rp = 1), the poles z±

µ from the 1/2+ substate of the
πd5/2+ shell are located inside the integration contour, see

FIG. 11. (Color online) Weight c2
Z(Rp = 2.5) = |〈
Z|�Rp

〉|2 of
the normalized proton-number-projected states into the radially
shifted SR HFB state at Rp = 2.5 (upper panel), the weighted
spurious energy c2

Z(Rp = 2.5)EZ
CG(Rp = 2.5) (upper middle panel),

the nonregularized EZ(Rp = 2.5) and regularized EZ
REG(Rp = 2.5)

PNR energies weighted by c2
Z(Rp = 2.5) (lower middle panel) and

by c2
Z(Rp = 1) (lower panel). All results are obtained using the same

SR state calculated for 18O at a deformation of β2 = 0.371 as auxiliary
state. The neutron number is not restored.

Fig. 8. As a result, the spurious contribution ε±
µ from those

poles increases EZ by about 4 MeV when projecting on Z = 8
using a nonregularized functional, see Fig. 9. We analyze now
if and how the energy restored on other proton numbers are
affected compared to using Rp = 1.

Compared to Fig. 10, the distribution of weights c2
Z(2.5)

is distorted by the additional RZ
p = (2.5)Z factor such that

absolute values change by several orders of magnitude, and
the maximum of the distribution is shifted to Z = 10. The
main difference to the case using the standard integration
contour Rp = 1 is that the distribution of the spurious energy
c2
Z(2.5)EZ

CG(2.5) is distorted in a different manner than the
distribution of the norm, such that it falls off quicker for
Z > 8, but much slower for Z < 8, including negative Z.
Again, only the distribution of the regularized MR energy
functional EZ

REG(2.5) follows that of the weights c2
Z(2.5).

The lowest panel of Fig. 11 shows the contributions
to the non-radius-weighted energy sum rule discussed in
Sec. V E2. The distribution c2

Z(1)EZ(Rp) is even more distorted
than for the contributions to the radius-weighted sum rule
shown in the panel above. For Rp > 1, c2

Z(1)EZ(Rp) falls off
much quicker than c2

Z(Rp)EZ(Rp) for Z > 8 but much slower
for Z < 8. For negative values of Z the missing factor (2.5)Z

makes c2
Z(1)EZ(Rp) to grow so fast that it will be impossible to

safely evaluate numerically the sum rules including negative
particle numbers.

For Rp < 1, a case not discuss here, the situation is reversed
such that c2

Z(1)EZ(Rp) falls off faster than c2
Z(Rp)EZ(Rp) for

Z < 8, but slower for Z > 8, now with the impossibility to
safely evaluate the sum rule when including positive Z.

To summarize, the contamination of the PNR-EDF by
spurious contributions originating from the use of the GWT
affects the decomposition of the (shifted) SR functional energy
(kernel) into weighted PNR energies with different particle
numbers such that energy is shifted out of the physical
subspace corresponding to positive particle numbers. The
impact of this finding on the fulfillment of basic sum rules
is examined in the next section.

4. Sum rules

Now we turn to the sum rules, which are obtained by
summing the weighted PNR energies shown in Figs. 10
and 11. Numerical summation is performed on a subset of
even proton numbers in the interval −20 � Z � 40.

Again we begin with the case Rp = 1, for which the radius-
weighted and non-radius-weighted sum rules are identical. The
SR energy10 that sets the reference is given by

E[ρ, κ, κ∗] = −410.3403 MeV. (77)

In agreement with Eq. (52), the sum of c2
Z(1)EZ(1) over

positive and negative Z reproduces this value better than
0.1 keV

+∞∑
Z=−∞

c2
Z(1)EZ(1) = −410.3403 MeV. (78)

10We recall that quoted energies are without the kinetic and center-
of-mass correction energies.
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When limiting the sum to “physical” proton numbers Z > 0,
however, we obtain instead∑

Z>0

c2
Z(1)EZ(1) = −410.3550 MeV. (79)

With 14.7 keV, the numerical difference between Eq. (78)
and Eq. (79), which constitutes the breaking of the physical
sumrule, is quite small. Using the standard integration contour
of Rp = 1, we find similar values for other deformations in
18O, whereas for heavier nuclei this quantity becomes rapidly
suppressed such that it cannot be unambiguously detected in a
numerical calculation anymore.

The largest individual sum-rule breaking contribution is
that for Z = 0, for which we obtain

c2
Z(1)EZ=0(1) = c2

Z(1)EZ=0
CG (1) = 0.0189 MeV, (80)

which is slightly larger than the entire sum over Z � 0. This
is not unexpected in view of the alternating signs of the
contributions pointed out in the previous section.

For Z � 0, nonzero c2
Z(1)EZ(1) are of course entirely

spurious such that they equally contribute to the sum rule
of c2

Z(1)EZ
CG(1). For Rp = 1, the right-hand-side of Eq. (54)

is zero such that the sum of c2
Z(1)EZ

CG(1) over all Z is zero as
well, which we do find numerically

+∞∑
Z=−∞

c2
Z(1)EZ

CG(1) = 0.0000 MeV. (81)

Although the alternating sign of c2
Z(1)EZ

CG(1) with Z indicates
that a cancellation effect is at play, the result of Eq. (81) is not so
obvious when looking at the middle panel of Fig. 10. Summing
up c2

Z(1)EZ
CG(1) for positive values of Z gives −0.0146 MeV,

which precisely is the difference between Eqs. (77)
and (79).

The regularized energy c2
Z(1)EZ

REG(1) is numerically zero
for Z � 0 as any meaningful particle-number-restored ob-
servable should be. The same holds for those large positive
values of Z where c2

Z > 0. As a consequence, the sum over
c2
Z(1)EZ

REG(1) can be limited to “physical” particle numbers.
The numerical value for this sum

+∞∑
Z=−∞

c2
Z(1)EZ

REG(1) =
∑
Z>0

c2
Z(1)EZ

REG(1)

= −410.3403 MeV (82)

gives back the SR energy, Eq. (77), within 0.1 keV as expected
from Eq. (61).

When shifting one of the states to Rp = 2.5, the norm kernel
is 〈�1|�2.5〉 = 2816.9760, and the corresponding transition
energy kernel is E[2.5] = −830.2386 MeV. The reference for
the radius-weighted sum rule is thus provided by

E[2.5]〈�1|�2.5〉 = −1266844MeV, (83)

where we limit ourselves again to seven digits. Summing
c2
Z(2.5)EZ(2.5) over all Z reproduces this value with the

same precision, while summing over positive Z only gives
−1266546 MeV, which differs from the above value by
−298 MeV, which is of similar order as in case of the unshifted
integration contour.

〈Ψ
N

Φ
0
〉 p

FIG. 12. (Color online) Weight of the normalized state projected
on various values of Z in the SR vacuum (top panel) and decom-
position of the energy into Z components for three different radii
of the integration contour for protons (bottom panel) for 18O at a
deformation of β2 = 0.371. All states are projected on the same
neutron number N = 10 with an integration contour of radius Rn = 1,
using L = 199 integration points for both protons and neutrons.
Corrected PNR energies are the same for all values of Rp within
numerical accuracy.

In the case of shifted contours, the non-radius-weighted
sum rule is more interesting to look at. As became clear
from the bottom panel of Fig. 11, the sum over all Z

cannot be evaluated numerically. Let us anyway focus on the
sum rule over positive Z only; i.e., Eq. (62). In this case,
summing c2

Z(1)EZ(2.5) gives −309.4217 MeV that indeed
decomposes intoE[ρ, κ, κ∗] = −410.3403 MeV plus the sum-
rule breaking term obtained [either numerically or analytically
through Eq. (63)] by summing c2

Z(1)EZ
CG(2.5) over Z > 0

and that equates +100.9189 MeV. Thus, one realizes that
the most essential non-radius-weighted sum rule performed
over physical components (Z > 0) is broken and not shift
invariant. In particular, the breaking term can be very large as
soon as the integration radius differs from 1. Of course, the
small (nonzero) value of that sum-rule breaking term obtained
from using the unit circle as an integration contour has masked
the contamination of energy functionals with spurious terms
for many years. Indeed, practitioners naturally interpreted that
very tiny breaking as due to numerical noise.

5. Energies of physical systems

After looking into the contributions to the sum rules, we
now turn our attention to normalized PNR energies pertaining
to the physical subspace, i.e., addressing only those particle
numbers that give a nonzero norm. Figure 12 shows PNR
energies (now again completed by kinetic energy and center-
of-mass correction) for three values of the integration contour
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radius Rp. With each step in the uncorrected projected energy
of the Z = 8 component seen for Rp = 1.9 and Rp = 8.2 in
Fig. 9, the energy of all other Z components changes as well.
For each radius of the integration contour there is at least one
Z component that has an obviously unphysical uncorrected
PNR energy.

The breaking of the physical sum rule for the nonregularized
PNR-EDF discussed above is much smaller than the energy
scale of the changes we observe in Fig. 9 when shifting
Rp. Still, we can argue with the help of the sum rules for
the regularized and nonregularized PNR-EDF that any small
spurious energy in a Z component with large weight c2

Z might
have to be compensated by a very large spurious energy in a Z

component with small weight, as it happens in Fig. 12 for the
Z = 12 component at Rp = 1.0 and the Z = 6 component at
Rp = 4.0. As a consequence, the moderate energy scale found
for the spurious energy along a deformation energy surface
when projecting on the same nucleon number that SR vacua
were constrained to does not apply to the spurious energies
entering other Z components. Although this usually has no
particular consequences for particle restoration calculations
where one is in most cases interested in projecting out the
one particle number that the SR HFB state was constrained
to and which can be expected to have a comparatively small
contamination of spurious energy, the spurious redistribution
of energy might seriously compromise angular-momentum
restoration, where one is often interested in producing the
entire spectrum of low-lying states.

E. 76Kr

With the next example 76Kr, a medium heavy nucleus
located in a region of shape coexistence, we examine how the
spurious contributions to the particle-number-restored energy
evolve when increasing the density of single-particle levels.
This nucleus is one of the series of neutron-deficient Kr
isotopes that were recently studied [73] with GCM mixing
of quadrupole deformed axial particle-number- and angular-
momentum-restored states using SLy6.11

Figure 13 shows the location of the poles at z±
µ for protons

and neutrons, the energy gain from PNR and the absolute
PNR energy as a function of quadrupole deformation, both
with and without correction and both calculated with L = 9
and 99 discretization points of the gauge-space integrals. We
have checked that all observables calculated as operator matrix
elements are converged for L = 9. The main difference to
18O is the much larger overall density of poles. This has two
consequences. (i) It increases the number of poles crossing
the integration contour when deforming the nucleus and thus
the number of steps. (ii) Poles crossing the Fermi level are
hardly isolated from other poles; this limits the size of the steps
through the factors entering the middle product in Eq. (70). As

11The deformation energy surface obtained with SIII also displays
shape coexistence, although its topography is quite different from the
one obtained with SLy6. With SIII, the deformed minima are much
more pronounced and lower in energy compared to the spherical one.
However, this is irrelevant for the present discussion.

FIG. 13. (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons and neutrons, the uncorrected and corrected energy gain from
projection and the particle-number-projected quadrupole deformation
energy for L = 9 and 99 discretization points of the integral in gauge
space for 76Kr.

a consequence, most of the steps visible in Fig. 13 are much
smaller than those found for 18O in Fig. 4. Notable exceptions
are the ones on both sides of the prolate minimum at β2 ≈ 0.43,
which indeed correspond to the crossings of proton levels that
are well separated from other poles. The correction is not
of the same magnitude in the various minima; in fact, the
variation of the correction between the various minima is of
the same order as the difference in total energy of the latter.
Correcting for spurious energies might have a visible impact
on the excitation spectrum of this nucleus obtained from a
GCM mixing over quadrupole shapes of particle-number- and
angular-momentum-restored states.

F. 186Pb

As the last example, we present in Fig. 14 results obtained
for 186Pb, a nucleus exhibiting triple shape coexistence
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E

FIG. 14. (Color online) Spectrum of poles zµ = |uµ/vµ| for
protons and neutrons, the correction to the particle-number-restored
EDF separately for protons and neutrons, the uncorrected and
corrected energy gain from projection, and the particle-number-
projected quadrupole deformation energy without and with correction
for L = 13 and 99 discretization points of the integral in gauge space
for 186Pb.

of spherical, oblate, and prolate states studied earlier in
Refs. [68,69] in a method that includes particle-number
restoration using the Skyrme EDF SLy6.12 In this heavy
nucleus, the number of neutron poles z±

µ in the vicinity of
the Fermi level is even larger than for 76Kr. When crossing

12The deformation energy surface obtained with SIII is at variance
with the experimental finding that the ground state is spherical
with low-lying prolate and oblate bands seen as excitations [68,69].
However, this is irrelevant for the present discussion.

the standard integration contour Rn = 1, those poles generate
many steps that are, however, almost always of tiny size due to
the closeness of other poles; the sole exception being the step
at β2 = 0.4. This is different for protons. As a consequence of
the magic proton number Z = 82, the density of proton poles
around the Fermi level is quite low for most deformations
such that the few proton poles that cross in these regions have
a much larger impact. This is illustrated by the second panel
in Fig. 14 that shows the correction EN

CG separately for protons
and neutrons. The narrow peak at small oblate deformation
β2 = 0.11 is not a divergence but stems from the crossing of
two proton levels at the Fermi energy in analogy to the structure
found in 18O around β2 = 0.67. In both cases the double-
crossing is a direct consequence of the shell closure: With all
other levels being too far above or below to have occupation
numbers significantly different from 0 or 1, the constraint on
the average particle number dictates that two pairs of levels
in the gap have an occupation of v2

µ = 1/2 simultaneously.
Interestingly, the uncorrected deformation energy curve does
not change much when increasing the number of integration
points from L = 13 to 99. As for 18O and 76Kr, the correction
varies strongly with deformation, has a different value in the
various minima, and, most importantly, is on the same energy
scale as the energy difference between those minima.

VII. SUMMARY, CONCLUSIONS, AND OUTLOOK

In the present article, we introduce the notion of spuri-
ous self-pairing. It appears as a generalization of spurious
self-interaction processes, a well-known problem in electronic
density-functional theory [6,29,60–62], to systems with pair-
ing correlations that are modeled within EDF approaches using
independent quasiparticle BCS states as auxiliary states of
reference. Self-interaction and self-pairing processes appear
for any energy functional that uses different vertices in the
particle-hole and particle-particle channels and/or not fully
antisymmetric vertices; e.g., as due to density dependencies.
Neither self-interaction nor self-pairing appear when the
many-body energy is strictly calculated as the expectation
value of a Hamilton operator. Both are a price to pay when
replacing the exact nuclear many-body problem by a system
of coupled one-body problems in a EDF calculation, modeling
higher-order in-medium correlations through a simple energy
functional depending on one-body densities and currents.
On the single-reference level, self-pairing gives a spurious
contribution to the pairing field (and therefore influences all
quantities it determines) and to the total binding energy.

Energy density functionals extended to perform multi-
reference calculations, i.e., symmetry restoration or GCM-type
configuration mixing, also contain unphysical contributions:
First, the previously discussed self-interaction and self-pairing
processes that continuously extend from SR energy functional
to off-diagonal energy kernels, as well as a second and much
more dangerous category of spuriosity that appears when the
off-diagonal kernels are evaluated on the basis of the general-
ized Wick theorem. The use of a Wick theorem to evaluate a
functional energy kernel that does not originate from a genuine
Hamilton operator is not justified. Relying on the generalized
Wick theorem to construct off-diagonal functional energy

044319-28



PARTICLE-NUMBER RESTORATION WITHIN THE ENERGY . . . PHYSICAL REVIEW C 79, 044319 (2009)

kernels has the unexpected particularity to provide previously
discussed self-interaction and self-pairing contributions with
unphysical weights that contain poles leading to divergences
[18] and steps in the energy [25]. The latter have been noticed
recently in the context of particle-number restoration whenever
a single-particle level crosses the Fermi energy. As demon-
strated in Article I [28], the weights of self-interaction and
self-pairing terms obtained on the basis of the standard Wick
theorem are different and present no problematic contributions.
This feature can be exploited to unambiguously isolate the
dangerous spuriosities and set up a correction scheme that
regularizes unphysical divergences and steps in MR energy
kernels [28]. In the present article, we have applied this cor-
rection scheme to the simplest and formally most transparent
MR case of particle-number restoration after variation.

The complex-plane analysis performed in the present work
reveals that each conjugated pair of single-particle levels
(µ, µ̄) provides an unphysical contribution to the physical
pole at z = 0, in addition to generating unphysical poles at
z±
µ = ±i|uµ|/|vµ|. The latter cause the steps as they cross

the integration contour [25]. The unphysical poles are also
at the origin of the breaking of the shift invariance of PNR
energies [25]. However, removing only the contribution from
the poles at z±

µ to the energy functional kernel leads to
unphysical results. Instead, the spurious contribution from a
given pair of single-particle levels to the pole at z = 0 has to
be removed simultaneously, as both are very large, of opposite
sign, and nearly cancel.

The correction scheme proposed in Article I does indeed re-
move both contributions; thereby it eliminates the divergences
and steps and restores the shift invariance of PNR energies
EN as well as standard sum rules that they can be expected
to fulfill. The correction to EN is of the order of 1 MeV,
and in most cases reduces the energy gain from PNR. On the
one hand, the correction is sufficiently small that PNR-EDF
results published earlier are not meaningless. On the other
hand, in extreme cases the correction might be as large as 50%
of the energy gain from PNR, which casts some doubt on the
reliability of published calculations performed within the EDF
framework. The correction is also of the same order as the rms
error of the mass residuals reached with the best available
particle-number-restored EDF mass fits [19]. The correction
varies rapidly with deformation and affect significantly the
structure of complex nuclei presenting soft deformation energy
surfaces and coexisting minima.

In the present article, we do not attempt to correct for
the “true” self-interaction and self-pairing processes that
contaminate the single-reference energy density functionals.
This amounts to modify the underlying energy density func-
tional, a task that we postpone to later works. In addition, a
self-consistent correction is very cumbersome, as documented
in the literature for self-interaction in the context of electronic
DFT [6,29,60–62].

Particle-number restoration is not the only type of MR-EDF
calculation where using the GWT as a basis to construct
nondiagonal functional energy kernels causes problems. In
fact, any symmetry restoration or GCM-type configuration
mixing calculation is expected to be contaminated with similar
spurious contributions; e.g., anomalies were encountered in

Ref. [80] in angular-momentum-restoration calculations of
cranked states without pairing and using a Skyrme EDF. The
correction scheme proposed in Article I can be applied to
any type of MR-EDF calculation. However, all others but
particle-number restoration require the numerical construction
of the canonical basis of the Bogoliubov transformation
connecting the two different quasiparticle bases associated
with the two vacua entering the construction of the functional
energy kernel [28]. Work toward the numerical implementation
of such a scheme is underway.

In the present study, we have limited ourselves to particle-
number restoration after variation, where the correction can be
subtracted from energy kernels a posteriori. With variation-
after-symmetry-restoration EDF calculations becoming avail-
able [26,52], and the variational equations sometimes running
into the divergences [25], setting up a correction scheme for
those variational equations becomes an important issue and
will be addressed in a forthcoming study [81].

The correction proposed in Article I [28] and discussed
in the present one is limited to energy functionals depending
on integer powers of the density matrices. Most functionals
used in the literature, however, have a density dependence of
noninteger power, both in the functional modeling the effective
strong interaction and as an approximate Coulomb exchange
term. Compared to the functionals discussed here, such
noninteger powers of the density matrix pose two additional
types of difficulties when extended to nondiagonal energy
kernels on the basis of the GWT: (i) as transition densities
are complex, taking their fractional power is ambiguous [25],
and (ii) there is no well-defined basis at present to remove the
spurious branch cuts that are generated by such terms. Both
points are illustrated and examined further in Article III of this
series [27].

In our opinion, the particular difficulties of functionals with
noninteger density dependencies constitute a strong motivation
to construct energy functionals with integer powers of the
densities only in view of performing meaningful MR-EDF
calculations in the future. At present, there are no such
nonrelativistic functionals of high performance. Relativistic
functionals have been constructed along these lines recently
[76] with a different motivation and have already been used in
PNR-EDF calculations [20]. The construction of correctable
energy functionals for multi-reference applications becomes
an urgent task for the future. A particular problem will be
to find a suitable functional for the Coulomb interaction, as
using the exact exchange term is incommensurately expensive
in multidimensional MR-EDF calculations.
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APPENDIX A: THE ENERGY FUNCTIONAL

The energy is given as the sum of the noninteracting
kinetic energy, the Skyrme energy functional that models
the strong particle-hole interaction, a pairing functional that
models the particle-particle interaction, and the Coulomb
energy functional

E = Ekin + ESkyrme + ECoulomb + Epair + Ecorr. (A1)

The kinetic energy is the mean value of a one-body operator;
hence it does not pose problems. From the point of view
of establishing the correction to the MR energy kernel, we
identify in the following

Eρρ ≡ Eρρ

Skyrme + Edirect
Coulomb, (A2a)

Eρρρ ≡ Eρρρ

Skyrme, (A2b)

Eκκ ≡ Eκκ
DI , (A2c)

making explicit the power of the density matrices enter-
ing a given term. Let us now specify these terms more
explicitly.

A. The Skyrme energy functional

We restrict ourselves here to those terms of the Skyrme EDF
depending on time-even densities and currents that contribute
to the ground states of even-even nuclei in SR and MR-PNR
calculations. Also, the functional given below corresponds to
the particular Skyrme interaction SIII used throughout this
article. For SIII, there are no density-dependent coupling
constants, but the energy functional can be divided into a
bilinear Eρρ

Skyrme and a trilinear term Eρρρ

Skyrme. The Skyrme
energy functional is usually represented either in terms of
isoscalar and isovector densities [82] or in terms of the total
density and the densities of the nucleon species [83]. In the
context of particle-number restoration, the most convenient
representation separates contributions that are bilinear in
densities of the same isospin from those that are bilinear in
densities of different isospin

Eρρ

Skyrme =
∫

d3r

{ ∑
q=p,n

[
Aρρ ρ2

q + Aρτ ρqτq + Aρ�ρ ρq�ρq + Aρ∇J ρq∇ · Jq

]

+
∑

q,q′=p,n

q �=q′

[
Bρρ ρqρq ′ + Bρτ ρqτq ′ + Bρ�ρ ρq�ρq ′ + Bρ∇J ρq∇ · Jq ′

]}
, (A3)

Eρρρ

Skyrme =
∫

d3r
∑

q,q′=p,n

q �=q′

Aρρρρ2
q ρq ′ . (A4)

The Aff ′
and Bff ′

denote the coupling constants,13 none of
which are density dependent for SIII. In the canonical basis,
the local densities entering the energy functional (A3) and
(A4) are given by

ρq(r) = 2
∑
µ>0

φ†
µ(rq) φµ(rq)ρµµ

τq(r) = 2
∑
µ>0

[∇ϕ†
µ(rq)] · [∇φν(rq)]ρµµ (A5)

Jq(r) = −i
∑
µ>0

{ϕ†
µ(rq)[∇ × σ̂ φµ(rq)] − h.c.}ρµµ

and denote, for the isospin q = n, p, the matter density, the
kinetic density, and the spin-orbit current, respectively. The
operator �̂σ is the vector built out of the three cartesian Pauli
matrices. The density matrix ρµµ is given either by Eq. (5)

13Superscripts ff ′ and fff ′ used on the right-hand side of
Eqs. (A3) and (A4) refer to the local densities that appear in the
functional, whereas the superscripts ρρ, κκ, ρρρ, . . . on the left-hand
side of Eqs. (A3), (A4), and (A8) correspond to the powers in the
density matrices.

for the SR-EDF or by Eq. (16) or (38) for the PNR-MR-EDF.
One can see from the expressions given above that any local
density fq(r) can be written as:

fq(r) ≡ 2
∑
µ>0

Wf
µµ(rq)ρµµ, (A6)

where f ∈ {ρ, τ, J} and where the explicit form of each
W

f
µµ(rq) can be easily extracted from Eq. (A5). This will

facilitate the construction of the matrix elements needed to
evaluate the correction EN

CG.

B. The Coulomb energy functional

The standard Coulomb energy functional that is used in
connection with most parametrizations of the Skyrme energy
functional is given by

ECoulomb = e2

2

∫ ∫
d3r d3r ′ ρp(r)ρp(r′)

|r − r′|

− 3

4
e2

(
3

π

)1/3 ∫
d3r ρ4/3

p (r). (A7)

044319-30



PARTICLE-NUMBER RESTORATION WITHIN THE ENERGY . . . PHYSICAL REVIEW C 79, 044319 (2009)

The proton density entering Eq. (A7) is calculated as described
in the preceding section. The energy functional (A7) provides
the textbook example of an energy functional that is not self-
interaction free [29].

The Coulomb exchange term in the Slater approximation,
represented by the second term on the right-hand side of
Eq. (A7), resembles the density-dependent terms of modern
parametrizations of the Skyrme functional. As, at present,
we do not have a correction scheme for terms depending on
noninteger powers of the density, we drop it and consider
the direct term only in the present work. Concerning absolute
binding energies, the Coulomb exchange term is the smallest of
all contributions to the energy functional for nuclei and states
considered here; it does not exceed 2% of the total binding
energy even in very heavy nuclei with a strong Coulomb field.
What is even more important for the present study is that its
value changes also by at most 2% when deforming a nucleus;
its influence on potential energy surfaces is smaller than what
can be resolved in the plots shown in Sec. VI.

C. Pairing energy functional

For pairing, we choose a local energy functional deduced
from a simple delta interaction (DI), often referred to as
“volume pairing”

Eκκ
DI =

∑
q

∫
d3rAρ̃ρ̄ ρ̄∗

q (r)ρ̃q(r). (A8)

More elaborate parametrizations of the pairing energy func-
tional are frequently used in the literature. When enforcing
time-reversal invariance as done here, the local pair densities
entering the pairing functional are related to the pairing tensor
through

ρ̃q(r) ≡ 2
∑
µ>0

W
ρ̃
µµ̄(rq) κ

ϕϕ′
µ̄µ , (A9)

ρ̄∗
q (r) ≡ 2

∑
µ>0

W
ρ̄
µµ̄

∗(rq) κ
ϕ′ϕ∗
µ̄µ , (A10)

where κ
ϕϕ′
µµ̄ and κ

ϕ′ϕ∗
µµ̄ are given by Eqs. (6) and (7) for SR-EDF

calculations with ϕ′ = ϕ and by Eqs. (17) and (18), or Eqs. (39)
and (40), respectively, for PNR-MR-EDF calculations. In the
case of SR-EDF and PNR-MR-EDF calculations, W

ρ̃
µµ̄(rq)

and W
ρ̄
µµ̄(rq) are equal and given by

W
ρ̃
µµ̄(rq) = W

ρ̄
µµ̄(rq) = gµ

∑
σ=±1

σφµ(rσq)φµ̄(r − σq)

(A11)

and represent the spin-singlet part of the two-body wave
function. This does not hold for other MR-EDF calculations.
The notation σ = ±1 denotes the spinor component with
spin projection ±1/2. The functions W

ρ̃
µµ̄(rq) and W

ρ̄
µµ̄(rq)

incorporate a cutoff gµ to regularize the pairing problem,
which is otherwise divergent in a variational calculation. In
the SR calculations, we use the smooth phenomenological

cutoff proposed in Ref. [84], whereas in the PAV-PNR MR
calculations it is set to gµ = 1.

APPENDIX B: CORRECTION TERM

A. Bilinear terms

1. Matrix elements

We focus here on the case where the system is time-reversal
invariant, which leads to

Wf
µµ = W

f
µ̄µ̄ (B1)

for the time-even densities contributing to the Skyrme and
Coulomb functionals. There is a minus sign in the left-hand
side of Eq. (B1) when considering time-odd ones that we
do not have to take into account here as the corresponding
contributions from the two states (µ, µ̄) cancel out both in the
total energy and in the correction given by Eq. (29). For the
state-dependent function entering the pair density we have

W
ρ̃∗
µµ̄(rq) = W

ρ̃
µµ̄(rq) = −gµWρ

µµ(rq). (B2)

For the SIII energy functional, the matrix elements that match
the definition of the bilinear part as given by Eq. (9) read as

v̄ρρ
µνµν = 2

∫
d3r

∑
f,f ′

Aff ′
Wf

µµ(rq) Wf ′
νν (rq), (B3)

where the sum over f, f ′ runs over all terms appearing in
Eq. (A3). The quasilocal form of the Skyrme energy functional
simplifies the construction of the matrix elements v̄ρρ

µνµν in two
ways: on the one hand, they involve one triple integral only
and, on the other, they contain products that are separable in µ

and ν. This is of great help from the numerical point of view
when coding the correction to the PNR energy as defined by
Eq. (29).

The situation is different for the direct Coulomb term. In-
deed, the corresponding matrix elements (not antisymmetric as
Coulomb exchange was dropped altogether) are not separable

v̄ρρ
µνµν = 2e2

∫ ∫
d3rd3r ′ Wρ

µµ(rp)Wρ
νν(r′p)

|r − r′| . (B4)

and they involve a sixfold integral. This considerably com-
plicates their calculation compared to the matrix elements of
the Skyrme functional. Instead, the Poisson equation for the
Coulomb potential generated by the source W

ρ
λλ(rp)

U
ρ
λλ(r) = −4πe�W

ρ
λλ(rp), (B5)

is solved first using boundary conditions constructed from
the lowest-order terms in a multipole expansion of the state-
dependent field W

ρ
λλ(rp), and then the Coulomb energy of the

other density in this field is obtained as

v̄ρρ
µνµν = 2e2

∫
d3rWρ

µµ(rp)Uνν(r). (B6)

For all but very light nuclei, the calculation of the correction
is much more costly than the calculation of the PNR direct
Coulomb energy itself, as the correction Uρ

µµ(r) has to be
determined for each single-particle state solving Eq. (B5),
whereas for the total Coulomb energy the Coulomb potential
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has to be determined only for the summed up total charge
density. However, Uρ

µµ(r) entering the correction is indepen-
dent of the gauge angle, whereas the Coulomb potential has to
be determined for each gauge anglewhen calculating the total
PNR Coulomb energy.

Last, but not least, the matrix elements entering the pairing
functional are given by

v̄κκ
µµ̄νν̄ = 4

∫
d3r Aρ̃ρ̃ W

ρ̃∗
µµ̄(rq) W

ρ̃
νν̄(rq). (B7)

2. Correction

Let us now write the spurious contribution EN
C G that must

be removed from the MR-PNR energy, defined by Eq. (29),
for the functional introduced in Appendices A1, A2, and A3.

The spurious contributions only originate from interactions
between particles of the same isospin. All contributions from
the bilinear part of the energy functional to the correction
contain the same occupation factor, for which we introduce
the shorthand notation

VN
SGµ ≡ (uµvµ)4

∫ 2π

0
dϕ

e−iϕN

2πc2
N

(e2iϕ − 1)2(
u2

µ + v2
µe2iϕ

)2

×
∏
ν>0

qν=qµ

(
u2

ν + v2
νe

2iϕ
)
. (B8)

Hence, we obtain

EN
CG = 4

∫
d3r

∑
µ>0

VN
SGµ

[ ∑
{f,f ′}

Aff ′
Wf

µµ(rq) Wf ′
µµ(rq)

−Aρ̃ρ̃ W̃µµ̄(rq) W̃µµ̄(rq) + e2 Wρ
µµ(rp)Uµµ(r)

]
,

(B9)

where it is understood that the Coulomb term only contributes
to the sum over proton pairs. In the MR-PNR code, the
calculation of Eq. (B9) constitutes an effort similar to the
evaluation of a local one-body operator, as it can be reduced
to a single sum over half of the single-particle states adding
up a local function in space that is integrated over afterward.

B. Trilinear terms

1. General expression

We have restricted ourselves here to the special case of
the Skyrme SIII functional. The zero-range three-body force
that it originates from has the particular property that it gives
an energy functional composed of terms that are bilinear in
densities of one isospin times a density of the other isospin. The
absence of terms trilinear in densities of one isospin greatly
simplifies the correction term (see Article I), which reduces to

EN
CG = 1

6

∑
µ>0

∑
λ� 0
qλ �=qµ

(
v̄

ρρρ
µµλµµλ + v̄

ρρρ
µ̄µλµ̄µλ + v̄

ρρρ
µµ̄λµµ̄λ + v̄

ρρρ
µ̄µ̄λµ̄µ̄λ + v̄

ρρρ
µλµµλµ + v̄

ρρρ
µ̄λµµ̄λµ

+ v̄
ρρρ
µλµ̄µλµ̄ + v̄

ρρρ
µ̄λµ̄µ̄λµ̄ + v̄

ρρρ
λµµλµµ + v̄

ρρρ
λµ̄µλµ̄µ + v̄

ρρρ
λµµ̄λµµ̄ + v̄

ρρρ
λµ̄µ̄λµ̄µ̄

)
VNµ

SG µ

× v2
λ

⎡
⎢⎣∫ 2π

0
dφ

e−iφNλ

2πc2
Nλ

e2iφ

u2
λ + v2

λe
2iφ

∏
ν>0

qν=qλ

(
u2

ν + v2
νe

2iφ
)
⎤
⎥⎦ , (B10)

where (Nλ = N,Nµ = Z) or (Nλ = Z,Nµ = N ) depending
on the isospin of the states (µ, µ̄).

2. Matrix elements

The matrix elements of the trilinear term appearing in the
SIII Skyrme functional are given by

v̄
ρρρ
µνλµνλ = 6

∫
d3rAρρρ Wρ

µµ(rqµ) Wρ
νν(rqν) Wρ

νν(rqλ).

(B11)

3. Correction

Finally, the spurious term to be removed from the trilinear
part of the SIII Skyrme functional is

EN
CG = 12

∑
µ>0

VNµ

SGµ

∫
d3r

[
Wρ

µµ(rqµ)
]2

×
[ ∫ 2π

0
dφ

e−iφNλ

2πc2
Nλ

ρqλ
(rφ)

∏
ν>0

qν=qλ

(
u2

ν + v2
νe

2iϕ
)]

,

(B12)

where the last term in square brackets [· · ·] is nothing but
the particle-number-projected local density of nucleons with
isospin qν �= qµ.
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[13] S. Åberg, H. Flocard, and W. Nazarewicz, Annu. Rev. Nucl.

Part. Sci. 40, 439 (1990).
[14] W. Nazarewicz, Prog. Part. Nucl. Phys. 28, 307 (1992).
[15] W. Nazarewicz, Int. J. Mod. Phys. E 2, 51 (1993).
[16] P. G. de Gennes, Superconductivity of Metals and Alloys

(Benjamin, New York, 1966).
[17] P.-H. Heenen, P. Bonche, J. Dobaczewski, and H. Flocard, Nucl.

Phys. A561, 367 (1993).
[18] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A696,

467 (2001).
[19] M. Samyn, S. Goriely, M. Bender, and J. M. Pearson, Phys. Rev.

C 70, 044309 (2004).
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