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Configuration mixing within the energy density functional formalism: Removing spurious
contributions from nondiagonal energy kernels
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Multi reference calculations along the lines of the generator coordinate method or the restoration of broken
symmetries within the nuclear energy density functional (EDF) framework are becoming a standard tool in nuclear
structure physics. These calculations rely on the extension of a single-reference energy functional, of the Gogny or
the Skyrme types, to nondiagonal energy kernels. There is no rigorous constructive framework for this extension
so far. The commonly accepted way proceeds by formal analogy with the expressions obtained when applying
the generalized Wick theorem to the nondiagonal matrix element of a Hamilton operator between two product
states. It is pointed out that this procedure is ill defined when extended to EDF calculations as the generalized
Wick theorem is taken outside of its range of applicability. In particular, such a procedure is responsible for
the appearance of spurious divergences and steps in multi reference EDF energies, as was recently observed in
calculations restoring particle number or angular momentum. In the present work, we give a formal analysis of
the origin of this problem for calculations with and without pairing, i.e., constructing the density matrices from
either Slater determinants or quasiparticle vacua. We propose a method to regularize nondiagonal energy kernels
such that divergences and steps are removed from multi reference EDF energies. Such a removal is a priori
quasiparticle-basis dependent. A special feature of the method we use to proceed to the actual regularization is
that it singles out one basis among all possible ones. The regularization method is applicable to calculations based
on any symmetry restoration or generator coordinate but is limited to EDFs depending only on integer powers of
the normal and anomalous density matrices. Eventually, the method is formally illustrated for particle-number
restoration and is specified to configuration mixing calculations based on Slater determinants.
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I. INTRODUCTION

The nuclear energy density functional (EDF) approach is
the microscopic tool of choice to study medium-mass and
heavy nuclei in a systematic manner [1]. The EDF approach
used in nuclear physics has formal similarities with density
functional theory (DFT) [2–8] that provides a formal frame-
work to obtain the exact ground-state energy and one-body
density of electronic many-body systems in condensed-matter
physics and quantum chemistry [9]. However, and even if it
is often referred to as nuclear DFT [10–15], the nuclear EDF
method has deeply rooted conceptual differences with standard
DFT; e.g., Ref. [16].

One of the major challenges of the nuclear many-body
problem is that atomic nuclei are self-bound strongly corre-
lated composite systems that tend to display strong collective
modes and individual excitations on the same energy scale.
This makes the modeling of nuclei differ from that of electronic
systems in external potentials to which DFT is heavily applied.
The underlying assumption to nuclear EDF approaches is that
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correlations can be divided into different classes that can be
incorporated through successive refinements of the method.
While short-range in-medium correlations are subsumed into
a suitable energy density functional, long-range correlations
associated with collective modes must be incorporated more
explicitly. On this basis, two different levels of EDF calcula-
tions coexist in nuclear physics.

On the first level, inappropriately called self-consistent
mean-field theory, the EDF is constructed from a one-body
density matrix that corresponds to a single product state.
This reference state is either taken as a Slater determinant,
abusively referred to as Hartree-Fock (HF) state, or as a
quasiparticle product state, abusively referred to as Hartree-
Fock-Bogoliubov (HFB) state. In the present work, this level
of description will be referred to as the single reference energy
density functional (SR-EDF) method. Within the SR-EDF
approach, static correlations associated with collective modes
are incorporated through the use of a symmetry-breaking
product state.

On the second level, several of those symmetry-breaking
product states are mixed in the framework of the generator
coordinate method (GCM) with the aim of restoring broken
symmetries, allowing for fluctuations of the order parame-
ters of broken symmetries or both. Such a multi reference
(MR) EDF approach allows one to incorporate correlations
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TABLE I. List of acronyms repeatedly
used in the text.

DFT density functional theory
EDF energy density functional
SWT standard Wick theorem
GWT generalized Wick theorem
SR single reference
MR multi reference
PNR particle-number restoration
PNP particle-number projection
BMZ Bloch-Messiah-Zumino

associated with large amplitude collective motion beyond the
static correlations that are easily treated within the SR-EDF
method. The energy functional at play in MR-EDF calculations
depends on the transition density matrices constructed from all
possible pairs of product states that enter the MR set.

Until now, there exists neither a rigorous formal framework
underlying MR-EDF calculations nor a guidance from DFT.
Indeed, the nuclear MR-EDF method is outside the scope of
existing implementations of the Hohenberg-Kohn theorem,
even of those dealing specifically with symmetry breaking
issues [17–20]. As far as motivating MR-EDF calculations
based on the GCM, hybrid approaches used in electronic
systems that combine a density functional for diagonal energy
kernels and (sometimes scaled) matrix elements of the bare
Coulomb force for off-diagonal ones [21] have to be ruled out
because of the different nature of the nuclear force and the
more complex correlations it induces in the nuclear medium.
There is a consensus among practitioners that the SR-EDF
should be recovered for any diagonal energy kernel appearing
in the MR-EDF and that the nondiagonal kernels should be
extrapolated from the SR-EDF on the basis of the generalized
Wick theorem (GWT) [22] that provides an efficient tool to
evaluate the matrix elements of any operator between two
different product states. For diverse reasons, however, SR and
MR-EDFs do not reduce to matrix elements of a Hamiltonian
operator between many-body states. As a consequence, the
procedure outlined above to generate the MR-EDF is not free
from problems and inconsistencies.

The present article is the first article of a trilogy where
we address one of the problems arising from the current lack
of a stringent and consistent constructive framework for the
MR-EDF method, namely the appearance of divergences and
finite steps that have been recently identified in the context
of particle-number restoration (PNR) [23–27]. We propose
here a general cure for any type of configuration mixing. In
Ref. [28] the method is applied to PNR while in Ref. [29] the
specific case of an EDF depending of noninteger powers of the
density matrix is discussed. The spurious steps and divergences
arise typically as one scans the symmetry-restored energy as
a function of a certain degree of freedom; e.g., looking at the
PNR potential energy surface of a nucleus as a function of
axial quadrupole deformation. For reasons that will become
clear below, pure PNR is the only case where the divergent
contributions to the energy functional can be traced back

rather easily although no practical solution to this problem
has been proposed so far. It is important to realize, however,
that similar problems may appear for any MR calculation
performed within the EDF framework, although they will
be hidden in the formal expressions and may be masked
by the numerical representation. A pathology that resembles
the one identified for PNR has recently been seen in EDF
calculations, without explicit treatment of pairing, aiming at
restoring angular momentum [30], whereas a similar problem
was identified much earlier in the GCM-type mixing of zero-
and two-quasiparticle states [31].

It is essential to state that these difficulties are inherent to
the EDF formulation of MR calculations and do not exist when
the energy relates to the strict average value of a Hamiltonian
in a wave function [23–25]. As the major part of the article
consists of lengthy formal manipulations that will be easier to
follow if anticipating the results, we now summarize the three
goals of the present work:

(i) We want to introduce a formal framework that allows
the unambiguous identification of terms in the EDF
that are responsible for divergences and finite steps
in MR-EDF calculations, irrespective of the nature of
the configuration mixing involved. As will be shown
below, finding the canonical basis of the Bogoliubov
transformation that links two HFB states allows us
to do so. In that basis, the nondiagonal energy kernel
associated with those two vacua and that enters the MR
energy can be constructed on the basis of the standard
Wick theorem (SWT) instead of the generalized Wick
theorem. This will be the key to our analysis.

(ii) Guided by the strict Hamiltonian case, several sources
of problems, including those responsible for diver-
gences and steps, are unambiguously identified within
the EDF context.

(iii) We provide a minimum but general solution to the
problem of divergences and steps in MR-EDF calcu-
lations for a particular class of energy functionals. To
that end, we propose a correction that removes exactly
the difference between the GWT-based and the SWT-
based nondiagonal energy kernels. The latter correction
preserves the continuity condition between SR- and
MR-EDFs. Finally, we provide explicit expressions
for particle-number restoration and mixing of Slater
determinants.

The article is organized as follows: Section II briefly
reviews general aspects of nuclear EDF approaches.
Section III is devoted to the actual introduction to SR- and
MR-EDF methods. First, the relevant similarities and key
differences between Hamiltonian-based calculations and EDF
ones are worked out. Second, the connection between the SR
functional and the nondiagonal energy kernels at play in the
MR formalism is discussed. In Sec. IV, we demonstrate that
the usual definition of nondiagonal energy kernels based on
the GWT leads to ill-defined calculations when performed
within the EDF approach. In Sec. V we propose a correction
removing the spurious contributions to the energy functional
that is applicable to any MR-EDF calculation. The correction
is discussed in detail in Secs. VI and VII for two applications
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of current interest. Conclusions and perspectives are given in
Sec. VIII.

II. GENERAL ASPECTS OF THE NUCLEAR EDF
APPROACH

The nuclear energy density functional integrates out short-
range correlations associated with noncollective excitations
on a given vacuum, in particular the strong tensor correlations
from the vacuum nucleon-nucleon force, thereby introducing
higher-order density dependencies into the energy functional.
The diagrams that are summed up in the particle-hole and
particle-particle channels are different [32,33], which strongly
suggests the use of different effective vertices in those two
channels of the EDF. Lacking an explicit connection to
first principles, existing functionals are constructed using the
symmetries of the nuclear Hamiltonian as a guiding principle,
whereas their parametrizations are adjusted phenomenologi-
cally [1].

Allowing the reference state to break the symmetries
of the eigenstates of the underlying Hamiltonian is a way
to incorporate static long-range correlations associated with
collective modes, as, for example, deformation and pairing,
with very moderate effort. However, the breaking of sym-
metries (translational, rotational, parity, and particle number,
to name the most current ones) forbids a trivial connection
of the nuclear SR-EDF formalism to the Hohenberg-Kohn
(HK) theorem that is the foundation of DFT [16]. Indeed,
the density that minimizes the exact HK energy functional
must reflect the symmetries of the exact ground state of
the system. In fact, the appearance of symmetry-breaking
solutions in nuclear EDF calculations underlines two important
elements: (i) it is crucial and numerically not too difficult
to grasp the most important static correlations using rather
simple approximate functionals and a single-determinantal
reference state, at the price of violating the HK theorem, and
(ii) kinematical correlations associated with the corresponding
symmetry modes (Goldstone modes) as well as the correlations
due to the fluctuation of their order parameters are extremely
difficult to incorporate into a single-determinantal approach.
In other words, correlations associated with highly nonlocal
processes such as large-amplitude collective motions can
hardly be described within a SR approach based on a standard,
nearly local EDF.

It is possible to improve on the SR level by extending
the EDF formalism to a multi reference framework, inappro-
priately referred to as beyond-mean-field calculations in the
literature. In a MR calculation, a set of (usually) nonorthogonal
product states of reference are combined to construct a more
general energy functional that involves the computation of
nondiagonal norm overlaps and energy kernels between all
pairs of vacua. Such MR-EDF calculations are inspired by
projection techniques and the GCM whose formalisms are
well documented for Hamiltonian-based calculations [34–37].
Symmetry restoration and GCM provide an efficient way to
incorporate both collective and single-particle dynamics into
a coherent quantum-mechanical formulation. In particular, the
GCM allows the inclusion of correlations associated with the

fluctuation of the order parameters of the broken symmetries.
Group theoretical considerations [38], the random-phase
approximation limit of GCM-type EDF calculations [39],
as well as the requirement of continuity between SR and
MR functionals discussed in the introduction can be used
to constrain the form of the energy kernels to be used in a
MR formalism. In particular, it can be shown that the latter
energy kernels have to be constructed exclusively from transi-
tion normal and anomalous one-body density matrices, cf.
Eqs. (14)–(16) below, between the two reference states
involved. These transition density matrices, however, are
at the origin of a major difficulty that arises in existing
implementations of MR-EDF calculations.

It is noteworthy that the description of particular systems
and phenomena in electronic systems also calls for extensions
of the Kohn-Sham implementation of HK-DFT to deal with
symmetry-breaking solutions [17–20]. The latter extensions
are still connected to the HK theorem and differ from MR-EDF
calculations performed in nuclear physics to restore broken
symmetries.

III. FROM SINGLE-REFERENCE TO MULTI REFERENCE
FUNCTIONAL FRAMEWORKS

We consider the nuclear Hamiltonian under the form

H =
∑
ij

tij a
+
i aj + 1

4

∑
ijkl

v̄ijkl a
+
i a+

j al ak, (1)

which, for the sake of transparency of the chain of arguments
below, has been limited to the sum of the kinetic energy
and a two-body interaction v12, represented through its
antisymmetrized matrix elements v̄ijkl . For the moment we
also do not distinguish between protons and neutrons. The
extension to the case of two nucleon species and three-body
or even multibody forces of higher order is straightforward
(although cumbersome) and will not influence our conclusions.

It is important to stress at this point that, in the present
article, H defined above strictly refers to a “vacuum” nuclear
Hamiltonian operator; e.g., its two-body part reproduces
nucleon-nucleon scattering data up to relevant laboratory
energies. Later in this section we refer to effective Hamil-
tonians, either in the context of a truncated single-particle
space or because they resum correlations through an explicit
dependence on the density of the system. It happens that
replacing the vacuum Hamiltonian H by a genuine operator
defined within a truncated single-particle space would not
modify the following discussion regarding the technical issue
addressed in the present article, whereas using a density-
dependent“Hamiltonian” is at the origin of some of the
problems we are concerned with.

A. Single-reference framework

In the SR approach, the reference state is taken to be
an independent-quasiparticle state |�0〉, most conveniently
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written as a quasiparticle vacuum

|�0〉 = C0

∏
ν

αν |0〉, (2)

where C0 is a complex normalization coefficient. The set
of quasiparticle operators {αν, α

+
ν } is obtained from the

complete basis of single-particle operators {ai, a
+
i } through

a Bogoliubov transformation characterized by the matrices
(U 0, V 0)

α+
ν =

∑
i

(
U 0

iνa
+
i + V 0

iν ai

)
. (3)

The index “0” appearing in |�0〉 as well as in U 0 and
V 0 denotes an ensemble of collective coordinates that fully
characterizes the product state |�0〉, either regarding broken
symmetries or the average value of a constraining operator.
This label is of no explicit importance at the SR level but will
become mandatory for MR calculations.

1. Strict HFB approach

In the strict HFB approach [40], the reference state |�0〉
approximates the actual ground state of the system in such a
way that the approximate energy is obtained through

E0 = 〈�0|H |�0〉
〈�0|�0〉 . (4)

Using the SWT [41], Eq. (4) can be expressed as

E0 =
∑
ij

tij ρ
00
ji + 1

2

∑
ijkl

v̄ijklρ
00
ki ρ

00
lj

+ 1

4

∑
ijkl

v̄ijkl κ
00∗
ij κ00

kl , (5)

where ρ00 is the intrinsic (SR) normal one-body density matrix
and κ00 is the intrinsic anomalous density matrix (also called
pairing tensor)

ρ00
ij ≡ 〈�0|a+

j ai |�0〉
〈�0|�0〉 = (V 0∗V 0T )ij , (6)

κ00
ij ≡ 〈�0|ajai |�0〉

〈�0|�0〉 = (V 0∗U 0T )ij , (7)

κ00∗
ij ≡ 〈�0|a+

i a+
j |�0〉

〈�0|�0〉 = (V 0U 0+)ij , (8)

associated with the reference state |�0〉. The normal density
matrix is Hermitian ρ00

ij = ρ00∗
ji , whereas the anomalous

density matrix is skew symmetric κ00
ij = −κ00

ji .
The energy E0 given by Eq. (5) can be seen as the particular

energy functional E[ρ00, κ00, κ00∗] that results from taking
the expectation value of the Hamiltonian in the product state.
This is what is referred to as the strict HFB approximation.
The minimization of E[ρ00, κ00, κ00∗] with respect to all
independent degrees of freedom (ρ00

ii as well as ρ00
ij , ρ00∗

ij , κ00
ij ,

and κ00∗
ij for j < i), under the constraints that the reference

state |�0〉 remains a quasiparticle vacuum and that the average
particle number 〈�0|N̂ |�0〉/〈�0|�0〉 has the fixed value N0,
leads to the HFB equation that determines (U 0, V 0) and the
densities.

So far, we have not discussed the characteristics of the
nuclear Hamiltonian H . Traditional nucleon-nucleon hard-
core potentials are not perturbative [42], which makes any
attempt to use the strict HFB approximation to the exact
nuclear many-body problem useless. The recently proposed
soft-core interactions, however, seem to make the nuclear
many-body problem perturbative [43]. Still, one must go
beyond lowest order to obtain close to converged results and
the strict HFB approximation is not quantitatively viable.
The situation is further complicated by the necessity to treat
three-body and maybe higher-body forces in the nuclear
many-body problem [43–47]. As a consequence, one often
resorts to an effective Hamiltonian that implicitly incorporates
correlations brought by the physics outside the model space
used in a given calculation. Traditionally, there are two major
classes of effective interactions for self-consistent mean-field
calculations that represent two different philosophies and
strategies to reduce the nuclear many-body problem to a
tractable number of relevant degrees of freedom. There are (i)
approaches that can be seen as lowest-order approximations
to the interacting shell model [48], formulated in terms of
effective (often schematic) Hamiltonians in a strict HFB
approach using a schematic shell-model space of a very few
spherical harmonic-oscillator j shells [34], (ii) approaches that
use the full model space of occupied particles together with
a density-dependent effective interaction, which are what is
nowadays recognized as an approximation to a more general
SR-EDF formalism.

2. EDF approach

The EDF approach builds on the last comment. In the
context of an EDF formalism, the reference product state |�0〉
used to construct the one-body normal and anomalous density
matrices [(6)–(8)] is to be seen as an auxiliary state that is not
meant to be a good approximation of the actual ground-state
wave function, in a similar manner as in DFT for electronic
systems [4–9,49]. The EDF and the HFB-like equation that
results from its minimization contain higher-order correlations
than those provided by the strict Hartree, Fock, and Bogoliubov
diagrams written in terms of the vacuum interaction. It is
important to note that, as opposed to the strict HFB method,
the SR-EDF approach does not rely on the Ritz variational
principle in the sense that the minimal energy obtained from
an approximate energy functional may be below the actual
ground-state energy of the system.

Thus, instead of the expectation value of H , the starting
point of the method is an energy functional E[ρ00, κ00, κ00∗]
of the normal and anomalous density matrices. Considering the
simple case of a bilinear functional to stay formally close to
the strict HFB approach with a two-body interaction, a typical
EDF can be written as

E[ρ00, κ00, κ00∗] ≡ Eρ + Eρρ + Eκκ

=
∑
ij

tij ρ
00
ji + 1

2

∑
ijkl

v̄
ρρ

ijkl ρ
00
ki ρ

00
lj

+ 1

4

∑
ijkl

v̄κκ
ijkl κ

00∗
ij κ00

kl . (9)
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In Eq. (9), the matrix elements of the effective vertex v̄ρρ

might or might not be antisymmetric; e.g., due to the Slater
approximation used to treat the exchange contribution from
Coulomb or by dropping specific terms of the Skyrme
functional [1]. Due to the antisymmetry of κ , however, only
the antisymmetrized part of the vertex is probed in the last term
of Eq. (9) and one can always take v̄κκ to be antisymmetric,
which we will do here. In any case, and even though Eqs. (5)
and (9) look very similar, v̄ρρ and v̄κκ should not be seen as
interactions in the real sense and are likely to be different. Of
course, they are in principle related to the original vacuum
interaction but, in the absence of a constructive framework,
the link remains implicit. Popular energy density functionals
for calculations along these lines [1] are the nonrelativistic
Fayans [12], Gogny [50], and Skyrme [51], as well as the
relativistic [52] ones.

B. Multi reference extension

Because the nuclear Hamiltonian is invariant under cer-
tain symmetry transformations, the independent quasiparticle
state |�0〉 should be an eigenstate of appropriate linear
combinations of the infinitesimal generators. However, the
simultaneous preservation of symmetries and the inclusion of
long-range correlations associated with large-amplitude col-
lective motions is impossible within the strict HFB formalism
and remains untractable within a SR-EDF formalism. As a
result, the product state |�0〉 is permitted to spontaneously
break the symmetries of the true eigenstates to lead to
energetically favored solutions; an ambiguity of mean-field
and EDF approaches for which Löwdin coined the notion of
“symmetry dilemma” in Ref. [53].

To solve that ambiguity, one resorts to a multi reference ex-
tension of the method [1]. The starting point consists of a finite
set of product states {|�0〉; 0 ∈ MR}, where {0 ∈ MR} denotes
different realizations of the set of collective coordinates
that characterize a reference state. If focusing on symmetry
restoration, the states belonging to the MR set correspond
to one another by the application of a transformation of the
symmetry group under consideration. However, the label of
the product states in the MR set can also refer to different
values of the order parameter of the broken symmetry; the
goal of mixing such states being to incorporate correlations
associated with fluctuations of that order parameter. In such a
case, the operator that links two vacua in the set is not known
analytically.

1. Strict projected-GCM approach

In the strict projection-GCM approach, one constructs the
projected-GCM state from the product states in the MR set
through

|�k〉 =
∑

{0}∈ M R

f k
0 |�0〉, (10)

where the determination of the weight functions f k
0 is

discussed below. The index k denotes that not only the ground
state but also excited states can be extracted, by projection,

diagonalization, or both. In the strict projection-GCM approx-
imation, the many-body energy is approximated by the average
value of the nuclear Hamiltonian in the projected-GCM wave
function

Ek ≡ 〈�k|Ĥ |�k〉
〈�k|�k〉 (11)

=
∑

{0,1}∈MR f k∗
0 f k

1 E[0, 1] 〈�0|�1〉∑
{0,1}∈MR f k∗

0 f k
1 〈�0|�1〉

, (12)

where the set of energy E[0, 1] ≡ 〈�0|Ĥ |�1〉/〈�0|�1〉 and
norm 〈�0|�1〉 kernels constitute the basic ingredients of the
method. Note that Eq. (12) is nothing but the energy in the
(Hamiltonian-based) GCM [35,36]. From a formal point of
view, symmetry restoration is a special case of the GCM.
Indeed, in that case |�k〉 can be expressed as a projector acting
on one of the symmetry-breaking product state in the MR set.
Whereas in the GCM the weight functions f k are determined
variationally from the Hill-Wheeler-Griffin equation [54,55],
they are dictated by properties of the relevant symmetry group
when performing symmetry restoration.1

The energy kernel E[0, 1] can be evaluated through the use
of the GWT [22]

EGWT[0, 1] =
∑
ij

tij ρ
01
ji + 1

2

∑
ijkl

v̄ijklρ
01
ki ρ01

lj

+ 1

4

∑
ijkl

v̄ijklκ
10∗
ij κ01

kl . (13)

It is essential for the present work to note that Eq. (13) is
exactly of the same functional form as Eq. (5), except that
intrinsic density matrices {ρ00, κ00, κ00 ∗} have been replaced
by transition density matrices defined as

ρ01
ij ≡ 〈�0|a+

j ai |�1〉
〈�0|�1〉 , (14)

κ01
ij ≡ 〈�0|ajai |�1〉

〈�0|�1〉 , (15)

κ10∗
ij ≡ 〈�0|a+

i a+
j |�1〉

〈�0|�1〉 , (16)

where κ10∗
ij is in general not the complex conjugate of κ01

ij

anymore. Given Eq. (13), it is clear that any “diagonal” energy
kernel, i.e., obtained for |�1〉 = |�0〉, is equal to the strict HFB
energy, Eq. (5), so that the continuity requirement between the
SR energy and MR energy kernels stated in the introduction is
trivially fulfilled.

As in the strict HFB approximation, a strict projected-GCM
calculation performed in terms of the vacuum nuclear Hamil-
tonian does not lead to quantitatively satisfactory results for
all observables of interest. Still, the restoration of the Galilean
invariance of spherical HF states [56,57] was studied within
such a scheme; i.e., omitting the density-dependent part of
the Gogny interaction and keeping exactly all exchange terms

1The weight functions are fully determined only if the symmetry
group is Abelian.
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in the computation of MR kernels. In fact, MR calculations
employing Hamiltonian operators are rather performed within
a limited valence space, in the spirit of the interacting shell
model, either of projected-GCM type [58–61] or using more
elaborate schemes to select the set of reference states like in
the MONSTER and VAMPIR approaches [62–64].

2. EDF approach

To perform quantitatively relevant calculations using the
full model space of single-particle states, one has to turn to an
energy density functional variant of MR calculations. Guided
by Eq. (12), the many-body energy is defined in the MR-EDF
approach by

Ek ≡
∑

{0,1}∈MR f k∗
0 f k

1 E[0, 1] 〈�0|�1〉∑
{0,1}∈MR f k∗

0 f k
1 〈�0|�1〉

, (17)

which now depends only implicitly on the projected-GCM
state of Eq. (10). Indeed, the energy Ek is not the average
value of H , or any genuine operator,2 in |�k〉 and it cannot be
re-expressed into Eq. (11). Rather, Ek is to be seen as a more
general functional of all product states belonging to the MR set
{|�0〉; 0 ∈ MR} as each energy kernel E[0, 1] is a functional
of a pair of states {|�0〉; |�1〉} in the set.

Although Eq. (17) provides the general ground to calculate
the energy of the system within the MR-EDF formalism, there
remains the question of how the energy kernel E[0, 1] should
be constructed and what its connection to the SR energy
functional E[ρ00, κ00, κ00∗] introduced in the previous section
is. Guided by the structure of the expressions in the strict HFB
and GCM theories, Eqs. (5) and (13), practitioners of nuclear
EDF methods [25,39,65–68] have used the natural extension
E[0, 1] ≡ E[ρ01, κ01, κ10∗] to define the MR energy kernel
entering Eq. (17) from the SR energy functional. Using the
bilinear SR functional of Eq. (9) for illustration, this leads to
a kernel of the form

EGWT[0, 1] ≡
∑
ij

tij ρ01
ji + 1

2

∑
ijkl

v̄
ρρ

ijkl ρ
01
ki ρ

01
lj

+ 1

4

∑
ijkl

v̄κκ
ijkl κ

01∗
ij κ10

kl , (18)

which is labeled GWT because the definition E[0, 1] ≡
E[ρ01, κ01, κ10∗] amounts to using the generalized Wick
theorem as a motivation to define the MR energy kernel from
the SR-EDF.

Calculations along these lines using realistic EDFs have
been performed for the restoration of particle numbers [25,68]
and angular momentum of axially deformed HFB states [69–
72], of angular momentum of cranked HF states [30,73], and
of parity of octupole deformed HFB states [74,75]. Some of
those calculations also included a GCM-type configuration

2A density-dependent operator, that is, an operator that depends
on the solution, is not considered in the present work as a genuine
operator.

mixing along a collective degree of freedom related to spatial
deformation.

Other prescriptions than the simple replacement of ρ00
ki with

ρ01
ki have been tried but were found to lead to unrealistic results

[39]. The prescription E[0, 1] ≡ E[ρ01, κ01, κ10∗] ensures that
the continuity requirement between the SR and MR levels of
description is fulfilled. For symmetry restorations, it can also
be shown that the functional should depend only on transition
densities [38].

However, the GWT-based prescription to define E[0, 1]
causes serious problems as was recently illustrated for PNR
in Refs. [25,26] and confirmed from a different point of
view in Ref. [28], after earlier warnings [23,24,31] were not
recognized. The most spectacular manifestation relates to the
appearance of divergences in the PNR energy when two vacua
in the MR set are orthogonal, which in pure PNR applications
happens for a relative gauge angle of π/2 when a pair of single-
particle states has the occupation probability of 1/2 [25]. While
this poses no problem in the strict PNP-HFB method [23,24],
this makes PNR ill defined within the MR-EDF approach.
In fact, the energy functional contains not only divergences
when encountering orthogonal vacua but also finite spurious
contributions even when the two vacua are not orthogonal [28]
as will be illustrated later in the present work. It is the goal of
the following sections to introduce a method that allows the
identification and removal of these spurious terms from any
type of MR-EDF calculations.

It is noteworthy that, to the best of our knowledge, the
continuity requirement that is always used as a guiding
principle to construct nuclear MR energy kernels is never
enforced in MR calculations for electronic systems. There,
hybrid approaches that use a density functional for diagonal
kernels and the (sometimes scaled) bare Coulomb force
for nondiagonal kernels are used instead [19,20,76,77], an
approach that is facilitated by the fact that the correlation and
exchange parts of the energy are a mere correction to the direct
Coulomb interaction in most Coulomb systems.

IV. ENERGY KERNELS IN MR APPROACHES

Although the main point of the present work is to stress the
differences between strict HFB/projected-GCM approaches
and EDF ones, the analysis of the former does offer the key
to the understanding of the problems encountered in the latter.
As a result, we first concentrate on the strict projected-GCM
method and compare the computation of the energy kernel
〈�0|H |�1〉/〈�0|�1〉 as obtained from both the GWT and the
SWT in a suitable basis.

A. Notation and preliminary discussion

In this section we summarize the elements that will be
needed below for the analysis of MR-EDF calculations. The
key ingredient will be to find a (quasiparticle) basis that allows
the computation of the energy kernel 〈�0|H |�1〉/〈�0|�1〉 in
terms of the SWT instead of the commonly used GWT. The
question if and how this is possible has been addressed already
from various perspectives in the past [36,58,78,79].
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(i) We write the two vacua involved as products of
the two corresponding (different) sets of quasiparticle
operators, denoted by αν and βν , respectively,

|�0〉 = C0

∏
ν

αν |0〉,
(19)

|�1〉 = C1

∏
µ

βµ|0〉.

The moduli of the two complex constants C0 and C1

are fixed by the normalization of the states, while their
phases can be set to any value.

(ii) We introduce two sets of matrices (U 0, V 0) and
(U 1, V 1) that represent the Bogoliubov transformations
between an arbitrary, but common, single-particle
basis {ai, a

+
i } and the two sets of quasiparticle

states

α+
ν ≡

∑
i

(
U 0

iν a+
i + V 0

iνai

)
, (20)

β+
ν ≡

∑
i

(
U 1

iν a+
i + V 1

iν ai

)
. (21)

(iii) One realizes that the transformation that expresses the
quasiparticle operators {βµ, β+

µ } associated with |�1〉 in
terms of the quasiparticle operators {αν, α

+
ν } associated

with |�0〉 is canonical, which means it has the form of
a general Bogoliubov transformation

β+
µ =

∑
ν

(
Aνµ α+

ν + Bνµαν

)
, (22)

with the matrices A and B satisfying (see Appendix E
of Ref. [36])

A ≡ U 0+
U 1 + V 0+

V 1, (23)

B ≡ V 0T

U 1 + U 0T

V 1. (24)

To avoid any misunderstanding in what follows, we
stress that the Bogoliubov transformation (22) repre-
sented by the A and B matrices has nothing to do with
pairing correlations. As a consequence, its ingredients
have a particular meaning and interpretation that might
seem unusual and unexpected (e.g., see Sec. VII). We
also stress that no restriction or symmetry is presently
imposed on the reference states {|�0〉; 0 ∈ MR}. They
might break time-reversal invariance and have an odd
number-parity [80,81] (describing odd nuclei), be two-
quasiparticle states (describing diabatic excitations), or
be higher quasiparticle states. The only restriction is
that all reference states belonging to the MR set have
the same definite number parity.

(iv) The matrices A and B defined through Eqs. (22)–(24)
can be decomposed into a sequence of three simpler
transformations thanks to the Bloch-Messiah-Zumino
(BMZ) theorem [82,83]

A ≡ DĀC, B ≡ D∗B̄C. (25)

where D (C) is a unitary transformation that only
mixes quasiparticle creation/annihilation operators
{α+

ν }/{αν}({β+
µ }/{βµ}) among each other, whereas Ā

and B̄ represent a special Bogoliubov transformation.
The transformations D and C of the decomposition
(25) introduces two intermediate quasiparticle bases
{α̃ν, α̃

+
ν } and {β̃µ, β̃+

µ } with different properties from
the two original ones {αν, α

+
ν } and {βµ, β+

µ }. As a
quasiparticle vacuum is invariant under a unitary trans-
formation among quasi-particle creation/annihilation
operators that define it, one could initially choose |�0〉
and |�1〉 such that C = D. In practice, however, this is
usually not the case as |�0〉 and |�1〉 are constructed
independently from each other and have to be seen
as given inputs to a MR calculation. Finding the
transformation that allowed to set C = D would consti-
tute an effort similar to performing the decomposition
(25). The advantage of the Bloch-Messiah-Zumino
decomposition of the transformation (A,B) becomes
clear when looking at the two intermediate sets of
quasiparticle operators α̃+

ν and β̃+
ν

α̃+
ν ≡

∑
µ

Dµνα
+
µ , β̃+

ν ≡
∑

µ

C∗
νµβ+

µ . (26)

The two product states |�0〉 and |�1〉 are still vacua
for the two sets of quasiparticle operators {α̃ν, α̃

+
ν } and

{β̃ν, β̃
+
ν }, respectively. In addition, the transformation

expressing the latter in terms of the former takes
the simple BCS-like form of a special Bogoliubov
transformation

β̃+
ν = Āνν α̃+

ν + B̄ν̄ν α̃ν̄ . (27)

The matrices Ā and B̄ are 2 × 2 block-diagonal (after a
suitable rearrangement of the sequence of indices), with
the nonvanishing blocks Ā(p) and B̄(p) being defined
as

Ā(p) ≡
(

Āpp 0
0 Āp̄p̄

)
, B̄(p) ≡

(
0 B̄pp̄

B̄p̄p 0

)
, (28)

where Āpp = Āp̄p̄ and B̄pp̄ = −B̄p̄p. The block-
diagonal structure of Ā and B̄ shows that the quasi-
particles {α̃ν, α̃

+
ν } come in conjugated pairs (ν, ν̄),

whose nature will be discussed below. As usual, the
block structure can be used to formally separate the
corresponding quasiparticle basis into two halves, even
though it is not necessary at this point to specify which
quantum number is used to distinguish them. For the
rest of the article, we introduce the convention that the
label p refers to ν > 0 while p̄ refers to ν < 0. Thus,
when ν = p(p̄), then ν̄ = p̄(p).

(v) Standard BCS techniques allow us to express |�1〉 in
terms of |�0〉 through

|�1〉 = C̃01

∏
p>0

(Ā∗
pp + B̄∗

pp̄ α̃+
p α̃+

p̄ )|�0〉, (29)

where C̃01 is a complex normalization factor whose
properties will be discussed in Sec. IV B.

There are a few further remarks to be made before we continue.
When Ā∗

pp �= 0 for all p, Eq. (29) is nothing but Eq. (E.39) of
Ref. [36]. However, the form above is also valid when |�0〉 and
|�1〉 are orthogonal, i.e., when at least one pair (p, p̄) is such
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that Ā∗
pp = 0 (i.e., B̄∗

pp̄ = 1). This situation corresponds to
Eq. (E.38) of Ref. [36] with n even and “blocked” quasiparti-
cles coming in pairs (p, p̄).3 One such case occurs when |�1〉
is obtained as a two-quasiparticle excitation (p0, p̄0) on top of
|�0〉. This amounts to having (Āpp = 1, B̄pp̄ = 0) for all pairs
but the pair (p0, p̄0) for which (Āp0p0 = 0, B̄p0p̄0 = 1). In fact,
there are two different situations to consider depending on the
properties of the matrix D. If the latter is the unit matrix, the
two-quasiparticle states created are conjugated in the original
basis {αµ, α+

µ } used to characterize |�0〉. However, other
two-quasiparticle excitations on top of |�0〉 can be generated
by considering a nontrivial D transformation.

The above procedure to express |�1〉 with respect to |�0〉 is
close to the method discussed in Ref. [78], although the latter
relies on the Thouless representation of quasiparticle vacua
[84] that requires taking a more explicit care of orthogonal
states. References [58,78,79] are also dedicated to finding a
canonical representation appropriate to nondiagonal overlaps.
However, they focus on the more difficult task of finding a
basis where both vacua are simultaneously put into a canonical
form. In the present work, we are interested only in putting the
Bogoliubov transformation (A,B) describing the transition
between the two vacua into a canonical form but not the vacua
themselves.

B. Overlaps and one/two-body contractions

The form given by Eq. (29) is very convenient to express
the overlap and the matrix element of operators between the
states |�0〉 and |�1〉. First, let us precise the nature of the
normalization constant C̃01. As already said, the two vacua
are usually taken to be normalized through an appropriate
choice of |C0| and |C1| in Eq. (19). Calculating

〈�1|�1〉 = |C̃01|2〈�0|�0〉
∏
p>0

(|Āpp|2 + |B̄pp̄|2) (30)

from Eq. (29) and using that |Āpp|2 + |B̄pp̄|2 = 1 for all p, the
normalization of the two vacua leads to |C̃01|2 = 1. However,
the latter result does not fix the phase of C̃01 that remains when
calculating the norm overlap between the two vacua

〈�0|�1〉 = C̃01

∏
p>0

Ā∗
pp = C̃01

√
det(Ā∗). (31)

Equation (31) differs from the well-known Onishi-Yoshida
formula [85] by that phase factor C̃01 that depends on the
chosen convention, that is, on the explicit form of the states
|�0〉 and |�1〉 taken as an input of the MR calculation. We
will show explicitly in Sec. VI how this works for PNR where
the phase C̃01 can be obtained analytically for all pairs of
vacua involved in the calculation. Unfortunately, this is not
true for more involved MR calculations, as, for example,
when superposing particle-number and angular-momentum
restorations together with GCM-type configuration mixings.

3The conjugated pairs {α̃†
ν, α̃

+
ν̄ } are not necessarily related through

time-reversal transformation.

In such a case, one must design numerical methods to follow
the phase C̃01 [59,78,86,87].

For reasons that will become clear in a moment, we define
for p �= q the quantities

〈�0|�1, p〉 ≡ C̃01

∏
p′>0
p′ �=p

Ā∗
p′p′ , (32)

〈�0|�1, p, q〉 ≡ C̃01

∏
p′>0

p′ �=p,q

Ā∗
p′p′ , (33)

using the notations of Ref. [23]. In Eqs. (32) and (33),
〈�0|�1, p〉 and 〈�0|�1, p, q〉 remain unchanged when sub-
stituting p and/or q by p̄ and/or q̄ in such a way that one
can refer to 〈�0|�1, ν〉 and 〈�0|�1, ν, µ〉. Note that the latter
overlap does not need to be defined for ν = µ or ν = µ̄ as
it cannot appear in such cases. Indeed, this would correspond
to removing a conjugated pair twice from |�1〉, which would
lead to

|�1, ν, ν〉 ∝ α̃ν α̃ν̄ |�1, ν〉 = 0. (34)

If needed, such particular cases can be trivially taken into
account by extending the notation introduced in Eq. (33)
through

〈�0|�1, ν, ν〉 = 〈�0|�1, ν, ν̄〉 ≡ 0. (35)

Starting from Eq. (29), it is now straightforward to calculate
one-body contractions in the quasiparticle basis {α̃µ, α̃+

µ } using
the SWT. Using the notations introduced in Eqs. (31) and (32),
one finds that

〈�0|α̃+
ν α̃µ|�1〉 = 〈�0|α̃+

ν α̃+
µ |�1〉 = 0,

〈�0|α̃ν α̃
+
µ |�1〉 = δνµ〈�0|�1〉, (36)

〈�0|α̃ν α̃µ|�1〉 = δν̄µB̄∗
ν̄ν 〈�0|�1, ν〉.

All two-body contractions are obtained in the same manner and
can be written in a compact way using the notation introduced
in Eqs. (33) and (35), e.g.,

〈�0|α̃ν α̃µα̃γ α̃δ|�1〉 = δν̄µδγ̄ δB̄
∗
ν̄ν B̄

∗
γ̄ γ 〈�0|�1, ν, γ 〉

− δν̄γ δµ̄δB̄
∗
ν̄ν B̄

∗
µ̄µ〈�0|�1, ν, µ〉

+ δν̄δδµ̄γ B̄∗
ν̄ν B̄

∗
µ̄µ〈�0|�1, ν, µ〉. (37)

C. More convenient bases

To take advantage of the results obtained in the previous
section, one has to express the single-particle creation and
annihilation operators {ai, a

+
i } in terms of the quasiparticle

operators {α̃ν, α̃
+
ν }. Introducing the matrices Ũ 0 = U 0D and

Ṽ 0 = V 0D, we have

a+
i =

∑
ν

(
Ũ 0∗

iν α̃+
ν + Ṽ 0

iν α̃ν

)
. (38)

Many formulas derived below will simplify by introducing the
quasiparticle wave function associated with the quasiparticle
operators {α̃ν, α̃

+
ν }(

α̃+
ν

α̃ν

)
|0〉 ≡

( |φν〉
|ϕν̄〉

)
, (39)
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where the choice of labeling the lower component |ϕν̄〉 with
the quantum number of the conjugated state in the other half
of the basis is dictated by convenience, as will become clearer
in the PNR case discussed in Sec. VI.

The upper and lower components can be expressed in terms
of the arbitrary single-particle basis {ai, a

+
i } through

|φν〉 =
∑

i

Ũ 0T
νi |i〉, (40)

|ϕν̄〉 =
∑

i

Ṽ 0+
νi |i〉. (41)

We recall that Ũ 0 and Ṽ 0 introduced above involve a unitary
transformation D determined by the Bloch-Messiah-Zumino
decomposition of the Bogoliubov transformation (A,B).
These definitions will allow us to use matrix elements of
the effective vertices v̄ρρ and v̄κκ written in the mixed basis

of upper and lower components of the quasiparticle states
{|φν〉, |ϕν̄〉}, e.g.,

v̄
ρρ
ϕνϕµφλφγ

≡ 〈ϕνϕµ|v̄ρρ |φλφγ 〉

=
∑
ijkl

Ṽ 0
iν̄ Ṽ

0
jµ̄ Ũ 0

kλŨ
0
lγ v̄

ρρ

ijkl, (42)

which are at variance with those expressed in terms of roman
indices (i, j, k, l) that relate to the initial arbitrary basis
{ai, a

+
i }.

D. Energy kernel from the SWT

Thanks to Eqs. (36) and (37), the contribution
〈�0|v12|�1〉/〈�0|�1〉 to the energy kernel ESWT[0, 1] calcu-
lated through the application of the SWT reads as

E
ρρ

SWT[0, 1] + Eκκ
SWT[0, 1] = 1

2

∑
νµ

v̄ϕνϕµϕνϕµ
+ 1

4

∑
νµ

v̄ϕνφν̄ϕµφµ̄

+ 1

2

∑
νµ

v̄ϕνϕµφνϕµ
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉 + 1

4

∑
νµ

v̄ϕνϕν̄ϕµφµ̄
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉

+ 1

2

∑
νµ

v̄ϕµϕνϕµφν
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉 + 1

4

∑
νµ

v̄ϕµφµ̄φνφν̄
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉

+ 1

2

∑
νµ

ν �=µ,µ̄

v̄ϕνϕµφνφµ
B̄∗

νν̄ B̄
∗
µµ̄

〈�0|�1, ν, µ〉
〈�0|�1〉 + 1

4

∑
νµ

ν �=µ,µ̄

v̄ϕνϕν̄φµφµ̄
B̄∗

νν̄ B̄
∗
µµ̄

〈�0|�1, ν, µ〉
〈�0|�1〉 . (43)

The terms in Eq. (43) are ordered in such a manner that those in
the left column can be later identified with terms bilinear in ρ01

when using the GWT, whereas the terms in the right column
are related to terms proportional to κ10∗κ01. It is essential for
the following to note that terms with ν = µ or ν = µ̄ do not
appear in the last line of Eq. (43), i.e., they are zero.

E. Energy kernel from the GWT

The use of the SWT for the calculation of MR energy
kernels relies on the construction of the very particular basis
{α̃ν, α̃

+
ν }. All practical applications, however, have used the

GWT [22] that typically provides, in any arbitrary single-
particle basis, energy kernels of the form given by Eq. (13).

The next step is to compare the expressions of the energy
kernel obtained from the SWT and the GWT. Using Eqs. (36)
and (38), the transition density matrices are given by

ρ01
ji =

∑
ν

Ṽ 0∗
jν Ṽ 0

iν +
∑

ν

Ũ 0
j ν̄ Ṽ

0
iν B̄

∗
ν̄ν

〈�0|�1, ν〉
〈�0|�1〉 (44)

κ10
ji =

∑
ν

Ṽ 0∗
jν Ũ 0

iν +
∑

ν

Ũ 0
j ν̄ Ũ

0
iν B̄∗

ν̄ν

〈�0|�1, ν〉
〈�0|�1〉 (45)

κ01∗
ij =

∑
ν

Ṽ 0
iνŨ

0∗
jν +

∑
ν

Ṽ 0
iν Ṽ

0
j ν̄ B̄∗

ν̄ν

〈�0|�1, ν〉
〈�0|�1〉 , (46)

where the running index in the sums refers to the basis
{α̃ν, α̃

+
ν }. Inserting Eqs. (44)–(46) into Eq. (13), the two-body

part of the energy kernel is obtained from the GWT as

E
ρρ

GWT[0, 1] + Eκκ
GWT[0, 1] = 1

2

∑
νµ

v̄ϕνϕµϕνϕµ
+ 1

4

∑
νµ

v̄ϕνφν̄ϕµφµ̄

+ 1

2

∑
νµ

v̄ϕνϕµφνϕµ
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉 + 1

4

∑
νµ

v̄ϕνϕν̄ϕµφµ̄
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉
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+ 1

2

∑
νµ

v̄ϕµϕνϕµφν
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉 + 1

4

∑
νµ

v̄ϕµφµ̄φνφν̄
B̄∗

νν̄

〈�0|�1, ν〉
〈�0|�1〉

+ 1

2

∑
νµ

v̄ϕνϕµφνφµ
B̄∗

νν̄B̄
∗
µµ̄

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1,µ〉
〈�0|�1〉 + 1

4

∑
νµ

v̄ϕνϕν̄φµφµ̄
B̄∗

νν̄ B̄
∗
µµ̄

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1, µ〉
〈�0|�1〉 ,

(47)

where each line of Eq. (47) can be put in correspondence with
those of Eq. (43). Expression (43) is recovered term by term
from Eq. (47) as one can easily check that

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1, µ〉
〈�0|�1〉 = 〈�0|�1, ν, µ〉

〈�0|�1〉 , (48)

for all pairs (µ, ν) such that ν �= µ or ν �= µ̄. However, one
is left with additional terms in the last line of Eq. (47), i.e.,
for ν = µ and ν = µ̄, which have no correspondent in the last
line of Eq. (43).

In spite of such an apparent difference, the energy kernel
EGWT[0, 1] is strictly equal to ESWT[0, 1] when calculated
from a genuine Hamilton operator, that is, within the strict
projected-GCM approximation. To prove it, let us restart
from last line of Eq. (47) and isolate the possible source
of discrepancies (i.e., terms with ν = µ and/or ν = µ̄).
Considering first the terms coming from κ10∗κ01, using the
antisymmetry of the interaction and the properties of the matrix
B̄, we find that

1

4

∑
ν

v̄ϕνϕν̄φνφν̄
B̄∗

νν̄ B̄
∗
νν̄

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1, ν〉
〈�0|�1〉

+ 1

4

∑
ν

v̄ϕνϕν̄φν̄φν
B̄∗

νν̄ B̄
∗
ν̄ν

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1, ν〉
〈�0|�1〉

= 1

2

∑
ν

v̄ϕνϕν̄φνφν̄
B̄∗

νν̄ B̄
∗
νν̄

〈�0|�1, ν〉
〈�0|�1〉

〈�0|�1, ν〉
〈�0|�1〉 , (49)

which happens to cancel out exactly the contributions with
µ = ν̄ originating from ρ01ρ01. For this cancellation to occur
it is crucial that the same interaction is employed in both terms,
as it is the case if a genuine Hamiltonian is used. Altogether
only the term with ν = µ from the ρ01 ρ01 contributions could
not be combined with terms from κ10∗κ01. However, thanks
to the antisymmetry of the two-body interaction, these terms
also cancel out.

Therefore, the prerequisites for a complete matching be-
tween estimates of the two-body energy kernel from the SWT
and the GWT, independently of the appearance of divergences
or not, are that

(i) the same interaction kernel is used in both bilinear terms
of the EDF to properly recombine specific terms coming
from ρ01ρ01 and κ10∗κ01 and

(ii) the antisymmetry of the interaction kernel is properly
accounted for.

The key point is that none of the two previous conditions are
fulfilled in general when constructing a MR-EDF through an
ansatz of the form of Eq. (18): the matrix elements v̄

ρρ

ijkl are not

necessarily antisymmetric, and v̄
ρρ

ijkl and v̄κκ
ijkl are in general not

the same. Consequently, the kernels ESWT[0, 1] and EGWT[0, 1]
defined in the EDF method by analogy with the Hamiltonian
formalism are different, with EGWT[0, 1] containing terms that
do not appear in ESWT[0, 1].

V. CORRECTED ENERGY KERNEL

The observations of the previous section are at the heart of
the problems encountered in MR-EDF calculations that rely on
the GWT to construct the MR energy kernels from the SR-EDF.
Let us analyze the situation further and demonstrate that there
exist in fact several levels of problems of different physical
origin. This will lead us to advocate the explicit removal of
specific contributions to EGWT[0, 1] to perform meaningful
MR-EDF calculations.

It is crucial to note here that, as the correction procedure
proposed in the following is based on an analogy with
the Hamiltonian formalism, it can be implemented only for
functionals containing integer powers of the density matrices.
We will come back to that crucial point when discussing the
long-term implications of the present work.

A. Bilinear functional

Let us start with the bilinear energy kernel EGWT[0, 1] given
by Eq. (18). As already discussed, generalizing the functional
to the multi reference case using the GWT as a motivation leads
to the same structure as the SR-EDF given in Eq. (9), except
that intrinsic densities have been replaced with transition ones.
Again, the terms Eρρ

GWT[0, 1] and Eκκ
GWT[0, 1] might contain

different vertices.
We now introduce more compact expressions of the

transition density matrices using the identity 〈�0|�1〉 =
Ā∗

νν〈�0|�1, ν〉
ρ01 = ρ00 + Ũ 0Z̄Ṽ 0T

κ01 = κ00 + Ũ 0Z̄Ũ 0T (50)

κ10∗ = κ00∗ − Ṽ 0Z̄Ṽ 0T ,

where ρ00 and κ00 are the intrinsic density matrices associated
with |�0〉, whereas the matrix Z̄ has nonvanishing matrix
elements of the form Z̄ν̄ν = (B̄ν̄νĀ

−1
νν )∗. Note that Z =

DZ̄D∗ = (BA−1)∗ is nothing but the Thouless matrix [22,84]
associated with the Bogoliubov transformation connecting
|�0〉 and |�1〉. Equation (50) is an alternative form to the
one given in Appendix E of Ref. [36].

Using the mixed basis introduced in Eqs.
(40) and (41), as well as Eqs. (47) and
(50), the interaction part of the energy kernel
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can be written as

Eρρ

GWT[0, 1] + Eκκ
GWT[0, 1] = 1

2

∑
νµ

v̄ρρ
ϕνϕµϕνϕµ

+ 1

4

∑
νµ

v̄κκ
ϕνφν̄ϕµφµ̄

(51)

+ 1

2

∑
νµ

v̄
ρρ
ϕνϕµφνϕµ

Z̄νν̄ + 1

4

∑
νµ

v̄κκ
ϕνϕν̄ϕµφµ̄

Z̄νν̄ (52)

+ 1

2

∑
νµ

v̄
ρρ
ϕµϕνϕµφν

Z̄νν̄ + 1

4

∑
νµ

v̄κκ
ϕµφµ̄φνφν̄

Z̄νν̄ (53)

+ 1

2

∑
νµ

v̄
ρρ
ϕνϕµφνφµ

Z̄νν̄ Z̄µµ̄ + 1

4

∑
νµ

v̄κκ
ϕνϕν̄φµφµ̄

Z̄νν̄ Z̄µµ̄, (54)

where the sums run over all states. It is crucial to realize
that the eight terms in Eqs. (51)–(54) are arranged in exactly
the same manner as the eight terms in Eq. (43).

1. Correcting for divergences and finite steps

By analogy with the strict projected-GCM case discussed in
Sec. IV, the contribution to EGWT[0, 1] from the terms ν = µ

and ν = µ̄ in the last line of Eq. (54) should be zero. However,
the contribution encoded into the bilinear term ρ01ρ01 is not
zero for µ = ν in line (54) when the effective vertex v̄ρρ is not
antisymmetric. Also, the vertices v̄ρρ and v̄κκ have no reason to
be the same in an EDF approach; as a result, the contributions
from ρ01ρ01 for µ = ν̄ and κ10∗κ01 for (µ = ν, µ = ν̄) no
longer cancel out in line (54).

This difficulty is caused by the use of the GWT as a
motivation to construct MR energy kernel from the SR-EDF.
However, it must be made clear that the GWT itself cannot
and should not be blamed for this failure, as it is stretched
beyond its applicability when used to motivate the form of an
energy kernel that does not correspond to the matrix element
of an operator. It is problematic though as the terms that do not
cancel out in line (54) are at the origins of the divergencies and
steps seen in MR-EDF calculations based on the GWT [26] as
discussed in detail in Ref. [28].

As a matter of illustration, we now focus on divergences.
Divergences will occur in EGWT[0, 1]〈�0|�1〉 if the two vacua
involved are orthogonal; i.e., when it exists |�0〉 and |�1〉
in the MR set such that 〈�0|�1〉 = 0. As can be seen from
Eq. (31), the overlap 〈�0|�1〉 is zero if at least one of the
matrix elements Ā∗

pp is zero. Because the nonzero contribution
to EGWT[0, 1]〈�0|�1〉 coming from the term involving the pair
(p, p̄) in Eq. (54) is proportional to

(Z̄pp̄)2〈�0|�1〉 = C̃01(B̄∗
pp̄)2 1

Ā∗
pp

∏
p′>0
p′ �=p

Ā∗
p′p′ , (55)

it will diverge as Ā∗
pp goes to zero, except if another factor Ā∗

p′p′
in the numerator happens to be zero as well. For particular MR
calculations and very specific situations, it is indeed possible
that several conjugated pairs (p, p̄), (p′, p̄′), · · · are such that

Ā∗
pp = Ā∗

p′p′ = · · · = 0 at the same time. In such a particular
case, there will be no divergence of the MR energy due to
dangerous terms in Eq. (54).

A regularized energy kernel is obtained by removing the
spurious contributions to Eρρ

GWT and Eκκ
GWT that constitute the

difference between EGWT[0, 1] and ESWT[0, 1]. This amounts
to removing terms involving only one conjugated pair (p, p̄)
at a time in Eq. (54)

Eρρ

CG[0, 1] = 1

2

∑
p>0

(
v̄

ρρ
ϕpϕpφpφp

+ v̄
ρρ
ϕp̄ϕp̄φp̄φp̄

− v̄
ρρ
ϕpϕp̄φpφp̄

− v̄
ρρ
ϕp̄ϕpφp̄φp

)
(Z̄pp̄)2, (56)

Eκκ
CG[0, 1] =

∑
p>0

v̄κκ
ϕpϕp̄φpφp̄

(Z̄pp̄)2, (57)

where the sum runs over p = ν > 0 only because all the matrix
elements involving a given conjugated pair have been explicitly
spelled out.

Some important comments should be made:

(i) The sum of Eqs. (56) and (57) is, of course, zero if the
MR energy kernel is obtained as the expectation value
of the Hamiltonian, whereas it is nonzero for a general
functional energy kernel.

(ii) The correction established through Eqs. (56) and (57)
is zero when |�0〉 = |�1〉. Indeed, the Bogoliubov
transformation connecting the two states is trivial in
this case, with A being the unit matrix and B being
zero. As a result, the correction does not modify the
diagonal kernels E[0, 0], which preserves the continuity
between the SR functional and MR energy kernels
E[ρ00, κ00, κ00∗] = E[0, 0].

(iii) When pairing is not considered explicitly in the theory,
the only terms to remove from Eq. (54) are those
obtained from ρ01ρ01 for µ = ν. As already discussed,
such terms are indeed different from zero if the vertex
v̄ρρ is not antisymmetric. As a matter of fact, we believe
these terms to be responsible for the divergences seen
recently in the restoration of angular momentum from
cranked HF states [30]; see Sec. VII.
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(iv) The correction to EGWT[0, 1] is independent of the
normalization factor C̃01 and therefore of the phase
conventions chosen to define the two vacua |�0〉
and |�1〉. This is so because the ratio B̄∗

p̄p/Ā∗
pp is

independent of C̃01. However, it should be kept in mind
that the kernel EGWT[0, 1] is to be multiplied eventually
by 〈�0|�1〉 where C̃01 enters explicitly.

(v) Equations (56) and (57) not only remove possible poles
leading to divergences but also correct the energy kernel
away from those potential poles. It is a crucial result
of the present work to realize that current calculations
are compromised not only through divergences but also
through finite spurious contributions.

(vi) As just said, poles associated to zeros of the norm
overlaps are only a part of the problem. From that point
of view, the study of Ref. [88] about the nodal lines
of the overlap between cranked HFB states rotated by
different values of the Euler angles is of prime interest.
In Ref. [88], it is shown in particular that the structure
of nodal lines becomes richer as the states in the MR
set are cranked to higher spins.

2. Correcting for self-interaction processes

In the last section, we have isolated the spurious contribu-
tions that are specific to EGWT[0, 1] when it is not obtained
as the matrix element of the Hamiltonian. In particular, it was
argued that the construction of MR energy kernels based on the
SWT is safe from divergences and steps. However, there exist
other, less dangerous, spurious contributions that are common
to ESWT[0, 1] and EGWT[0, 1]. This underlines the fact that the
SWT is also stretched beyond its applicability when used to
construct EDFs that do not correspond to the matrix element
of a genuine operator.

The first of those problems relates to the fact that the matrix
elements v̄ρρ might not be antisymmetrized. This leads to
spurious self-interaction processes in the functional; i.e., the
fact that a nucleon interacts with itself [89]. The spurious terms
not already removed by the correction discussed in the previous
section, and that should be zero in E[0, 1], are obtained for
ν = µ = p or ν = µ = p̄ in the terms that are independent of
Z̄ [line (51)] or linear in Z̄ [second and third line (52) and (53)]

Eρρ

SI [0, 1] ≡ 1

2

∑
p>0

(
v̄ρρ

ϕpϕpϕpϕp
+ v̄ρρ

ϕp̄ϕp̄ϕp̄ϕp̄

)
+ 1

2

∑
p>0

(
v̄

ρρ
ϕpϕpφpϕp

− v̄
ρρ
ϕp̄ϕp̄φp̄ϕp̄

)
Z̄pp̄

+ 1

2

∑
p>0

(
v̄

ρρ
ϕpϕpϕpφp

− v̄
ρρ
ϕp̄ϕp̄ϕp̄φp̄

)
Z̄pp̄. (58)

It is clear that these terms are unphysical, as they violate Pauli’s
principle. This gives a strong motivation to remove them from
the energy functional, as is sometimes done in DFT for elec-
tronic systems [9,89–92], or to construct energy functionals
that are self-interaction-free in the first place [93]. When using
the standard correction, this will modify the SR energy density
functional to what is called an “orbital-dependent functional”
in electronic DFT [94,95] and will lead to equations of motion
that are more difficult to solve numerically than the usual ones.

From a phenomenological point of view, the merits of self-
interaction corrected energy functionals for electronic DFT
have not yet been fully clarified, as they improve some observ-
ables, but may degrade others when compared to uncorrected
functionals [92]. It has also been pointed out that correcting for
the one-body self-interaction might not be sufficient, as there
also might be also n-body self-interactions as well [92,96].

In the nuclear context, the existence of spurious self-
interactions in commonly used energy density functionals has
been pointed out before [1,97,98] but was never studied in any
detail in the published literature.

3. Correcting for self-pairing processes

The second category of problems common to ESWT [0, 1]
and EGWT[0, 1] is less obvious to isolate. In fact, it differs from
the two previous sources of problems in the sense that it is
subject to interpretation.

It is based on the observation that in the strict HFB
or projected/GCM methods, where the same vertex enters
Eρρ[0, 1] and Eκκ [0, 1], the terms corresponding to (ν =
p; µ = p̄) and (ν = p; µ = p) recombine in Eqs. (51)–(53).
As explained in Ref. [28], such a recombination of terms
can be interpreted as the fact that two nucleons in a pair
of conjugated states (p, p̄) cannot gain additional binding
energy, as compared to the same EDF calculation with no
explicit account of pairing, by scattering onto itself. Such a
spurious self-pairing process should in principle be excluded
from the functional, although the actual impact of these terms
on observables is not clear yet.

Compared to GWT-related and self-interaction problems,
removing the self-pairing energy does not amount to putting
specific terms to zero. On the contrary, the reasoning is to
allow certain terms to recombine and to provide a finite,
nonzero contribution to the energy kernel. It is the remaining
finite contribution that is subject to interpretation. Here, we
follow the argument from Ref. [28] mentioned above that
takes the calculation without explicit treatment of pairing
as a reference point. As a result, the advocated correction
amounts to replacing specific matrix elements of v̄κκ by the
corresponding ones of v̄ρρ . Eventually, the correction for
self-pairing amounts to the subtraction of

Eκκ
SP [0, 1]

≡ 1

4

∑
p>0

[(
v̄κκ

ϕpφp̄ϕpφp̄
+ v̄κκ

ϕp̄φpϕp̄φp
− v̄κκ

ϕpφp̄φpϕp̄
− v̄κκ

ϕp̄φpφp̄ϕp

)
− (

v̄
ρρ
ϕpφp̄ϕpφp̄

+ v̄
ρρ
ϕp̄φpϕp̄φp

− v̄
ρρ
ϕpφp̄φpϕp̄

− v̄
ρρ
ϕp̄φpφp̄ϕp

)]
+ 1

4

∑
p>0

[(
v̄κκ

ϕpϕp̄ϕpφp̄
+ v̄κκ

ϕp̄ϕpφp̄ϕp
− v̄κκ

ϕpϕp̄φpϕp̄
− v̄κκ

ϕp̄ϕpϕp̄φp

)
− (

v̄
ρρ
ϕpϕp̄ϕpφp̄

+ v̄
ρρ
ϕp̄ϕpφp̄ϕp

− v̄
ρρ
ϕpϕp̄φpϕp̄

− v̄
ρρ
ϕp̄ϕpϕp̄φp

)]
Z̄pp̄

+ 1

4

∑
p>0

[(
v̄κκ

ϕpφp̄φpφp̄
− v̄κκ

ϕp̄φpφp̄φp
+ v̄κκ

φp̄ϕpφp̄φp
− v̄κκ

φpϕp̄φpφp̄

)
− (

v̄
ρρ
ϕpφp̄φpφp̄

− v̄
ρρ
ϕp̄φpφp̄φp

+ v̄
ρρ
φp̄ϕpφp̄φp

− v̄
ρρ
φpϕp̄φpφp̄

)]
Z̄pp̄

(59)
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from the energy kernel, Eqs. (51)–(53). The first two lines
correspond to the spurious self-pairing energy on the single-
reference level, while the last four lines represent the additional
self-pairing energy contributing to multi reference calcula-
tions.

4. Chosen strategy

The spurious terms causing divergences and steps,
Eqs. (56) and (57), are the consequence of a technical problem,
i.e., using the GWT beyond its strict domain of validity. This
could in principle be avoided by using directly the standard
Wick theorem to define the MR energy kernels, Eq. (43).
However, it is not clear at present if this would be numerically
feasible. Although the direct evaluation of Eq. (43) might be
too costly as it requires the explicit computation of the overlaps
〈�0|�1, ν, µ〉 for all pairs of states (ν, µ), calculating the
correction, (56) and (57), is not and should become a standard
procedure in the future. As we demonstrate in Ref. [28] for
pure PNR calculations, correcting EGWT[0, 1] for divergences
and finite steps indeed has a visible effect on the binding
energy even when not accidentally hitting a divergence. The
correction fluctuates on the order of 1 MeV and leads to much
smoother deformation energy curves.

From a practitioner’s point of view, it is indeed mandatory
to correct for divergences and finite steps as they seriously
compromise, even inhibit, meaningful MR calculations. Cor-
recting for self-interaction and self-pairing terms would also
be desirable, either through explicit construction of self-
interaction and self-pairing free energy functionals or through
the correction of existing parametrizations of the functionals.
Indeed, such spurious contributions to the energy functional
violate the Pauli principle and hence are always unphysical.

However, correcting for self-interaction and self-pairing
terms, Eqs. (58) and (59), is a complex issue, both conceptually
and computationally, i.e., it modifies the SR functional in
such a way that the equations of motion are computationally
more difficult to solve. However, it is clear that the impact
of self-interaction and self-pairing on observables should be
scrutinized. Existing studies in the context of HK-DFT for
electronic systems [9,89–92,96] demonstrate that it is not
an easy task and that it does not necessarily lead to an
improvement of the performance of the functionals. As can be
seen from Eqs. (58) and (59), self-interaction and self-pairing
are a consequence of the violation of the Pauli principle
within a pair of conjugated states. Even when removing both
from the energy functional, there remain terms in the energy
functional that break the particle exchange (anti-)symmetry
between states that are not conjugated. Eventually, it should
not be forgotten that there is a price to pay for the enor-
mous calculational simplification that EDF methods bring to
the many-body problem. Losing antisymmetry on the level of
the two-body density matrix is part of it, and how far it should
be restored has to be determined as a compromise between the
required precision and the necessary computational cost.

5. Fixing the freedom in the regularization procedure

In any regularization procedure, the quantity that results
from isolating and throwing away an infinity necessarily
depends on explicit or implicit choices that determine its finite

value. In the present case, two elements are essential to fix
such a freedom.

First, and as explained above, we choose not to subtract
finite self-interaction and self-pairing contributions that con-
taminate both SWT- and GWT-based expressions of MR-EDF
kernels. The second element relates to the basis used to proceed
to the regularization. Although the GWT can be applied in any
quasiparticle basis, which makes it so powerful, the application
of the SWT necessitates to find a specific basis to express
|�1〉 in terms of |�0〉, which we have managed to do as
explained in Sec. IV B. Of course, other bases exist that allow
the application of the SWT. One such basis [23,79] relies on di-
agonalizing the matrix Z0†Z1 rather than on applying the BMZ
decomposition to the Bogoliubov transformation connecting
|�0〉 and |�1〉.4 In the resulting basis, the comparison between
SWT- and GWT-based formulae for operators matrix elements
works just as explained in Sec. IV E in the sense that terms
proportional to 〈�0|�1, ν〉〈�0|�1, ν〉/〈�0|�1〉2 are present
in the GWT-based formula but are absent in the SWT-based
one. Removing those terms from the GWT-based kernel
would again eliminate divergences and steps. However, this
would lead to a different regularized energy kernel as the
factors and wave functions weighting such terms are not the
same as in the basis we prioritize.5 Consequently, the choice of
the basis used to proceed to the regularization impacts the final
regularized kernel. Going from one basis to another amounts to
reshuffling finite spurious contributions between the different
lines of Eqs. (43) or (47).

Knowing that the regularization procedure is necessarily
basis dependent, just as standard self-interaction correction
methods in DFT are [89], the arguments that led us to prefer
the basis we advocate are twofold. First, given |�0〉 and |�1〉,
the application of the BMZ decomposition defines a unique
basis, independently on the actual representation of the two
states. On the contrary, using the basis that diagonalizes Z0†Z1

would require an extra argument to choose among the infinite
number of vacua that can be used to express |�0〉 and |�1〉.
Second, the basis we propose can always be found, whereas it
exists (rare) cases for which one cannot diagonalize the matrix
Z0†Z1 [79].

Eventually, the motivated choice of the basis we advocate
and the decision to postpone to later the more challenging
correction for self-interaction and self-pairing processes are
the two elements used to fix the freedom that accompanies the
present regularization procedure.

B. Correcting higher-order functionals

The cure proposed in the previous section to the problems
faced when constructing a MR energy density functional based
on the GWT is specific to bilinear functionals. However,
realistic functionals contain higher-order dependencies on the

4In fact, there is an infinity of such bases associated with the freedom
to choose the third vacua with respect to which |�0〉 and |�1〉 must
be expressed when using the technics of Refs. [23,79].

5One noticeable exception is PNR for which all convenient bases
are the same.
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density matrices associated with many-body correlations and
three-body forces. Those higher-order dependencies gener-
ate additional spurious contributions to the energy kernel
EGWT[0, 1] that also have to be corrected for. The generaliza-
tion of the strategy that we have followed is straightforward, as
long as one considers integer powers of the density matrices.
Indeed, one can formally relate them to higher-order multibody
forces in the Hamiltonian and identify, as we did for two-body
forces, which terms are zero when using the SWT and replaced
by nonzero terms when using the GWT. However, working out
the SWT becomes lengthy and rather tedious for multibody
forces.

Thankfully, one does not need to apply the SWT explicitly
but rather proceed backward using the connection between
the SWT and the GWT discussed in Sec. IV E. This is
more convenient because the GWT is easy to apply to any
Hamiltonian. For an N -body force, the SWT is recovered
from the GWT by expressing n-body transitions densities, with
n ∈ [0, N ], through Eqs. (44)–(46) and by using the identity

〈�0|�1, ν1〉
〈�0|�1〉 · · · 〈�0|�1, νn〉

〈�0|�1〉 = 〈�0|�1, ν1, . . . , νn〉
〈�0|�1〉 , (60)

which generalizes in passing the notations introduced in
Eqs. (32) and (33) in an obvious manner and which is valid as
long as all νi’s belong to different conjugated pairs. When two
or more νi’s belong to the same conjugated pair, the validity of
Eq. (60) is lost and the left-hand side factor should be replaced
by 〈�0|�1, ν1, . . . , νn〉 ≡ 0. Using such shortcuts, one can
obtain an explicit “SWT” form for the matrix element of
multibody forces in a very economical way.

Let us illustrate the above strategy for a three-body inter-
action. This will correspond to complementing the SR-EDF
E[ρ00, κ00, κ00∗] and the energy kernel EGWT[0, 1] with a
trilinear component. The three-body interaction is written as

v123 = 1

36

∑
ijklmn

v̄ijklmn a+
i a+

j a+
k anamal, (61)

where the three-body force matrix elements are fully antisym-
metric. Within the strict projected-GCM approximation, the
application of the GWT leads to

E
ρρρ

GWT[0, 1] + E
ρκκ

GWT[0, 1]

= 1

6

∑
ijklmn

v̄ijklmnρ
01
li ρ01

mjρ
01
nk + 1

4

∑
ijklmn

v̄ijklmnρ
01
li κ10∗

jk κ01
mn.

(62)

Operating as described above leads to the expression of the
overlap (see Appendix A) as it would be obtained from
Eq. (29) using the SWT. Such an expression complements
the last line of Eq. (43) for the two-body Hamiltonian.

As before, we now define the trilinear energy kernel
Eρρρ

GWT[0, 1] and Eρκκ

GWT[0, 1] within the EDF approach in close
analogy to the two terms of Eq. (62). The two contributions
are expressed in terms of the effective vertices v̄ρρρ and v̄ρκκ ,
respectively. Just as for the bilinear parts, Eρρρ

GWT[0, 1] and
Eρκκ

GWT[0, 1] need now to be corrected for spurious contribu-
tions. Proceeding in a similar way as for the bilinear functional,
and using the SWT as a reference point, Eq. (A1), the terms to
be removed are

Eρρρ

CG [0, 1] = 1

6

∑
p>0,ν

(
v̄

ρρρ
ϕp̄ϕp̄ϕν̄φp̄φp̄ϕν̄

− v̄
ρρρ
ϕp̄ϕpϕν̄φp̄φpϕν̄

− v̄
ρρρ
ϕpϕp̄ϕν̄φpφp̄ϕν̄

+ v̄
ρρρ
ϕpϕpϕν̄φpφpϕν̄

+ v̄
ρρρ
ϕp̄ϕν̄ϕp̄φp̄ϕν̄φp̄

− v̄
ρρρ
ϕpϕν̄ϕp̄φpϕν̄φp̄

− v̄
ρρρ
ϕp̄ϕν̄ϕpφp̄ϕν̄φp

+ v̄
ρρρ
ϕpϕν̄ϕpφpϕν̄φp

+ v̄
ρρρ
ϕν̄ϕp̄ϕp̄ϕν̄φp̄φp̄

− v̄
ρρρ
ϕν̄ϕp̄ϕpϕν̄φp̄φp

− v̄
ρρρ
ϕν̄ϕpϕp̄ϕν̄φpφp̄

+ v̄
ρρρ
ϕν̄ϕpϕpϕν̄φpφp

)
(Z̄pp̄)2

+ 1

6

∑
p>0,ν

(
v̄

ρρρ
ϕp̄ϕp̄ϕν̄φp̄φp̄φν̄

− v̄
ρρρ
ϕp̄ϕpϕν̄φp̄φpφν̄

− v̄
ρρρ
ϕpϕp̄ϕν̄φpφp̄φν̄

+ v̄
ρρρ
ϕpϕpϕν̄φpφpφν̄

+ v̄
ρρρ
ϕp̄ϕν̄ϕp̄φp̄φν̄φp̄

− v̄
ρρρ
ϕpϕν̄ϕp̄φpφν̄φp̄

− v̄
ρρρ
ϕp̄ϕν̄ϕpφp̄φν̄φp

+ v̄
ρρρ
ϕpϕν̄ϕpφpφν̄φp

+ v̄
ρρρ
ϕν̄ϕp̄ϕp̄φν̄φp̄φp̄

− v̄
ρρρ
ϕν̄ϕp̄ϕpφν̄φp̄φp

− v̄
ρρρ
ϕν̄ϕpϕp̄φν̄φpφp̄

+ v̄
ρρρ
ϕν̄ϕpϕpφν̄φpφp

)
(Z̄pp̄)2 Z̄ν̄ν, (63)

and

Eρκκ

CG [0, 1] = 1

4

∑
p>0,ν

(
v̄

ρκκ
ϕν̄ϕp̄ϕpϕν̄φp̄φp

− v̄
ρκκ
ϕν̄ϕp̄ϕpϕν̄φpφp̄

− v̄
ρκκ
ϕν̄ϕpϕp̄ϕν̄φp̄φp

+ v̄
ρκκ
ϕν̄ϕpϕp̄ϕν̄φpφp̄

+ v̄
ρκκ
ϕp̄ϕν̄φνφp̄φp̄φp

− v̄
ρκκ
ϕp̄ϕν̄φνφp̄φpφp̄

− v̄
ρκκ
ϕpϕν̄φνφpφp̄φp

+ v̄
ρκκ
ϕpϕν̄φνφpφpφp̄

+ v̄
ρκκ
ϕp̄ϕp̄ϕpφp̄ϕν̄φν

− v̄
ρκκ
ϕp̄ϕpϕp̄φp̄ϕν̄φν

− v̄
ρκκ
ϕpϕp̄ϕpφpϕν̄φν

+ v̄
ρκκ
ϕpϕpϕp̄φpϕν̄φν

)
(Z̄pp̄)2

+ 1

4

∑
p>0,ν

(
v̄

ρκκ
ϕp̄ϕp̄ϕpφp̄φν̄φν

− v̄
ρκκ
ϕp̄ϕpϕp̄φp̄φν̄φν

− v̄
ρκκ
ϕpϕp̄ϕpφpφν̄φν

+ v̄
ρκκ
ϕpϕpϕp̄φpφν̄φν

+ v̄
ρκκ
ϕp̄ϕν̄ϕνφp̄φp̄φp

− v̄
ρκκ
ϕp̄ϕν̄ϕνφp̄φpφp̄

− v̄
ρκκ
ϕpϕν̄ϕνφpφp̄φp

+ v̄
ρκκ
ϕpϕν̄ϕνφpφpφp̄

+ v̄
ρκκ
ϕν̄ϕp̄ϕpφν̄φp̄φp

− v̄
ρκκ
ϕν̄ϕp̄ϕpφν̄φpφp̄

− v̄
ρκκ
ϕν̄ϕpϕp̄φν̄φp̄φp

+ v̄
ρκκ
ϕν̄ϕpϕp̄φν̄φpφp̄

)
(Z̄pp̄)2 Z̄ν̄ν . (64)
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We have not made use of any antisymmetry properties of the
vertices in Eqs. (63) and (64), even though the vertex v̄ρκκ can
always be chosen to be antisymmetric, at least with respect to
the second and third indices on the one hand and to the fifth
and sixth indices on the other.

A few observations similar to those made for the correction
of the bilinear functional can be made for the trilinear
functional. First, Eρρρ

CG [0, 1] and Eρκκ

CG [0, 1] sum up to zero
if, and only if, both effective vertices refer to the same fully
antisymmetric three-body interaction. Second, both correction
terms are zero for |�0〉 = |�1〉 and do not modify the underly-
ing diagonal kernel E[0, 0], keeping valid the link between
the SR functional and the MR one E[ρ, κ, κ∗] = E[0, 0].
Third, the correction to the functional kernel EGWT[0, 1] is
independent of the normalization coefficient C̃01.

Note finally that the three-body terms should also be cor-
rected for spurious self-interaction and self-pairing problems.
Expressions equivalent to (58) and (59) can be derived without
difficulty for three-body vertices (not shown here).

VI. APPLICATION TO PARTICLE-NUMBER
RESTORATION

In the present section, we specify the previous findings
to PNR calculations. A more extensive discussion of that
particular case, including results of realistic calculations, is
presented in Ref. [28]. When considering one kind of particles
only, the MR set appropriate to PNR is given by the ensemble
of quasiparticle vacua {|�ϕ〉; ϕ ∈ [0, 2π ]} that correspond to
states rotated in gauge space by an angle ϕ. The MR energy
functional that amounts to restoring the particle number N is
given by

EN ≡
∫ 2π

0
dϕ

e−iNϕ

2π c2
N

E[0, ϕ] 〈�0|�ϕ〉, (65)

with

c2
N =

∫ 2π

0
dϕ

e−iNϕ

2π
〈�0|�ϕ〉, (66)

which is real.
In the previous equations, the state |�0〉 is the quasiparticle

vacuum at gauge angle ϕ = 0. Focusing on projection after
variation, such a state is obtained from a self-consistent
(possibly constrained) SR calculation. Considering the case
of an even-even nucleus, the vacuum state, possibly breaking
time-reversal invariance, is written in its canonical basis
{ai, a

+
i } as

|�0〉 =
∏
p>0

(up + vp a+
p a+

p̄ ) |0〉, (67)

where |0〉 is the particle vacuum and where {up; vp} are
real numbers. According to our convention, the product in
Eq. (67) only runs over the “positive” half of the basis. The state
|�0〉 is normalized, with the convention that u2

p + v2
p = 1. To

underline the link with previous sections, it is worth pointing
out that Eq. (67) corresponds to a state |�0〉 = C0

∏
ν αν |0〉,

where the quasiparticle operators {αν, α
+
ν } are defined through

a BCS-type transformation

α+
ν = U 0

ννa
+
ν + V 0

ν̄νaν̄ , (68)

with ν = p or p̄ and where we have defined vp ≡ V 0 ∗
pp̄ =

−V 0∗
p̄p and up ≡ U 0∗

pp = U 0∗
p̄p̄. The normalization of |�0〉

corresponds to |C0|2
∏

p>0 v2
p = 1.

The second vacuum required to construct the energy kernel
E[0, ϕ], i.e., where here |�1〉 ≡ |�ϕ〉. This state is obtained
by rotating |�0〉 in gauge space by an angle ϕ, i.e.,

|�ϕ〉 = eiϕN̂ |�0〉 =
∏
p>0

(up + vpe2iϕa+
p a+

p̄ )|0〉. (69)

From a technical point of view, particle-number restoration is
simple because all vacua belonging to the MR set share the
same canonical basis. As a result, the Bogoliubov transforma-
tion linking any pair of vacua in the set is itself canonical,
i.e.,

βν ≡ eiϕN̂ανe
−iϕN̂ = Ā∗

νναν + B̄∗
ν̄να

+
ν , (70)

with

Ā∗
p̄p̄ = Ā∗

pp = e−iϕ
(
u2

p + v2
pe2iϕ

)
, (71)

B̄∗
pp̄ = −B̄∗

p̄p = upvp(eiϕ − e−iϕ). (72)

It is also interesting to compute the transition densities through
Eq. (50). For example, it leads for the diagonal normal
transition density matrix

ρ0ϕ
pp = V 0∗

pp̄V 0
pp̄ + U 0

pp

B̄∗
pp̄

Ā∗̄
pp̄

V 0
pp̄ = v2

pe2iϕ

u2
p + v2

pe2iϕ
, (73)

whereas the anomalous ones are obtained in the same way as

κ
0ϕ
pp̄ = upvpe2iϕ

u2
p + v2

pe2iϕ
, (74)

κ
ϕ0∗
pp̄ = upvp

u2
p + v2

pe2iϕ
. (75)

Before turning to the correction, let us discuss the relative
phase between the two vacua. On the one hand, applying
Eq. (31) provides

〈�0|�ϕ〉 = C01

∏
p>0

e−iϕ
(
u2

p + v2
pe2iϕ

)
, (76)

whereas, on the other hand, the explicit canonical forms given
by Eqs. (67)–(69) lead to 〈�0|�ϕ〉 = ∏

p>0(u2
p + v2

pe2iϕ).
Thus, the phase convention associated with the canonical
forms is equivalent to having chosen C01

∏
p>0 e−iϕ = 1.

The fact that the Bogoliubov transformation (A,B) is
canonical from the outset is a specificity of PNR. In particular,
it corresponds to having the trivial unitary transformations
C = D = 1 in Eq. (25). For almost all other cases of interest,
however, i.e., angular momentum projection and/or GCM-type
multi reference calculations, Ā and B̄ cannot be obtained
analytically. This means that the matrices A and B must be
computed using Eq. (23) for each pair of vacua belonging
to the MR set. To this end, methods that will be outlined in
Sec. VII have to be applied. Their implementation is underway
and will be discussed elsewhere.
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Finally, the upper and lower components associated
with the quasiparticle operators {α̃p, α̃+

p } introduced through
Eqs. (40) and (41) take the form

|ϕp̄〉 = −vp|p̄〉, |ϕp〉 = vp|p〉,
(77)

|φp〉 = up|p〉, |φp̄〉 = up|p̄〉,
where |p〉 and |p̄〉 denote the single-particle states created by
a+

p and a+
p̄ , respectively.

A. Bilinear functional

The different types of spurious contributions to the bilinear
energy kernel read in the PNR case as

Eρρ

CG[0, ϕ] = 1

2

∑
p>0

(
v̄ρρ

pppp + v̄
ρρ
p̄p̄p̄p̄ + v̄

ρρ
pp̄pp̄ + v̄

ρρ
p̄pp̄p

)
(upvp)4

× (e2iϕ − 1)2(
up

2 + vp
2e2iϕ

)2 , (78)

Eκκ
CG[0, ϕ] = −

∑
p>0

v̄κκ
pp̄pp̄(upvp)4 (e2iϕ − 1)2(

up
2 + vp

2e2iϕ
)2 , (79)

Eρρ

SI [0, ϕ] = 1

2

∑
p>0

(
v̄ρρ

pppp + v̄
ρρ
p̄p̄p̄p̄

)
×

[
v4

p + 2u2
pv4

p

(e2iϕ − 1)

up
2 + vp

2e2iϕ

]
, (80)

Eκκ
SP [0, ϕ] =

∑
p>0

[
v̄κκ

pp̄pp̄ − 1

2

(
v̄

ρρ
pp̄pp̄ + v̄

ρρ
p̄pp̄p

)]

×
[

(upvp)2 + (
u4

pv2
p − u2

pv4
p

) (e2iϕ − 1)

up
2 + vp

2e2iϕ

]
.

(81)

Subtracting Eρρ

CG[0, ϕ] and Eκκ
CG[0, ϕ] from the PNR energy

kernel does not call for a modification of the underlying SR
functional, whereas removing Eρρ

SI [0, ϕ] and Eκκ
SP [0, ϕ] would.

B. Trilinear functional

The spurious contribution to be removed from the GWT-
based EDF kernel Eρρρ[0, ϕ, ϕ′] is given by

Eρρρ

CG [0, ϕ, ϕ′]

= 1

6

∑
p>0,ν

{
v̄

ρρρ
p̄p̄νp̄p̄ν + v̄

ρρρ
p̄pνp̄pν + v̄

ρρρ
pp̄νpp̄ν + v̄ρρρ

ppνppν

+ v̄
ρρρ
p̄νp̄p̄νp̄ + v̄

ρρρ
pνp̄pνp̄ + v̄

ρρρ
p̄νpp̄νp + v̄ρρρ

pνppνp

+ v̄
ρρρ
νp̄p̄νp̄p̄ + v̄

ρρρ
νp̄pνp̄p + v̄

ρρρ
νpp̄νpp̄ + v̄ρρρ

νppνpp

}
× (upvp)4 (1 − e2iϕ)2(

up
2 + vp

2e2iϕ
)2 ρ0ϕ′

νν . (82)

In this expression appears a transition density matrix as defined
by Eq. (73) and evaluated at a second gauge angle ϕ′. This
second gauge angle refers to the fact that the isospin degree of
freedom must be treated explicitly when correcting the trilinear
functional, as there will be terms that are bilinear in one isospin
and linear in the other. As a result, both projections on neutron
and proton numbers must be considered explicitly. The isospin
could be omitted for the bilinear functional because, as long
as we do not mix neutron and proton in the mean field and
only deal with neutron-neutron and proton-proton pairing, the
conjugated states p and p̄ always refer to the same isospin
and are rotated by the same angle ϕ in gauge space. In Eρρρ

and Eρκκ , however, the particle ν may have a different isospin
from the one of the pair (p, p̄) and a second gauge angle ϕ′
must be attached to it.

Finally, the contribution to be removed from the functional
energy kernel Eρκκ reads as

Eρκκ

CG [0, ϕ, ϕ′] = 1

4

∑
p>0ν

(
v̄

ρκκ
νp̄pνpp̄ − v̄

ρκκ
νp̄pνp̄p + v̄

ρκκ
νpp̄νp̄p − v̄

ρκκ
p̄p̄νpp̄

)
(upvp)4 (1 − e2iϕ)2(

u2
p + vp

2e2iϕ
)2 ρ0ϕ′

νν

+ 1

4

∑
p>0ν

(
v̄

ρκκ
p̄νν̄p̄pp̄ − v̄

ρκκ
p̄νν̄p̄p̄p − v̄

ρκκ
pνν̄pp̄p + v̄

ρκκ
pνν̄ppp̄

)
u2

p(upvp)3 (1 − e2iϕ)2(
u2

p + vp
2e2iϕ

)2 κ
ϕ′0∗
νν̄

+ 1

4

∑
p>0ν

(
v̄

ρκκ
p̄p̄pp̄νν̄ − v̄

ρκκ
p̄pp̄p̄νν̄ + v̄

ρκκ
pp̄ppνν̄ − v̄

ρκκ
ppp̄pνν̄

)
v2

p(upvp)3 (1 − e2iϕ)2(
u2

p + vp
2e2iϕ

)2 κ
0ϕ′
νν̄ , (83)

where, again, ϕ′ = ϕ if and only if ν and p have the same
isospin; otherwise ϕ′ �= ϕ.

VII. NO-PAIRING CASE

Multi reference EDF calculations are sometimes performed
without an explicit account for pairing correlations; i.e.,

the reference states of the MR set take the form of Slater
determinants rather than quasiparticle vacua. We concentrate
on such a case in the present section. This is of particular
interest because recent MR calculations based on triaxial
cranked Slater determinants and aiming at restoring angular
momentum displayed divergences [30] that we believe to be
related to the problems discussed in the present work.
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To investigate the zero-pairing realization of the formalism
outlined above we consider a MR energy kernel associated
with two Slater determinants |�0〉 and |�1〉 given by

|�0〉 =
N∏

i=1

a+
i |0〉 ,

(84)

|�1〉 =
N∏

i=1

b+
i |0〉 ,

where N represents the number of particles, whereas {a+
i }i=1,N

and {b+
i }i=1,N are the creation operators associated with

occupied, i.e., hole, single-particle states {|ai〉}i=1,N and
{|bi〉}i=1,N , respectively. In the general case, we have expressed
the two quasiparticle vacua, Eq. (20), in a common, arbitrary
single-particle basis. However, numerical applications often
make use of two nonequivalent sets of single-particle states
to define the two vacua. This is naturally the case when
dealing with Slater determinants. Thus, and as a by-product,
the following discussion of the zero-pairing case will sketch
how to proceed when the quasiparticle vacua are defined with
respect to different single-particle bases.

An important result of the present work (Sec. IV) consists in
finding a convenient basis through the BMZ decomposition of
the Bogoliubov transformation connecting two quasiparticle
vacua, Eq. (27). The Slater determinant limit discussed in the
present section offers a chance to illustrate more intuitively
how this works.

The single-particle subspace spanned by the {|bi〉}i=1,N is
a priori different from the one spanned by the {|ai〉}i=1,N .
However, it is clear that the subspace spanned by the addition
of the two bases is at maximum of dimension 2N . Therefore,
one can always complete the set of hole states of |�0〉 by an
appropriate choice of N particle states, denoted by {|ak̄〉}k=1,N ,
in such a way that

|bi〉 =
N∑

j=1

|aj 〉〈aj |bi〉 +
N∑

k=1

|ak̄〉〈ak̄|bi〉. (85)

Similarly, one can introduce a set of N particle states for |�1〉,
denoted by {|bk̄〉}k=1,N such that

|ai〉 =
N∑

j=1

|bj 〉〈bj |ai〉 +
N∑

k=1

|bk̄〉〈bk̄|ai〉. (86)

In practice, the most convenient choice is to associate to each
state |bi〉 an intermediate state |di〉 given by

|di〉 ≡ |bi〉 −
N∑

j=1

|aj 〉 〈aj |bi〉. (87)

Then, the N states |ak̄〉 are obtained by a Schmidt orthogonal-
ization of the N states |di〉. If the state |bi〉 can be completely
described by the hole states of |�0〉, the associated |di〉 cancels
out and the dimensionality of the considered matrix can be
reduced.

We associate the creation operators a+
k̄

and b+
k̄

to the states
|ak̄〉 and |bk̄〉, respectively. One has in particular ak̄|�0〉 = 0
and bk̄|�1〉 = 0, for all k = 1, . . . , N .

Starting from the truncated space as introduced above, a
formalism adapted to MR-EDF calculations with Slater deter-
minants could be introduced without referring to quasiparticles
at all. Then, expressions of the functional kernels and the
corrections to spurious processes could be obtained directly
in the language of particles. However, our present goal is to
demonstrate how the formalism written previously in terms
of quasiparticles can be directly applied to the particular
case where pairing is not considered explicitly. The first step
is thus to match the particle creation/annihilation operators
with quasiparticle creation/annihilation operators for Slater
determinants. Although this can be found in textbooks [36],
we present it below for the sake of a self-contained description
of our method.

A. From particles to quasiparticles

The matching appropriate to the notation used in previous
sections is achieved using the standard quasiparticle represen-
tation of Slater determinants. We introduce the two sets of
quasiparticle annihilation operators αν and βν and restart from
the general form of the transformations between particles and
quasiparticles operators:(

α

α+

)
≡

(
U 0+

V 0+

V 0T

U 0T

)
4N

(
a

a+

)
, (88)

and (
β

β+

)
≡

(
U 1+

V 1+

V 1T

U 1T

)
4N

(
b

b+

)
. (89)

Here, the index 4N is used to stress that only a specific
finite number of quasiparticle states is necessary. The an-
nihilation operators verify αν |�0〉 = 0 and βν |�1〉 = 0 for
ν = 1, . . . , 2N . It is clear that this relation is fulfilled if αν

(respectively βν) is proportional to a linear combination of
hole creation operators of |�0〉 (respectively |�1〉) or to a
combination of its particle annihilation operators. This leads
to a simple block structure6 for the matrices U 0/1 and V 0/1

U 0/1 ≡
(

0 0
0 1

)
2N

, V 0/1 ≡
(

1 0
0 0

)
2N

, (90)

which is obtained thanks to a specific ordering of
hole and particle states, that is, we have {a+

ν }ν=1,2N ≡
({a+

i }i=1,N , {a+
ı̄ }ı=1,N ).

B. Bogoliubov transformation between two Slater determinants

To express the matrices A and B associated with the trans-
formation between the two sets of quasiparticles {αν, α

†
ν} and

{βµ, β†
µ} introduced above, we first define the transformation(

b

b+

)
=

(
R 0
0 R∗

)
4N

(
a

a+

)
, (91)

6It is worth mentioning that there is a flexibility in choosing the
lower-right block and upper-left blocks of U 0/1 and V 0/1, respectively.
Here we choose the simplest prescription that in our opinion is also
the most convenient in applications.
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where R is the overlap matrix that can be schematically written
as

R ≡
(

{〈bi |aj 〉} {〈bi |aj̄ 〉}
{〈bı̄ |aj 〉} {〈bı̄ |aj̄ 〉}

)
2N

≡
(
AT BT

X+ Y+

)
2N

. (92)

The matrices A and B can finally be deduced using Eqs. (88),
(89), and (91)

A = U 0+R+U 1 + V 0+RT V 1,

B = V 0T

R+U 1 + U 0T

RT V 1, (93)

which, using the simple form of U 0/1 and V 0/1, leads to

A =
(
A 0
0 Y

)
2N

, B =
(

0 X
B 0

)
2N

. (94)

C. Bloch-Messiah-Zumino decomposition

The matrices A and B fulfill all usual relations associated
with Bogoliubov transformations. Guided by the standard
BMZ theorem, we introduce the two matrices S and T defined
as

S ≡ B∗BT ,
(95)

T ≡ −AB+ = B∗AT .

These two matrices play a role similar to that of the normal
and anomalous density matrices in the SR case. In particular,
we have the following relationships

S2 − S = −T T +,
(96)

ST = T S∗.

However, it should be noted that the matrices S and T are
not related to the transition density matrices in any trivial way.
Using the expression of A and B, S can be written as

S =
(
X ∗X T 0

0 B∗BT

)
2N

≡
(
SX 0

0 SB

)
2N

, (97)

while T takes the form

T =
(

0 −AB+

+(AB+)T 0

)
2N

≡
(

0 T
−T T 0

)
2N

, (98)

in such a way that T is antisymmetric as expected. In the
following, it will be useful to have a more explicit form of the
matrices SX,SB , and T . Using Eqs. (92) and (85) and (86)
we deduce

SX
ij = +〈ai |(1 − ρ11)|aj 〉∗,

SB
ı̄j̄ = +〈aı̄ |ρ11|aj̄ 〉, (99)

Tij̄ = −〈ai |ρ11|aj̄ 〉∗.
One can see from Eq. (99) that all the information relative to
the overlaps between the single-particle wave functions of the
two bases is encoded into the three matrices SX,SB , and T .

The first step to obtain a BMZ decomposition of A and B

is to diagonalize the matrix S. The block diagonal form of S,
Eq. (97), shows that the unitary transformation allowing to do
so is also block diagonal; i.e., diagonalizing S is achieved by

diagonalizing SX in the subspace of hole states of |�0〉 and SB

in the subspace of particle states of |�0〉. As a result of such
a transformation, new hole and particle states are obtained
for |�0〉, denoted by |ãi〉 and |ãı̄〉, respectively. We define the
corresponding creation and annihilation operators by ã+

i and
ãı̄ as well as the eigenvalues of SX and SB by λx

i and λb
ı̄ ,

respectively. Expressing the two relationships of Eq. (96) in
the basis where S is diagonal leads to

λb
j̄

(
λb

j̄ − 1
) = −

N∑
i=1

|T̃ij̄ |2, (100)

λx
i

(
λx

i − 1
) = −

N∑
j̄=1

|T̃ij̄ |2, (101)

T̃ij̄

(
λx

i − λb
j̄

) = 0, (102)

which shows that T̃ij̄ may differ from zero only if λx
i = λb

j̄
.

Let us now consider the different possible eigenvalues of SX.
There exist three different cases

(i) λx
i = 0: this means that the eigenstate |ãi〉 of SX is

orthogonal to all particle states of |�1〉 and therefore
can be written as a linear combination of the occupied
states in |�1〉. Equation (101) automatically implies
that T̃ij̄ = 0 for all j = 1, . . . , N .

(ii) λx
i = 1: this means that the eigenstate |ãi〉 is fully

contained in the subspace of particle states of |�1〉.
Again, Eq. (101) implies that T̃ij̄ = 0 for all j =
1, . . . , N .

(iii) 1 < λx
i < 0: the corresponding eigenstate is neither

entirely contained in the space of particle states of |�1〉
nor in the space of its hole states. This also means
that at least one matrix element T̃ij̄ is nonvanishing
for j = 1, . . . , N . Accordingly, there exists at least one
eigenvalue λb

j̄ such that λb
j̄ = λx

i .

The same classification could be made for the eigenvalues
λb

ı̄ except that λb
ı̄ = 0 or λb

ı̄ = 1 correspond in this case to
eigenstates |ãı̄〉 belonging to particle or hole states of |�1〉,
respectively.

It could be checked that the diagonalization of S is not
affected by a unitary transformation that acts separately
among the particle or hole states of |�1〉. Indeed, ρ11 and
(1 − ρ11) entering Eq. (99) are invariant under such a unitary
transformation, respectively. To advance toward the BMZ
decomposition the Bogoliubov transformation (93), one now
needs to transform the (quasi-)particle states associated with
|�1〉. This can be achieved by repeating the above procedure
for the new matrices S ′ ≡ BT B∗ and T ′ ≡ BT A

S ′ =
(
BTB∗ 0

0 X TX ∗

)
2N

=
(
S ′B 0

0 S ′X

)
2N

, (103)

and

T ′ =
(

0 BTY
−(BTY)T 0

)
2N

=
(

0 T ′

−T ′T 0

)
2N

, (104)
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where the matrix elements now read

S ′B
ij = +〈bi |(1 − ρ00)|bj 〉,

S ′X
ı̄j̄ = +〈bı̄ |ρ00|bj̄ 〉∗, (105)

T ′
ij̄ = −〈bi |ρ00|bj̄ 〉.

The unitary transformation that diagonalizes S ′ constitutes the
second step of the procedure. As for S, the transformation is
block diagonal, in such a way that hole and particle states
transform among themselves. This leads to a new set of
single-particle (eigen-)states denoted by |b̃i〉 and |b̃ı̄〉. The
corresponding eigenvalues of S ′ are given by λ′x

i and λ′b
ı̄ .

Again, we can classify single-particle states in three categories
according to the values of λ′b

i for hole states and to the values
of λ′x

ı̄ for particle states.
From a practical point of view, no numerical diagonaliza-

tion of S ′ is actually needed. Starting from the properties of
the states |ãi〉 and |ãj̄ 〉 obtained through the diagonalization of
S

〈ãi |(1 − ρ11)|ãj 〉∗ = λx
i δij , 〈ãı̄ |ρ11|ãj̄ 〉 = λb

j̄ δı̄j̄ , (106)

one can deduce the hole and particle states of |�1〉 that
diagonalize S ′X and S ′B . We consider here the case where
the eigenvalues λx

i and λb
ı̄ differ from zero.7 With each hole

state |ãi〉, respectively particle state |ã+
ı̄ 〉, we associate a new

particle state |b̃ı̄〉, respectively hole state |b̃i〉, of |�1〉 through

|b̃ı̄〉 ≡ 1√
λx

i

N∑
k̄=1

|bk̄〉 〈bk̄|ãi〉 = 1 − ρ11√
λx

i

|ãi〉, (107)

|b̃i〉 ≡ 1√
λb

ı̄

N∑
k=1

|bk〉 〈bk|ãı̄〉 = ρ11√
λb

ı̄

|ãı̄〉. (108)

Those states are

(i) orthonormal and have overlaps with the states diago-
nalizing S given by

〈ãj |b̃ı̄〉 = +(
λx

i

)1/2
δij ,

〈ãj̄ |b̃ı̄〉 = +(
λx

i

)−1/2T̃ij̄ ,
(109)

〈ãj̄ |b̃i〉 = +(
λb

j̄

)1/2
δı̄j̄ ,

〈ãj |b̃i〉 = −(
λb

j̄

)−1/2 T̃j ı̄ ,

(ii) eigenstates of S ′B and S ′X and fulfill

〈b̃i |(1 − ρ00)|b̃j 〉 = λb
ı̄ δij ,

〈b̃ı̄ |ρ00|b̃j̄ 〉∗ = λx
i δı̄j̄ , (110)

T̃ ′
j ı̄ = T̃ij̄ .

7If the eigenvalue λx
i /λ

b
ı̄ is 0 or 1, the state |ãi〉/|ãı̄〉 is already a

particle or a hole state of |�1〉. These cases can be treated through a
preliminary step where some of the states |b̃i〉 and |b̃ı̄〉 are directly
identified as particle and hole states of |�0〉. The other particle and
hole states of |�1〉 are changed accordingly to fulfill orthogonality
conditions.

From the above relation, we deduce in particular that
λ′b

i = λb
ı̄ and λ′x

j̄ = λx
j .

Now, a hole state |b̃i〉 with eigenvalues λ′b
i can now be

decomposed as

|b̃i〉 = |ãı̄〉〈ãı̄ |b̃i〉 +
∑

j/λx
j =λ′b

i

|ãj 〉〈ãj |b̃i〉, (111)

where only the particle state |ãı̄〉 from which |b̃i〉 is constructed
appears, while the summation over holes of |�0〉 is restricted
to states that have the same eigenvalue as |b̃i〉. As a result,
the number of states in the expansion is greatly reduced as
compared to Eq. (85).

The matrix A is not yet written in a canonical form. To
complete the BMZ decomposition, we perform a third trans-
formation consisting of mixing the states |ãi〉 (respectively
|ãı̄〉) within each degenerate subspace of SX (respectively SB)
in such a way that the matrix A (respectively Y) becomes
diagonal. The product of the transformations diagonalizing
S and A provides the unitary transformation D introduced
in Sec. IV where we explained our method in the general
case. As A is being diagonalized, the states |b̃ı̄〉 (respectively
|b̃i〉) are modified accordingly through Eq. (107) [respectively
Eq. (108)].8 Together with the transformation that diagonalized
S ′, this provides the unitary transformation C introduced in
Sec. IV.

Finally, the BMZ decomposition of the Bogoliubov trans-
formation between two Slater determinants (93) is achieved in
the sense that the matrices

Ā ≡
(
Ā 0
0 Ȳ

)
2N

, B̄ ≡
(

0 X̄
B̄ 0

)
2N

, (112)

are in canonical forms when expressed in the new bases.
In the present case, conjugated pairs are made of a particle
state ã+

ı̄ and a hole state ã+
i of |�0〉. Through a BCS-like

transformation, the latter pair is associated with a unique
particle-hole pair (b̃+

i , b̃+
ı̄ ) of |�1〉9

b̃i = Āii ãi + B̄ı̄i ãı̄ , (113)

b̃+
ı̄ = X̄iı̄ ã

+
i + Ȳı̄ ı̄ a

+
ı̄ , (114)

where the matrix elements of Ā and B̄ are given by the
canonical expression

Āji ≡ δji〈b̃i |ãi〉, B̄j̄ i ≡ δj̄ ı̄〈b̃i |ãı̄〉,
(115)

X̄j ı̄ ≡ δj̄ ı̄〈ãi |b̃ı̄〉, Ȳj̄ ı̄ ≡ δj̄ ı̄〈ãı̄ |b̃ı̄〉.
Finally, Fig. 1 illustrates the procedure and the meaning
of putting the Bogoliubov transformation of dimension 2N

that connects two Slater determinants into a canonical
form.

8Although the last step bringing A into a canonical form involves an
additional transformation, we use the same notation {|ãi〉; |ãı̄〉}i=1,...,N

and {|b̃i〉; |b̃ı̄〉}i=1,...,N to denote the bases before and after that last
transformation.

9The bases {ãi , ã
†
i } and {b̃i , b̃

†
i } are the analog of the bases {α̃ν , α̃

†
ν}

and {β̃µ, β̃†
µ} defined by Eq. (27) in the general case.

044318-19



D. LACROIX, T. DUGUET, AND M. BENDER PHYSICAL REVIEW C 79, 044318 (2009)

FIG. 1. (Color online) Schematic illustration of the different bases
introduced in the text. (Left) The Slater determinants |�0〉 and |�1〉
are expressed in their respective natural bases {|ai〉} and {|bl〉}. The
shaded areas indicate that one state of the basis {|bl〉} ({|ai〉}) is
a priori spread over all particle and hole states of the basis {|ai〉}
({|bl〉}). (Right) The BMZ decomposition leads to two bases that are
such that each transformed state |b̃i〉 (|ãi〉) decomposes only onto
two states (ãi , ãı̄) [(b̃i , b̃ı̄)] (one hole and one particle). At the same
time, the latter decomposition highlights that the notion of conjugated
pairs for Slater determinants relates to the association of each hole
state with a particular particle state. Note that energy levels have no
specific meaning in this figure; they are just meant to characterize
occupied and empty levels for each of the Slater determinants.

D. Correction for spurious processes

Given the BMZ decomposition of the transformation
between two Slater determinants obtained above, we can apply
directly the results derived in Sec. IV, using the new basis
{ãi , ã

†
i }, to write the state |�1〉 under the form

|�1〉 =
N∏

i=1

(Ā∗
ii + B̄∗

iı̄ ãi ã
+
ı̄ )|�0〉, (116)

and the transition density matrix between the two Slater
determinants as

ρ01 = ρ00 +
N∑

i=1

|ãı̄〉 Z̄ı̄i〈ãi |, (117)

where, as before, Z̄ı̄i ≡ B̄∗
ı̄i Ā∗−1

ii . As can be seen from
Eq. (116), the picture emerging in the new basis is very
intuitive because the Slater determinant |�1〉 is obtained as
a linear combination of up to, very specific, N particle-N hole
configurations on the vacuum |�0〉. In particular, each hole ãi

is combined with a specific particle ãi ; the latter association
defining the notion of conjugated pair for the Bogoliubov
transformation that links two Slater determinants. Such an
expression simplifies tremendously the general expression
connecting two nonorthogonal Slater determinants where each
hole state can be excited into any particle states, up to infinite
energy.

As for calculations with an explicit treatment of pairing,
Eq. (117) can be used to express the MR energy kernel on the

basis of the GWT. This leads to

EGWT[0, 1] =
N∑

i=1

(
tãi ãi

+ tãi ãı̄
Z̄ı̄i

) + 1

2

N∑
i,j=1

v̄
ρρ
ãi ãj ãi ãj

+ 1

2

N∑
i,j=1

(
v̄

ρρ
ãi ãj ãı̄ ãj

+ v̄
ρρ
ãj ãi ãj ãı̄

)
Z̄ı̄i

+ 1

2

N∑
i,j=1

v̄
ρρ
ãi ãj ãı̄ ãj̄

Z̄ı̄i Z̄j̄ j . (118)

Starting from this expression, the self-interaction Eρρ

SI [0, 1]
and the spurious contribution to the MR energy due to the
construction of the energy kernels on the basis of the GWT
Eρρ

CG[0, 1] can be identified

Eρρ

SI [0, 1] = 1

2

N∑
i=1

v̄
ρρ
ãi ãi ãi ãi

+ 1

2

N∑
i=1

(
v̄

ρρ
ãi ãi ãı̄ ãi

+ v̄
ρρ
ãi ãi ãi ãı̄

)
Z̄ı̄i , (119)

Eρρ

CG[0, 1] = 1

2

N∑
i=1

v̄
ρρ
ãi ãi ãı̄ ãı̄

Z̄2
ı̄i , (120)

whereas, of course, no spurious self-pairing occurs in the
present application.

Again, both terms are zero for energy kernels obtained as the
matrix element of a Hamiltonian. The latter of the two terms
is very likely to be responsible for the difficulties recently
encountered in calculations aiming at restoring angular mo-
mentum using a MR set of cranked Slater determinants [30].
We thus advocate the removal of the contribution given by
Eq. (120) in such a context.

VIII. CONCLUSIONS

The present work concentrates on MR calculations, cus-
tomarily called “beyond-mean-field” calculations in the lit-
erature, performed within the EDF formalism. The multi
reference method is nowadays routinely applied with the aim
of including long-range correlations associated with large-
amplitude collective motions that are difficult to incorporate
in a more traditional single-reference (SR), i.e., “mean-field,”
EDF formalism [1]. So far, the framework for such MR-EDF
calculations was set-up by analogy with projection techniques
and the GCM that has been rigorously formulated so far
only within a Hamiltonian/wave-function-based framework
[35,36].

The first achievement of the present work is to demonstrate
that the usual extension of the single-reference energy func-
tional E[ρ, κ, κ∗] into the nondiagonal energy kernel E[0, 1] at
play in MR calculations through E[0, 1] ≡ E[ρ01, κ01, κ10 ∗]
is ill defined. The latter extension, based on the GWT [22]
is well defined within a Hamiltonian/wave-function-based
projected-GCM framework but happens to be at the origin
of spurious divergences and steps in MR-EDF calculations, as
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recently realized for particle-number and angular-momentum
restorations [25,26,30].

The second achievement of the present article is to propose a
method to identify, for any type of symmetry restoration and/or
GCM-based calculations, the spurious terms in the MR-EDF
responsible for divergences, steps, self-interaction, and self-
pairing. The versatility of the method also allows to take care
of difficulties encountered when mixing within the MR-EDF
calculation states obtained from quasiparticle excitations [31].

In practice, the method requires first putting the Bogoliubov
transformation connecting two vacua |�0〉 and |�1〉 into a
canonical form. In the corresponding canonical basis, spurious
contributions to the MR energy kernel EGWT[0, 1] can be
identified and, if necessary, removed. Subtracting the terms
responsible for divergences and steps is a prerequisite to
perform well-defined multi reference EDF calculations, and
that is what we advocate in the present work. However,
the quantitative impact of self-interaction and self-pairing
processes on observable as well as the technical difficulties
associated with their removal remain to be studied. As they do
not lead to dramatic consequences, i.e., divergences and steps,
this can be postponed.

As the proposed procedure must be implemented for all
pairs of vacua involved in the multi reference calculation,
the correction increases the basic computation cost. On the
other hand, the number of summations in the calculation
of the MR energy is significantly reduced in the canonical
basis extracted to remove the spurious contributions. Thus,
it might be of interest to take advantage of that fact in actual
implementations of the MR-EDF formalism. This is the goal of
a forthcoming publication to discuss such an implementation.
In the meantime, another publication is devoted to illustrating
the features of the correction method proposed in the present
article by applying it to the rather transparent case of PNR [28].

Despite the success of regularized MR-EDF calculations
documented in Ref. [28], some important questions remain
unanswered as of today regarding the foundation and the
implementation of MR methods within a consistent EDF
framework. First, it is unclear in which sense the “projected”
functional that one manipulates in such calculations can
be attributed, at least implicitly, to a state belonging to a
specific irreducible representation of the symmetry group
of the nuclear Hamiltonian. The latter statement may seem
rather paradoxical as the main purpose of those calculations is
precisely to “restore the symmetries.” The crucial point is that,
as opposed to the strict projected Hartree-Fock-Bogoliubov
approach [34–36], the MR energy functional is not obtained
as the average value of a Hamiltonian in the projected state
but as a functional of (nonobservable) transition densities
defined for each pair of vacua belonging to the MR set. The
rather complicated dependence on those densities and the
use of different effective vertices (interactions) in different
channels of the functional forbid the explicit refactorization
of the energy in terms of the projected state. The benefit of
such a method is that correlations that go beyond the strict
projected-GCM approximation can be easily incorporated into
the MR formalism. Again, the drawback is that it is not clear
in which sense symmetries are actually restored in existing
MR-EDF calculations. The clarification of such a question

and the proper formulation of symmetry restoration within a
well-defined MR-EDF theory is mandatory in the near future.

Last but not least, the present work raises three important
questions; the first two being related to the construction of
energy density functionals; i.e., Skyrme, Gogny or any other
types of realistic functionals.

(i) Only the removal of the most dangerous spurious terms
associated with the use of the GWT as a basis to
construct phenomenological MR energy kernels has
been advocated in the present article and implemented
in Ref. [28]. However, it is worth noting that SR-
and MR-EDF calculations are also plagued with less
dangerous pathologies related to self-interaction [89]
and self-pairing [28]. In particular, such pathologies
contaminate MR energy kernels independently on
whether the SWT or the GWT is used as a basis to define
them. At this point, though, we do not advocate the cor-
rection for self-interaction and self-pairing processes
briefly discussed in the present article. The reason is that
such additional corrections will impact explicitly the SR
functional on which the MR calculation is based. This
means that self-interaction- and self-pairing-free SR
functionals must be constructed to test the importance
of such spurious processes. This is a nontrivial step
to take because doing so will modify the structure
of usual functionals and most importantly the way
self-consistent SR calculations usually work [89]. Such
a work is underway.

(ii) The correction method proposed in the present work
is based on using the Hamiltonian/wave-function
framework, together with the SWT [41], as a reference
point. A nontrivial implication is that the procedure
provides a way to correct functionals that depends
only on integer powers of the normal and anomalous
density matrices [29]. As we do not see at this point
how to proceed otherwise, the present work acts as
a strong motivation to construct SR functionals that
only involve integer powers of the density matrices in
the near future. For reasons that are well known to
practitioners, functionals depending on the third power
in the local density do not work well enough and it
remains to be seen whether using fourth powers of the
local density is sufficient to construct high-precision
energy density functionals.

(iii) The present work is a satisfactory solution to an ex-
treme problem faced by MR energy density functional
calculations. However, it is not entirely satisfying from
a fundamental point of view because it amounts to
correcting a phenomenological construction of multi
reference energy kernels that is ill defined in the
first place. Combined with related issues regarding
restoration of symmetries, the present work calls for
formal developments toward the derivation of a MR-
EDF formalism from first principles. In particular, the
regularization of the energy kernels happens to be basis
dependent, just as standard self-interaction correction
methods in DFT are [89]. A nice feature of the practical
method we use to proceed to the regularization is that
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it leads to a unique basis among all possible ones. It
is so because, given |�0〉 and |�1〉, the application
of the BMZ decomposition defines a unique basis,
independently on the actual representation of the two
states. Still, the fact that the removal of spurious
contributions is basis dependent in the first place is
not satisfactory and deserves some further attention in
the future.
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APPENDIX A: EXPRESSION OF 〈�0|v123|�1〉
Using the method depicted in Sec. V B, we obtained the

following expression:

〈�0|v̂123|�1〉 = 1

6

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0∗
mµṼ 0

jµV 0∗
nλ Ṽ 0

kλv̄ijklmn〈�0|�1〉

+ 1

6

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0∗
mµṼ 0

jµŨ 0
nλ̄

Ṽ 0
kλv̄ijklmnB̄

∗̄
λλ

〈�0|�1, λ〉

+ 1

6

∑
Ṽ 0∗

lν Ṽ 0
iνŨ

0
mµ̄Ṽ 0

jµV 0∗
nλ Ṽ 0

kλv̄ijklmn B̄∗
µ̄µ〈�0|�1, µ〉

+ 1

6

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0∗
mµṼ 0

jµV 0∗
nλ Ṽ 0

kλv̄ijklmnB̄
∗
ν̄ν〈�0|�1, ν〉

+ 1

6

∑
Ũ 0

lν̄ Ṽ
0
iνŨ

0
mµ̄Ṽ 0

jµV 0∗
nλ Ṽ 0

kλv̄ijklmnB̄
∗
ν̄ν B̄

∗
µ̄µ〈�0|�1, ν, µ〉

+ 1

6

∑
Ṽ 0∗

lν Ṽ 0
iνŨ

0
mµ̄Ṽ 0

jµŨ 0
nλ̄

Ṽ 0
kλv̄ijklmnB̄

∗̄
λλ

B̄∗
µ̄µ〈�0|�1, µ, λ〉

+ 1

6

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0∗
mµṼ 0

jµŨ 0
nλ̄

Ṽ 0
kλv̄ijklmn B̄∗

ν̄ν B̄
∗̄
λλ

〈�0|�1, ν, λ〉

+ 1

6

∑
Ũ 0

lν̄ Ṽ
0
iνŨ

0
mµ̄Ṽ 0

jµŨ 0
nλ̄

Ṽ 0
kλv̄ijklmnB̄

∗
ν̄ν B̄

∗
µ̄µB̄ ∗̄

λλ
〈�0|�1, ν, µ, λ〉

+ 1

4

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0
jµŨ 0∗

kµṼ 0∗
mλŨ

0
nλv̄ijklmn 〈�0|�1〉

+ 1

4

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0
jµŨ 0∗

kµŨ 0
mλ̄

Ũ 0
nλv̄ijklmnB̄

∗̄
λλ

〈�0|�1, λ〉

+ 1

4

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0
jµṼ 0

kµ̄Ṽ 0∗
mλŨ

0
nλv̄ijklmn B̄∗

µ̄µ〈�0|�1, µ〉

+ 1

4

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0
jµŨ 0∗

kµṼ 0∗
mλŨ

0
nλ v̄ijklmnB̄

∗
ν̄ν〈�0|�1, ν〉

+ 1

4

∑
Ṽ 0∗

lν Ṽ 0
iν Ṽ

0
jµṼ 0

kµ̄Ũ 0
mλ̄

Ũ 0
nλv̄ijklmnB̄

∗
µ̄µB̄ ∗̄

λλ
〈�0|�1, µ, λ〉

+ 1

4

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0
jµŨ 0∗

kµŨ 0
mλ̄

Ũ 0
nλv̄ijklmnB̄

∗
ν̄ν B̄

∗̄
λλ

〈�0|�1, ν, λ〉

+ 1

4

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0
jµṼ 0

kµ̄Ṽ 0∗
mλŨ

0
nλv̄ijklmnB̄

∗
ν̄ν B̄

∗
µ̄µ〈�0|�1, ν, µ〉

+ 1

4

∑
Ũ 0

lν̄ Ṽ
0
iν Ṽ

0
jµṼ 0

kµ̄Ũ 0
mλ̄

Ũ 0
nλv̄ijklmnB̄

∗
ν̄ν B̄

∗
µ̄µB̄ ∗̄

λλ
〈�0|�1, ν, µ, λ〉, (A1)

where the sums run over all the indices, with the convention
that when two or more νi’s belong to the same conjugated pair,

〈�0|�1, ν1, · · · , νn〉 = 0. In the latter expression, the first eight
terms come from the expansion of ρ01ρ01ρ01. Among these
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terms, the four last ones will provide spurious contributions
to Eρρρ

GWT. Similarly, the remaining eight terms originate from
ρ01κ10∗

κ01, whereas the last four of them provide spurious
contribution to Eρκκ

GWT.
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