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Electric quadrupole moments of 17/2− and 13/2− subsequent isomers in 209Po
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The electric quadrupole interaction of 209Po high spin isomers in a Bi single crystal has been investigated
by the time-differential perturbed angular distribution (TDPAD) technique. A two-level analysis procedure for
the 17/2−and 13/2− subsequent isomers was employed. The spectroscopic electric quadrupole moments were
measured as |Q(17/2−)| = 65.9(7)e fm2 and |Q(13/2−)| = 12.6(5)e fm2. The experimental values of equilibrium
deformations were extracted.
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I. INTRODUCTION

The polonium isotopes, with two valence protons beyond
the closed Z = 82 core, provide an excellent laboratory in
which to study the transition between single-particle and
collective behavior in a nuclear system. In the polonium sys-
tematic, the first important change in structure occurs between
the semimagic 210Po and 208Po. In the polonium isotopes, the
two protons beyond the closed Z = 82 shell likely occupy the
1h9/2 orbital. One may assume that the (1h9/2)2 configuration
dominates the proton contribution. The polonium isotopes near
the doubly magic 208Pb exhibit nuclear properties dominated
by the shell structure. The structure and energy spacings
in 210Po can be described by two h9/2 protons in spherical
shell models. Po is a textbook example of two protons in
the (1h9/2)2 orbital with a residual surface-delta interaction
(SDI) [1]. Younes et al. [2] have also succeeded in reproducing
the level structure of the neutron-deficient Po nuclei quite
well in the particle-core model (PCM) calculations based
on the assumption of two protons outside the Z = 82 shell
closure coupled to a vibrating core. Oros et al. [3] conclude
that the PCM model can predict quite well the experimentally
observed level properties of Po isotopes with A = 200–210.
Study of odd-mass Po nuclei provides an alternative tool for
the examination of shapes of Po isotopes. For A > 200 the
neutrons are predominantly in low-spin 2f5/2, 3p3/2, 3p1/2,
orbitals. However for A < 200 the 1i13/2 orbital increasingly
becomes the dominant contribution to the neutron
wave function. Fotiades et al. [4] have studied odd-mass Po
A < 200 nuclei and come to the conclusion that in these nuclei
the odd i13/2 neutron is weakly coupled to a vibrating core. The
measurement of electric quadrupole moments is important
for the information on equilibrium deformations and hence
the nuclear structure of isomeric states in Po nuclei. In view
of this, the electric quadrupole moments of the 209Po(17/2−)
and 209Po(13/2−) polonium isomers have been measured and
the experimental values of equilibrium deformations were
extracted. The two levels analysis procedure has an unique
feature: direct extraction of the electric quadrupole moments
relative sign of the two subsequent isomers.

II. EXPERIMENT

The experimental technique was the time-differential per-
turbed angular distribution (TDPAD) for the quadrupole

interaction (QI) in the presence of an electric field gradient
(EFG) in Bi single crystal hexagonal host. The experiments
were performed at the U-120 cyclotron in Bucharest using a
pulsed deuteron beam of 13 MeV. The 17/2−(T1/2 = 90 ns)
and 13/2−(T1/2 = 25 ns) isomeric states were produced and
aligned by the 209Bi(d, 2n) reaction. The repetition time of the
pulse was 104 ns and the width was around 5 ns (FWHM).
The relatively small energy of the incident beam was chosen
to optimize the population of 17/2− isomer and to reduce
the population of higher isomers. A partial level scheme of
209Po [5] indicating the gamma transitions used in the present
experiment is presented in Fig. 1.

The energetic window was set as 782 keV + 545 keV.
In order to eliminate the dependence on the specific time
response function of an individual spectrometer, only one
scintillation spectrometer was used and placed alternatively
at angles 0◦ and 90◦ with respect to the beam axis. The
scintillation crystal was a 3 in. × 3 in. NaI(Tl) with energy
resolution <8.0% at 662 keV (137Cs) and time resolution
<2 ns at 511 keV (22Na). Time spectra have been collected
in a conventional fast-slow coincidence circuit and were
accumulated in an on-line computer. The target was mounted
on a combined cooling-heating system so that the temperature
could be stabilized at 470◦ K ± 2◦ K in order to minimize
the lattice damage induced by the beam bombardment. In the
conditions of the present experiment the temporal window for
the observation of extranuclear perturbation is greater than the
precession semiperiod of the basic frequency allowing highly
accurate measurements. Results on the QI frequency have been
collected in two runs:

(i) The ĉ axis of the Bi monocrystalline target at 45◦ to the
beam direction;

(ii) The ĉ axis of the Bi monocrystalline target at 90◦ to the
beam direction and normal to the detection plane.

III. DATA ANALYSIS AND RESULTS

Vyvey et al. [6] developed a double perturbation analysis
for two subsequent isomers, to extract the ratios of the
quadrupole interaction frequencies to the magnetic moments
based on the LEMS (level mixing spectroscopy) method. In
our experiment only quadrupole moments are involved and
we preferred the two-level analysis procedure proposed by
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FIG. 1. Partial levels scheme of 209Po indicating the gamma
transitions used in the present experiment. Energies in keV and
half-lives are shown.

Dafni et al. [7] for two subsequent isomers in a single-crystal
host. Basically, the two-level perturbation function for static
axial-symmetric quadrupole interactions is
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The sum over k1 is up to 2Imin. The quantization axis is the
interaction symmetry axis, actually the ĉ axis of the single
crystal. The time modulation is introduced by
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complex frequencies are
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The explicit form of the time modulation function for our
experiment is
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Obviously, the sum limits in Eq. (5) depend on the angle
between the ĉ axis and the beam direction (45◦ and 90◦ in
our experiments).

The analysis of time modulation functions is shown in
Figs. 2 and 3 for both angles.

For k1 = 1–4 it is obvious that only the term with k1 = 2 is
dominant. Also, for higher k1 theFk2k0

k1q
functions are strongly

attenuated during the unobserved decay, as manifested by
the Uk coefficients. Consequently, the sum limit for Eq. (1)
is k1 = 4. The two-level perturbation functions for T1/2 (first
isomer) → 0 and T1/2 (second isomer) → 0 become the
well known theoretical single-level pure pattern for 45◦ and,
respectively, 90◦ (normal to the detection plane). This fact
confirms the consistency of the two-level analysis. The two-
level perturbation functions are sensitive to the relative sign
of the electric quadrupole moments of the two subsequent
isomers. This feature is shown in Figs. 4 and 5 for each angles
used in our experiment. In a physical case the influence of
the other decay branches on the angular distribution function
could be important. An exhaustive analysis of this influence
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FIG. 2. Time modulation functions F
k2k0
k11 for

a hypothetical two-isomers case. Parameters:
45◦ between the ĉ and the beam direction;
I1 = 17/2−; I2 = 13/2−; T1/2(17/2−) = 90 ns;
T1/2(13/2−) = 25 ns. The F

k2k0
2 1 is the dominant

term.
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FIG. 3. Time modulation functions F
k2k0
k1 2 for

a hypothetical two-isomers case. Parameters:
90◦ between the ĉ and the beam direction (nor-
mal to the detection plane); I1 = 17/2−; I2 =
13/2−; T1/2(17/2−) = 90 ns; T1/2(13/2−) =
25 ns. The F

k2k0
2 2 is the dominant term.
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FIG. 4. Theoretical two-level perturbation
functions for 45◦ between the ĉ and the
beam direction. Parameters: I1 = 17/2−; I2 =
13/2−; T1/2(17/2−) = 90 ns; T1/2(13/2−) =
25 ns; Q1/Q2 > 0 and Q1/Q2 < 0.
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FIG. 5. Theoretical two-level perturbation
functions for 90◦ (normal to the detection
plane). Parameters: I1 = 17/2−; I2 = 13/2−;
T1/2(17/2−) = 90 ns; T1/2(13/2−) = 25 ns;
Q1/Q2 > 0 and Q1/Q2 < 0.
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FIG. 6. Fitted curve and ratio function for 45◦

between the ĉ and the beam direction.

is done in [6]. In our experiment only quadrupole moments
are involved and for our geometries the most suitable ratio
function form [7] is

R(t) ≈ 3
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where 1-f is the fraction of side feeding directly into the lower
isomer. For each measurement a ratio function was formed:

R (t) = W (0◦, t) − W (90◦, t)
W (0◦, t) + W (90◦, t) ,

(7)

where W (theta, t) are the normalized, background-subtracted
time spectra.

The f fraction for Eq. (6) and the half-lives of the two
isomers for checking reasons were determined from a two-
lifetime fit to the time spectra (see Table I).

For half-integer spin, the quadrupole interaction frequency
ω0 is given by

ω0 = 6eQVzz

4I (2I − 1) h̄
, (8)

where Q is the spectroscopic quadrupole moment and Vzz(=
eq) is the principal component of the diagonalized electric field
gradient (EFG) tensor. The calibration value of the electric field
gradient eq(PoBi) = 11.7 × 1017 V/cm2 at 478◦ K ±5◦ K [8]
was considered, because in our experiment the temperature
of the target was stabilized at 470◦ K ± 2◦ K. Data and
fits to Eq. (6) are shown in Fig. 6 for the ĉ axis at 45◦ to
the beam direction and in Fig. 7 for the ĉ axis at 90◦ to the
beam direction and normal to the detection plane. Basically,
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FIG. 7. Fitted curve and ratio function for 90◦

(normal to the detection plane).
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TABLE I. Fitting results for quadrupole frequencies and half-lives of 209Po(17/2−) and 209Po(13/2−).

Geometry T1/2 (ns) f b e2Qq/h (MHz)a

209Po(17/2−) 209Po(13/2−) 209Po(17/2−) 209Po(13/2−)

45◦ 89.8(5) 24.5(4) 0.58(2) 183.3(2) 35.6(5)
90◦ 88.7(7) 23.6(5) 0.60(2) 186.1(2) 34.8(4)

aStrictly stastistical errors.
b(1-f ) is the fraction of side feeding directly into the lower isomer.

we used the advantage of the present experiment which
access the precession semiperiod of the basic frequency. The
quadrupole interaction frequencies are presented in Table I.
The evaluated spectroscopic quadrupole moments are

|Q(17/2−)| = 65.9(7)e fm2,

|Q(13/2−)| = 12.6(5)e fm2.

Dafni et al. [9] proposed for the 17/2− isomer in 209Po a
value that is almost a factor of 1.5 smaller than the present
one. The difference may have several possible causes: (a)
Their experimental conditions were less clean; (b) They did
not have experimentally access to the value of the second
isomer (13/2−) and were forced to presume the 0.2 quadrupole
moments ratio as a fixed parameter for the fit; (c) They
used a polycrystalline target and did not have the possibility
to corroborate two runs (45◦ and 90◦) as we did using a
monocrystalline target.

The quadrupole moment is an excellent tool to study the
deformation of nuclei. The spectroscopic quadrupole moment
is the experimental observable, which in case of axially
deformed nuclei, can be related to the intrinsic quadrupole
moment, and thus to the nuclear charge deformation parameter
β2. For well deformed axially symmetric nuclei, the measured
(=spectroscopic) quadrupole moment Q can be related to
the intrinsic quadrupole moment Q0 through the relation
(Bohr-Mottelson):

Q = Q0
3K2 − I (I + 1)

(I + 1)(2I + 3)
. (9)

This is valid in the strong coupling limit, with Kthe projection
of the total spin I onto the symmetry-axis of the deformed
nucleus. For the semimagic 210Po the spherical shell models
are the best aproach. As the number of neutrons decreases, the
large number of valence particles makes a shell model descrip-
tion less meaningful and the onset of a collective structure is
expected. This is attributed to an increasing quadrupole collec-
tivity induced by interactions between the proton particles and

holes in the neutron shell. Also, the deformation of the isomeric
states with holes in the N = 126 shell is mainly determined
by the core part, and very little by the valence particles.

The 209Po has a sensitive position, between 210Po and
208Po, and we may consider that Eq. (9) starts to be a valid
aproximation. In the hydrodynamical model of the nucleus
the intrinsic quadrupole moment Q0 is related to the nuclear
deformation parameter β2 as follows [10]:
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+ 2

7

√
5

π
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}
. (10)

This expression takes into account a correction due to the
surface thickness (a = 0.54 for the Pb region [11]) and
the nuclear radius is taken as R = 1.1A1/3 fm. The surface
correction term is often not taken into account because it is
very small, in particular for heavy nuclei. In our calculation,
we will therefore neglect this correction. Finally the relation is

Q0 = 3√
5π

eZR2β2 (1 + 0.36β2) . (11)

If the deformation of the isomeric state is directly deduced
from the experimental quadrupole moments Eq. (11) yields

|β2(17/2−)| = 0.033(3),∣∣β2(13/2−)
∣∣ = 0.007(4).

We may assume from [12] that deformation of the isomeric
states with holes in the N = 126 shell is mainly determined by
the core part, and very little by the valence particles. The sign
of the quadrupole moment cannot be measured in the present
experiment, but from shell model considerations we assume
a negative sign for both quadrupole moments. The relative
quadrupole moment sign of the two subsequent isomers is
evaluated as positive. This evaluation confirms experimentally
that 17/2− and 13/2− polonium subsequent isomers have the
same shape assumed as oblate. The evaluation is specific for
this two-level analysis procedure.
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