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We have studied the low-lying magnetic spectra of 12C, 16O, 40Ca, 48Ca, and 208Pb nuclei within the random
phase approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell
nuclei imposes severe constraints on the spin and tensor terms of the nucleon-nucleon effective interaction. We
first used four phenomenological effective interactions, and we obtained good agreement with the experimental
magnetic spectra and, to a lesser extent, with the electron scattering responses. Then we made self-consistent
RPA calculations to test the validity of the finite-range Gogny D1 interaction. For all the nuclei under study, we
found that this interaction inverts the energies of all the magnetic states forming isospin doublets.

DOI: 10.1103/PhysRevC.79.044311 PACS number(s): 21.60.Jz, 21.10.Re, 21.30.Fe, 25.30.Dh

I. INTRODUCTION

In the last 30 years, electron scattering experiments on
nuclei have produced an enormous amount of high-precision,
accurate, and reliable data, which impose severe constraints
on nuclear models and theories.

Our interest is focused on the excitation of unnatural parity
states in the low-lying region of the nuclear spectrum, where
many responses of several nuclei have been measured [1–10].
The description of these states with effective theories, such as
the Random Phase Approximation (RPA), indicates a strong
sensitivity to the details of the spin- and tensor-dependent
terms of the nucleon-nucleon (NN ) effective interactions.
While the study of a single excited state, or of a limited set of
excited states, for a single nucleus has been pursued in depth,
as, for example, in Refs. [11–13], a systematic study of a large
set of nuclei and excited states has not been presented, and the
availability of many precise experimental data has not been
fully exploited.

We present here results of such a systematic study, which
indicate that there are general requirements that the NN effec-
tive interaction has to fulfill in order to provide a reasonable
description of the low-lying magnetic excitations. We obtained
these results by using a phenomenological approach to the
RPA theory inspired by the Landau-Migdal (LM) theory of
finite Fermi systems [14,15]. In this approach, the mean-field
(MF) basis, which provides the set of single particle energies
and wave functions to be used in the RPA calculations, is
generated by a Woods-Saxon well, whose parameters are
adjusted to reproduce at best some ground state properties
of the nucleus, such as the charge density distribution and the
single particle energies around the Fermi surface. In addition,
a phenomenological residual NN effective interaction is used.
The parameters of this interaction are chosen to reproduce the
energy of some specific excited states. In terms of comparison
with the experimental data, this phenomenological approach
uses the RPA theory at its best.

To study the sensitivity of our results to the details of the
residual interaction, we have developed four phenomenolog-
ical interactions, two of them having a zero range, as in the
original formulation of the Landau-Midgal theory, and the
other two having a finite range. For each type of interaction,
we have considered a parametrization that includes tensor
terms and another one without them, and we used these
interactions to study the excitation of the low-lying magnetic
spectra of 12C, 16O, 40Ca, 48Ca, and 208Pb nuclei. We have
found only a few cases that are sensitive to the differences
between the various interactions, and we present them in the
paper. The main result of our study is, however, that most of
the states are equally well described by all the interactions
we have considered. This suggests that we have been able
to include some general features of the interaction, which are
necessary for the description of the magnetic excitation spectra
of doubly-closed-shell nuclei.

To test this hypothesis, we then repeated our RPA calcula-
tions within a fully self-consistent approach. This means that
the MF states and energies were obtained within the Hartree-
Fock (HF) approximation, using the same NN effective
interaction employed in the RPA calculations. In particular,
we used the Gogny D1 finite-range interaction [16–18]. In this
case, we found remarkable disagreement with the experimental
data, the most striking result being that all the energies of the
states forming an isospin doublet are inverted. This indicates
that the good results obtained with the phenomenological
approach are not accidental, and that the study of the magnetic
spectra is selective in choosing the strength of the relevant
terms of the force.

The paper is organized as follows. In Sec. II, we give some
details of our calculations, mainly regarding the input used to
solve the RPA equations. The results of our phenomenological
study of several magnetic states for all the nuclei under
investigation are presented in Sec. III. In Sec. IV, we give
the results of the self-consistent calculation using the Gogny
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D1 interaction, for some selected cases. Finally, in Sec. V, we
draw our conclusions.

II. DETAILS OF THE CALCULATION

The first input required by the RPA calculation is the set
of single-particle wave functions and energies. In the phe-
nomenological calculations, we used the single-particle bases
generated by Woods-Saxon wells. The parameters of the wells
were taken from the literature [19] and chosen to best describe
the energies of the single-particle states around the Fermi
surface and the ground state charge density distributions. In the
self-consistent calculations, the single-particle wave functions
and energies were obtained by solving the HF equations with
the method described in Refs. [20,21].

We solved the RPA equations by using a discrete set
of single-particle wave functions and energies. In the phe-
nomenological calculations, the discretization of the contin-
uum was obtained by diagonalizing the Woods-Saxon well in
a harmonic oscillator basis. In the self-consistent calculations,
the discretization was obtained by imposing the correct
boundary conditions of a bound state to the single-particle
wave functions at the edge of the computing box. The global
RPA solutions strongly depend on the size of the single-particle
configuration space [22]. However, there are excited states
dominated by particle-hole excitations where the particle wave
function is bound. In this article, we consider only this type of
state.

For each nucleus considered, we used single-particle
configuration spaces large enough to ensure the stability of the
results for the states under investigation. In the phenomeno-
logical calculation, the smallest configuration space, used for
12C, is composed of five major harmonic oscillator shells, for a
total of 44 single-particle states. The largest space was used for
208Pb, and it is composed of nine major shells for protons and
ten major shells for neutrons, for a total of 100 single-particle
states. In the self-consistent calculations, we fixed the size of
the computational box, Rmax, and the maximum energy of the
particle states in the configuration space, Ecut. In the case of
12C, Rmax = 10 fm and Ecut = 50 MeV; whereas for 208Pb,
these two parameters are 14 fm and 50 MeV, respectively.

The second input required by RPA is the residual interac-
tion, which, as done for the microscopic NN interactions of
Urbana or Argonne type, we write as

Veff(1, 2)

= v1(r12) + v
ρ

1 (r12)ρα(r1, r2)

+ [
v2(r12) + v

ρ

2 (r12)ρα(r1, r2)
]
τ (1) · τ (2)

+ v3(r12) σ (1) · σ (2) + v4(r12) σ (1) · σ (2) τ (1) · τ (2)

+ v5(r12)S12(r̂12) + v6(r12)S12(r̂12)τ (1) · τ (2). (1)

Here, following the indications of past phenomenological [15]
and self-consistent [17] RPA studies, we have included a
possible dependence on the nuclear one-body density ρ(r) in
the central and isospin channels. In Eq. (1), r12 = |r1 − r2|, σ
and τ are the usual spin and isospin operators, S12 is the tensor

operator defined as

S12(r̂) = 3 σ (1) · r̂σ (2) · r̂ − σ (1) · σ (2), (2)

and

ρ(r1, r2) = [ρ(r1)ρ(r2)]1/2. (3)

The vi(r) functions of Eq. (1) are the same for all
nuclei under investigation. On the other hand, the v

ρ

i (r)
corresponding to the density-dependent part of the interaction
are assumed to be different for each nucleus: they were chosen
to reproduce the first 2+ state in 12C and the first 3− state in
16O, 40Ca, and 208Pb. The other terms of the force were chosen
to obtain a reasonable description of the centroid energy of the
isovector giant dipole resonance by caring that the isoscalar
spurious 1− excitation is at zero energy or below. These criteria
are useful for the scalar and isospin terms which are the most
important terms responsible for the excitation of natural parity
states. The vi(r) functions of the spin, spin-isospin, and tensor
channels of the interaction (i = 3, 4, 5, and 6) were adjusted
to describe the excitation energies of the magnetic states below
8 MeV in 208Pb, paying particular attention to the 1+ states
at 5.85 and 7.30 MeV [23], and to the 12− states at 6.43
and 7.08 MeV [3]. In addition, we also took care that the
correct sequence of the two 1+ states in 12C forming an isospin
doublet [2] was obtained, and that the energy of the first 4−
state of 16O [9] was reasonably reproduced.

In this work, we are interested in the possible effects of the
tensor channels of the interaction as well as in the relevance of
its range (zero or finite). Thus, we have built four interactions.
In connection with previous RPA studies [11], we considered
two interactions, based on the Landau-Migdal approach and
labeled LM and LMtt in the following, which have zero range.
For these two cases, the functions vi(r) of Eq. (1) are given by

vi(r12) = Viδ(r1 − r2), i = 1, . . . , 6. (4)

The values of the parameters Vi , in MeV fm3, are V1 = −918;
V2 = 600; V3 = 20; V4 = 200; and V5 = 0. For the LM inter-
action, V6 = 0, while for the LMtt one, V6 = −150 MeV fm3.

Also, the terms v
ρ

i (r) of Eq. (1) have zero range, i.e.,

v
ρ

i (r12) = V
ρ

i δ(r1 − r2), i = 1, 2. (5)

In MeV fm6 units, the values of V
ρ

1 are 361.0, 436.4, 492.3,
and 599.0 and those of V

ρ

2 are −40.0, −31.0, −150.0, and 0.0
for the 12C, 16O, 40Ca, and 208Pb, respectively. For 48Ca, we
used the same values as for 40Ca. In all the calculations within
the phenomenological approach, we used α = 1 in Eq. (1).

In our phenomenological RPA approach, we considered
only the contribution of direct matrix elements, assuming that
the effects of the exchange terms are effectively included in the
choice of the parameters of the various interactions. Therefore,
the scalar and isospin terms, v1 and v2, respectively, do not
contribute to the excitation of unnatural parity states, which
are the focus of this work. For sake of completeness, however,
we present here the full effective interactions.

We also considered two finite-range interactions with and
without the tensor terms, which we labeled FRtt and FR,
respectively. They were obtained from the Argonne V18
potential [24], by modifying its short-range behavior to take
into account short-range correlations effects. In particular,
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TABLE I. Parameters of the Gaussian functions of the FR and
FRtt interactions [see Eq. (6)]. The spin terms, i = 3, have been set
to zero.

Channel ai
1

(MeV)
bi

1

(fm−2)
Ri

1

(fm)
ai

2

(MeV)
bi

2

(fm−2)
Ri

2

(fm)

i = 1 600.0 4.0 0.5 −200.0 20.0 0.0
i = 2 300.0 7.0 0.5
i = 4 −40.0 4.5 0.5

the short-range part of the Argonne V18 NN potential is
removed and replaced by a combination of Gaussian functions.
Specifically, we took

vi(r) = Ṽ i
18(r) +

M∑
µ=1

ai
µ exp

[−bi
µ

(
r − Ri

µ

)2]
,

(6)
i = 1, . . . , 4,

where Ṽ i
18(r) are the corresponding terms of the bare Argonne

V18 potential with their short-range terms set to zero. In
Eq. (6), M is the number of Gaussians used in each channel.
For the scalar channel, we included two Gaussians to obtain
an attractive behavior starting from the repulsive core. The
repulsive behavior is accounted for by the density-dependent
term. For the channels i = 2 and i = 4, we used only one
Gaussian, and we set to zero the spin term i = 3. The values
of the various parameters are given in Table I, and they are the
same for both interactions.

In the FRtt case, the tensor channels were obtained by
multiplying the bare V18 tensor terms by the scalar term of the
two-body short-range correlation function f (r) of Ref. [19],
that is,

vi(r) = V i
18(r)f (r), i = 5, 6. (7)

More specifically, we used the correlation functions obtained
with the so-called Euler procedure, and because of the small
differences between the f (r) of the various nuclei [19], we
used the function obtained for 40Ca in all our calculations. In
the FR interaction, the tensor terms are equal to 0.

Finally, the density-dependent terms were taken to be
Gaussians:

v
ρ

i (r) = Ai exp(−Bir
2), i = 1, 2. (8)

In our calculations, we used Bi = 1 fm−2. The values of the
parameter Ai are shown in Table II.

TABLE II. Parameters (in MeV) of the density-dependent terms
of the FR and FRtt interactions [see Eq. (8)].

Nucleus FR FRtt

A1 A2 A1 A2

12C 133.8 −120.0 133.8 −125.0
16O 163.4 −95.0 163.6 −95.0
40Ca 194.7 −50.0 194.6 −50.0
208Pb 240.0 −25.0 240.0 −25.0

The free parameters of the finite-range interactions were
chosen following the same criteria used for the zero-range
interactions, and also in this case we included in the RPA
calculations only the contributions of the direct terms of the
matrix elements.

In our self-consistent RPA calculations, we employed a
Gogny interaction [16–18], which is usually expressed as

Veff(1, 2) =
2∑

i=1

exp

[
− (r1 − r2)2

µ2
i

]

× (Wi + BiP̂σ − HiP̂τ − MiP̂σ P̂τ )

+WLS(σ (1) + σ (2))
←
k × δ(r1 − r2)�k

+ t0(1 + x0P̂σ )δ(r1 − r2)ρα

(
1

2
(r1 + r2)

)
, (9)

where �k is the operator of the relative momentum

�k = 1

2i
(∇1 − ∇2) . (10)

We have indicated with P̂σ and P̂τ the usual spin and isospin
exchange operators, and µi,Wi, Bi,Hi,Mi,WLS, t0, and x0

are constant parameters.
The relation between the expression above of the Gogny

force and that required by Eq. (1) is obtained from the
following equations:

v1(r) = W (r) + B(r)

2
− H (r)

2
− M(r)

4
, (11)

v2(r) = B(r)

2
− M(r)

4
, (12)

v3(r) = −H (r)

2
− M(r)

4
, (13)

v4(r) = −M(r)

4
, (14)

where

F (r) =
2∑

i=1

Fi exp

(
− r2

µ2
i

)
, F ≡ W,B,H,M. (15)

The density-dependent term of Eq. (9) can be written as

t0 (1 + x0P̂σ )ρα =
[
t0

(
1 − x0

2

)
− t0x0

2
τ (1) · τ (2)

]
ρα.

(16)

In particular, we used the parametrization of the Gogny
interaction known as D1 [16–18]. In the HF calculations, we
included all the terms of the interactions; whereas in the RPA
calculations, we neglected the contribution of the spin-orbit
term. In HF and RPA calculations, both direct and exchange
terms of the interaction matrix elements were considered.

The various interactions used in our work are shown in
Fig. 1 as a function of the relative momentum of the interacting
pair of nucleons. In this figure, solid, dashed, and dotted lines
represent the D1, LMtt, and FRtt interactions, respectively.
Our tensor-dependent interactions were obtained by adding
the two tensor-dependent terms v5,6(r) to the LM and FR four
central channels. For this reason, in the figure, the LM and
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FIG. 1. Effective NN interactions
used in this work as a function of
the relative momentum. The solid lines
represent the D1, dashed lines the LMtt,
and dotted lines the FRtt interactions.
The central channels v1 . . . v4 of LMtt
and FRtt interactions are identical to
those of the LM and FR interactions,
respectively.

FR interactions are not shown, since they are identical, in
the central channels, to the LMtt and FRtt interactions. The
zero-range interaction terms are constant in momentum space.
We point out that the spin term v3 was set to zero in the FR and
FRtt interactions, and that LMtt does not have the pure tensor
term v5. The finite-range interactions FR, FRtt, and D1 have
similar asymptotic behavior above 4 fm−1. The values of the
LM and LMtt interactions fall between those of the D1, FR,
and FRtt interactions at q12 ∼ 0.

When a discrete configuration space of single-particle wave
functions is used, the solution of the RPA equations is obtained
by solving a homogeneous system of linear equations. For a
given excitation multipole of angular momentum J and parity
π , the RPA solution, obtained with standard diagonalization
procedures, provides the set of excitation energies, and, for
each excited state, the full set of RPA amplitudes XJπ

p-h and
Y Jπ

p-h . One can then calculate the amplitudes for the transition
between ground and excited states induced by an operator
TJ (q) as

〈J‖TJ (q)‖0〉 =
∑

ph

[
XJπ

ph 〈jp‖TJ (q)‖jh〉 + (−1)J+jp−jh

×Y Jπ

ph 〈jh‖TJ (q)‖jp〉]. (17)

In the equation above, |j 〉 indicates the single-particle wave
function characterized by the set of quantum numbers includ-
ing the principal quantum number, orbital angular momentum,
total angular momentum j , and isospin third component. The
double bars indicate the reduced matrix elements of the angular
coordinates.

In this work, we calculated electromagnetic responses,
which are defined as the Fourier transform of the squared
moduli of the transition amplitude (17) [1]. In the plane-wave
Born approximation description of inelastic electron scattering
experiments, these responses, which depend on the modulus
of the momentum transfer q, are related to the cross section by
multiplicative factors depending on kinematics variables, and
to the Mott cross section [25,26].

Since we are interested in magnetic states, the charge op-
erator does not contribute. The operators we used to calculate
the transition amplitudes (17) are those of the convection
and magnetization currents. The explicit expressions of the
single-particle matrix element can be found in Refs. [27,28].
We did not consider the contribution of meson-exchange
currents, which, for low-lying excited states, has been found
to be negligible in comparison with the effects of the residual
interaction [11,29].

III. RESULTS OF THE PHENOMENOLOGICAL
APPROACH

In this section, we present our results for the low-lying
magnetic states of 12C, 16O, 40Ca, 48Ca, and 208Pb, obtained
within the phenomenological approach. For each nucleus,
we first present the unnatural parity low-energy spectrum,
we compare it with the measured spectrum, and we discuss
the sensitivity of the excitation energies to the inclusion
of finite-range and tensor term contributions in the residual
interaction. Then, for some specific states, we investigate the
electromagnetic transverse response functions. To minimize
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the uncertainties due to the discretization of the continuum, we
select excited states that are dominated by particle-hole (p-h)
pairs in which the particle is in a bound state. Furthermore,
we choose the states that exhibit the largest sensitivity to those
terms of the residual interaction that are the focus of the present
study. Also, we address our attention to those states forming
isospin doublets, because their structure (order of the states
and relative splitting) is sensitive to the isospin-dependent
terms of the residual interactions and, more specifically, to the
tensor-isospin terms we introduced in the previous section. The
interest in isospin doublets will become clearer in connection
with the self-consistent calculations, which will be presented
in the next section. In addition, we give preference to the study
of those states for which experimental data are available.

A detailed discussion of the results will be presented
throughout this section, but we would like to anticipate that
we have obtained a general good description of the excitation
spectra, almost independently of the effective interaction used.
This indicates that we have been able to incorporate in the
parametrization of the residual interaction some relevant fea-
tures required by the description of the magnetic excitations.
The disagreement with the experimental data can be due to the
use of the plane-wave Born approximation in the calculation
of the electron scattering cross section, or in the nuclear
structure part, to the truncation of the configuration space.
Actually these approximations are rather well controlled. The
experimental responses are usually presented after a correction
for the Coulomb distortion of the electron wave functions, and
the effects of the limited configuration space are effectively
considered by the choice of the force parameters. For these
reasons, we think that the possible discrepancies between our
predictions and the experimental data have to be ascribed more
to the intrinsic limitations of the RPA theory than to a more
efficient parametrization of the interaction.

A. The 12C nucleus

In Table III, we compare the energies of the low-lying
magnetic states of 12C with the experimental values taken from
Ref. [30]. In the calculation with the LM interaction, we are
unable to identify the second 2− state, because all the states
higher than the first one have dominant p-h components with
the particle in the continuum. Apart from this case, we notice
that the calculated energies for each state are rather similar,

TABLE III. Low-lying spectrum of the unnatural
parity, magnetic, states in 12C. The energies are expressed
in MeV. The experimental values are from Ref. [30].

12C

J π LM LMtt FR FRtt Exp

2− 16.26 16.20 16.07 16.03 11.83
1+ 14.41 14.41 13.89 13.87 12.71
2− – 17.26 17.23 17.14 13.35
1+ 18.13 17.97 18.17 18.05 15.11
4− 18.21 18.21 17.78 17.75 18.27
4− 21.70 20.80 19.92 19.49 19.50

independent of the interaction used. The experimental energies
are reasonably well reproduced except for the 2− states whose
energies are about 4 MeV above the experimental ones.

The two most interesting cases are the 1+ and 4− states.
For the 1+ case, we obtain two states, dominated by the
[(1p1/2)(1p3/2)−1] proton and neutron pairs, although for
the state with higher energy non-negligible contributions
of other p-h pairs appear. The lowest energy state has an
isoscalar (IS) character, while the state with higher energy is
isovector (IV). These states correspond to the experimentally
well-known isospin doublet at 12.71 MeV (T = 0) and
15.11 MeV (T = 1) [8,30]. The corresponding transverse
response functions, or form factors, are shown as a function of
the effective momentum transfer in the upper panels of Fig. 2.
We use the traditional definition of the effective momentum [1]

qeff = q

(
1 + 3Zαh̄c

2εiR

)
, (18)

where Z is the atomic number of the target nucleus, α is the
fine structure constant, εi is the incident electron energy, and
R is the nuclear charge radius.

In the lower panels of the same figure, for each state
considered, we show the proton (thick lines) and neutron (thin
lines) contributions to the transition densities, as a function of
the distance from the center of the nucleus. These transition
densities were obtained from Eq. (17) by considering for TJ the
expression of the magnetization and avoiding the integration
on r . The behavior of the transition densities clearly shows the
isospin nature of the two states. For the lower energy state,
proton and neutron densities are in phase, indicating the IS
nature of the excitation. The opposite happens for the second
state, and this is a clear signature of the IV nature of this state.

As we can see from Table III, our calculations overestimate
the experimental energies of both the 1+ states and their
splitting. The largest relative differences in the energy values
are 13% and 20% for the first and second state, respectively.
Despite these quantitative discrepancies with the observed
energies, our calculations produce the correct sequence of
isoscalar and isovector excitation with all the interactions.
The inclusion of finite-range and tensor terms changes the
energy values at the level of few percent. Also the response
functions are not very sensitive to the use of different residual
interactions, as shown in Fig. 2. Only the responses of the
IV state show some difference around the minimum at qeff =
1.5 fm−1. The position of this minimum seems to be slightly
better described by the interactions including tensor terms.
The comparison with electron scattering data [9] shows good
agreement with the IS data and overestimates the experimental
IV response in the region of the first maximum. A good
description of the 1+ IV transition is extremely important,
since this state is used in liquid scintillator neutrino detectors
to identify neutral current events [31]. The figure shows that
the discrepancy in the description of the IV response cannot
be solved by using an overall quenching factor. While the
first peak is overestimated by almost a factor of 2, the second
peak is rather well reproduced. The difficulty in describing
the IV 1+ state is a common characteristic of the RPA
calculations [32–36] and produces an overestimation of the
experimental total neutrino 12C cross sections measured in
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FIG. 2. Upper panels show the
electromagnetic responses of the 1+

states in 12C. The data are from
Ref. [9]. The various lines indicate
the interaction used in the RPA
calculation: LM (solid), LMtt (dot-
ted), FR (dashed), and FRtt (dashed-
dotted). The lower panels show pro-
ton (thick lines) and neutron (thin
lines) contributions to the transition
densities of the two states. The line
types have the same meaning as in
the upper panels. The values of the
experimental energies for the two
states are indicated.

the LNSD [31,37,38] and KARMEN [39] experiments. To
solve the problem, the presence of strong pairing effects has
been advocated [40], with the idea that the shell closure
in the 12C nucleus is not a good approximation. We have
to remark, however, that the problem of describing the IV
1+ state is present also in other doubly-magic nuclei where
pairing correlations are negligible [23]. The size of the first
maximum of the 1+ IV response in 12C is well reproduced
by microscopic ab initio shell model calculations [41], but the
shape is completely wrong. These calculations produce the first
minimum of the response at 2 fm−1, and they are completely
missing both size and shape of the second maximum.

We consider now the 4− states which also form an
isospin doublet. These states are dominated by the linear
combination of the stretched [(1d5/2)(1p3/2)−1] excitations.
In our calculations, the 1d5/2 state is bound with an energy of
−1.1 MeV in the neutron case, and it shows a sharp resonance
at 2.0 MeV in the case of protons. The MF excitation energies
are the single-particle energy differences, which for this p-h
transitions are 17.96 and 17.62 MeV for protons and neutrons,
respectively. The RPA calculations mix the proton and neutron
p-h transitions, and in our results the isoscalar state has lower
energy than the isovector one, independent of the interaction

used. The results shown in Table III indicate that the residual
interaction produces solutions with energies higher than those
obtained within the simple MF. In this situation, the role of the
finite range of the force is not negligible. The upward shift of
the RPA solutions is reduced by only 0.5 MeV for the IS state,
but by 1.7 MeV for the IV state. The experimental IS energy is
better reproduced by the zero-range interaction, while the IV
energy is much better described by the FRtt interaction.

We show in Fig. 3, the electromagnetic responses for the
two 4− states. We compare the IV responses to the available
experimental data [4]. The IS responses show some sensitivity
to the use of the residual interaction. The inclusion of the tensor
terms and the finite range reduces the size of the response.
The results of the IV responses are rather independent of the
residual interaction, and the experimental data are rather well
reproduced.

Finally we observe that our model also produces 2− states,
however, as said before, their energies are in large disagree-
ment with data. The same occurs when the corresponding
responses are compared. This might be due to the presence, in
these states, of sizable contributions from p-h pairs having a
particle in the continuum, which brings in further uncertainties,
as our procedure discretizes the continuum.
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FIG. 3. Electromagnetic responses of the 4− states in 12C. The
meaning of the lines is the same as in Fig. 2. The data are from
Ref. [4].

B. The 16O nucleus

The spectrum of the low-lying magnetic states obtained
with the four interactions is presented in Table IV, where it is
compared with the experimental spectrum [30]. All the states
have negative parity and, since the p shell is closed for both
protons and neutrons, this indicates that they are dominated
by p-h transitions involving neighbor shells. The order of the
various states is reproduced by our calculations. The magnetic
state with lowest energy is a 2− state, as in the experimental
spectrum, but the calculated energy eigenvalues overestimate
the experimental value by about 30%, independent of the
interaction used. This result is contrary to our expectations,
because this state is dominated by the [(1d5/2)(1p1/2)−1] bound
proton and neutron transitions, and therefore it should be well
described by our approach. We have found [22] a remarkable
disagreement with the experimental data [9] also for the

TABLE IV. Same as in Table III, but for 16O.

16O

J π LM LMtt FR FRtt Exp

2− 11.80 11.80 11.51 11.51 8.87
0− 12.33 11.19 12.15 11.84 10.96
0− – 12.39 13.13 12.23 12.80
4− 18.15 18.15 17.75 17.73 17.79
4− 21.41 20.59 19.88 19.45 18.98
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FIG. 4. Same as Fig. 3, but for 16O. The data are from Ref. [9].

transition density. These facts indicate the presence, in this
2− state, of effects beyond the description capability of our
RPA model.

The subsequent states in our spectrum are two 0− states
which can be identified in the experimental spectrum [30].
They are dominated by the [(2s1/2)(1p1/2)−1] proton and
neutron transitions. The effect of the tensor term of the
interaction on the energy values is not negligible. Since
these states are not excited by electromagnetic probes, at
least in the one-photon exchange picture, we calculated the
neutrino and antineutrino cross sections [22] and we found
large sensitivity to the tensor force. This point deserves a
more detailed investigation, for example, by calculating the
excitations induced by hadronic probes.

The 4− states, dominated by [(1d5/2)(1p3/2)−1] protons
and neutrons p-h excitations, form an isospin doublet. Also
in this case, the energy of the IS state is lower than that of
the IV one, in agreement with the experimental data. The IS
energy eigenvalues are almost insensitive to the presence of
tensor terms; they are, however, rather sensitive to the use of
finite-range interactions. In the IV case, both tensor terms and
the finite range affect the energy value. The electromagnetic
responses for the two states are shown in Fig. 4 and compared
with the experimental data of Ref. [9]. In both cases, the
position of the maximum of our calculations is slightly lower
than the experimental one. The IS state shows some sensitivity
to the residual interaction. The inclusion of the tensor term
and the finite range contributes to lowering the response, and
this slightly improves the comparison with the data. The IV
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TABLE V. Same as in Table III, but for 40Ca.

40Ca

J π LM LMtt FR FRtt Exp

4− 6.86 6.88 6.78 6.80 5.61
2− 7.21 7.20 6.91 6.90 7.53
4− 7.52 7.59 7.42 7.47 7.66
2− 8.90 8.44 8.76 8.58 8.42

response is less sensitive to the changes of the interaction. We
obtain a general good agreement with the data.

C. The 40Ca nucleus

The spectrum of the magnetic states of the 40Ca nucleus is
given in Table V. The global closure of the s-d shell, for both
protons and neutrons, implies that the low-energy spectrum is
composed only of negative-parity states. Our RPA calculations
reproduce the correct sequence of the states, independent of
the interaction used. The energy eigenvalues do not show large
sensitivity to the choice of the interaction. We overestimate the
energy of the first 4− state, while the energies of the other states
are better reproduced.

The response functions of the 2− and 4− states are shown in
Fig. 5 and compared with the available experimental data [42].
The response of the lowest 2− state is almost insensitive to
the choice of the residual interaction. The electromagnetic
response of the other 2− state shows larger sensitivity to
the interaction used in the RPA calculation. The shapes of
the responses are strongly modified by the finite-range and
especially by the tensor term. The latter lowers the value of
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FIG. 5. Same as Fig. 3, but for the 2− and 4− states in 40Ca. The
data are from Ref. [42].

the first maximum and reduces the width of the second peak
of the response. The data are not accurate enough to allow a
selection among the various results.

The response of the lowest 4− state indicates that the
presence of the finite-range increases the peak value, while
the tensor term reduces it. The same effect is present also in
the response of the other 4− state. In this case, experimental
data are available for comparison [42], and we see that there
is no similarity in size and shape between our results and the
data.

D. The 48Ca nucleus

In Table VI, we present the low-energy magnetic spectrum
of 48Ca, obtained with the same residual interactions used for
40Ca. The 48Ca spectrum contains both negative- and positive-
parity states, the latter being dominated by single-particle
excitations of the 1f7/2 neutron-hole. Globally, we obtain a
reasonable agreement between the measured and calculated
energies, but the correct sequence of the excited states is
not exactly reproduced. In each calculation, we obtain a
6− state whose energy is larger than that of the 1+ state, while
experimentally the opposite occurs. This disagreement is due
to the overestimation of the 6− state energy by about 2.5 MeV.
The energy eigenvalues presented in Table VI do not show
particular sensitivity to the different interactions used in the
RPA calculations.

The study of the electromagnetic responses of these states
is more interesting, as shown in Fig. 6, where the theoretical
curves are compared with the available experimental data [6,
43]. Large effects of the choice of the residual interaction
are present for the 2− and 6− states. The residual interaction
produces some differences also in the responses relative to the
4−, 1+, and 3+ states.

As already mentioned, the positive-parity states are dom-
inated by the excitation of the 1f7/2 neutron-hole, therefore
the residual interaction plays a minor role, and the results
are rather similar to those of the MF. Effects of the use of
different interactions are present only at the third maximum
of the 1+ responses and at the first two maxima for the 3+
state. The experimental data of the 3+ and 5+ are rather
well reproduced. The same does not occur with the 1+ state,
where other mechanisms beyond RPA (second-order core
polarization, tensor correlations, and � excitations) must be

TABLE VI. Same as in Table III, but for 48Ca.

48Ca

J π LM LMtt FR FRtt Exp

3+ 5.03 4.99 4.96 4.94 4.61
5+ 5.26 5.16 5.04 4.98 5.15
4− 6.44 6.41 6.36 6.35 6.10
2− 7.53 7.06 7.30 7.10 6.89
6− 11.29 11.31 11.01 10.99 8.56
1+ 9.65 9.38 9.68 9.50 10.23
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FIG. 6. Same as Fig. 3, but for the magnetic states in 48Ca. The
data are from Refs. [6,43].

taken into account to obtain good agreement between theory
and experiment [44].

For the negative-parity states, we cannot find any common
trend related to the inclusion of the various ingredients of
the interactions. For example, the tensor term increases the
responses of the 4− and 6− states, while it lowers that of the
2− state. The 2− and 4− experimental responses are rather
well reproduced. Similar results were obtained in Ref. [45],
where the Jülich-Stony Brook interaction [46] with the tensor
terms reduced by ∼30–60% was used. We have encountered
problems in the description of the 6− response. On the other
hand, we have already pointed out the difficulties found in
describing the excitation energy of this state.

E. The 208Pb nucleus

The energies of the low-lying magnetic states of 208Pb are
presented in Table VII and compared with the experimental
ones. The sequence of the states is quite well reproduced. There
are some exceptions, but these occur with energy differences
of the order of a few tens of keV, an energy resolution
smaller than the accuracy we assign to our results. The global

TABLE VII. Same as in Table III, but for 208Pb.

208Pb

J π LM LMtt FR FRtt Exp

4− 3.52 3.50 3.50 3.49 3.48
6− 4.04 4.04 4.03 4.03 3.92
2− 4.30 4.21 4.23 4.20 4.23
9+ 5.14 5.11 5.11 5.09 5.01
9+ 5.45 5.45 5.44 5.44 5.26
0− 5.64 5.38 5.54 5.42 5.28

11+ 5.25 5.20 5.14 5.12 5.29
1+ 5.92 5.89 5.72 5.70 5.85

11+ 5.88 5.89 5.86 5.87 5.86
10− 6.64 6.56 6.57 6.53 6.28
12− 6.66 6.61 6.57 6.54 6.43
14− 6.99 6.84 6.66 6.59 6.74
10− 7.44 7.22 7.32 7.23 6.88
12− 7.72 7.55 7.41 7.32 7.08
1+ 7.38 6.77 7.64 7.48 7.30

picture emerging from Table VII is that the various interactions
produce small differences in the energy eigenvalues.

The investigation of the electromagnetic responses provides
more information. We start our discussion with the 12−
responses, which have been studied quite often in the past
[11,47,48] because of their apparently simple p-h structure.
They are, in fact, mainly composed by two p-h pairs, the
proton [(1i13/2)(1h11/2)−1] and neutron [(1j15/2)(1i13/2)−1]
transitions. The lower 12− state, experimentally found at
6.43 MeV, is neutron dominated; while the state at higher
energy, 7.08 MeV, is dominated by the proton transition.
Our calculations produce the correct order of the states, and
the RPA energies agree well with the experimental values,
especially the lower one. We must recall, however, that
this state is one of the states used to set the values of
the interaction parameters. The calculated energies of the
higher state overestimate the experimental value, but the
discrepancies are below 10%. The electromagnetic responses
are shown in the right panels of Fig. 7 and are compared
with the data of Ref. [3]. The responses relative to the
higher state, lower right panel, show a reasonable agreement
with the data, and they are almost insensitive to the choice
of the residual interaction. On the contrary, the responses of
the neutronic state, upper right panel, are extremely sensitive
to the inclusion of both the finite range and tensor terms in
the interaction. These effects improve the agreement with the
data, but the calculated curves still underestimate the measured
response. The disagreement could be reduced by increasing the
magnitude of the tensor part of the interaction. We have found,
however, that this would produce a general worsening of the
magnetic spectrum of 208Pb and of the other nuclei we have
considered. For example, a too strong tensor interaction could
invert the sequence of the IS and IV 1+ states.

In the left panels of Fig. 7, we present the responses of
the 10− states, which show some sensitivity to the tensor part
of the residual interaction. All interactions can reproduce the
magnitude of the responses, but only the inclusion of the tensor
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FIG. 7. Same as Fig. 3, but for the 10− and 12− states in 208Pb.
The data are from Ref. [3].

terms allows a good description of the second peak in both 10−
states. Improvements in the precision of experimental data
around q = 2.5 fm−1 would thus be particularly important to
studying the tensor component of the residual interaction.

The energies of the 1+ states are reproduced rather well
with all the residual interactions, except for the isoscalar state
at 5.85 MeV and for the isovector state at 7.30 MeV. We
should point out that the IV state is so fragmented that this
energy value is an estimate based on an accurate analysis
of the photon scattering data [23]. The electromagnetic
responses are plotted in Fig. 8, and for the IS state (upper
panel) we compare them with the data [5]. For this state, all
the curves reproduce the q dependence of the data except at low
q, where the theoretical responses are well below the data. Un-
fortunately there are no data in the region q < 0.5 fm−1 where
the effects of the different interactions are larger. In the IV
case (lower panel), the differences between the various results
appear at large q values. This is, however, a theoretical specu-
lation, because, as we have already said, experimentally the IV
state is extremely fragmented and cannot be described within
our RPA approach. In the 208Pb nucleus, pairing effects are neg-
ligible, and we think that this fragmentation can be described
only by considering elementary excitations beyond 1p-1h.

The 9+, 11+, and 14− states are dominated by a single
particle-hole excitation, with the exception of the lower
energy 9+ state, where a small contribution of the proton
[(2f7/2)(1h11/2)−1] transition is present besides the dominant
neutron [(2g9/2)(1i13/2)−1] one. For this state, the calculated
transverse responses, presented in the upper left panel of
Fig. 9, show three peaks, and this behavior is compatible with
the data. On the other hand, the position of the experimental
points of the other 9+ state (lower left panel) is very different
from the shape of the theoretical responses, which exhibit some
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FIG. 8. Same as Fig. 3, but for the 1+ states in 208Pb. The data are
from Ref. [5].

dependence on the residual interaction. Analogous problems
are found for the 11+ states, whose responses are plotted in
the right panels of Fig. 9.

To complete our survey, we show in Fig. 10 the electro-
magnetic response of the 14− state. Its nature of almost pure
p-h transition is evident, because there is no dependence on
the residual interaction, as pointed out in the literature (see,
for example, Ref. [49]).

IV. RESULTS OF SELF-CONSISTENT CALCULATIONS

In the previous section, we have presented the results of the
phenomenological approach. We would like to point out that
the study of the full set of magnetic states, together with their
electromagnetic responses, can be used to test the validity of
the effective interactions used in RPA calculations. To give
an example of this potentiality, we present here some selected
results we have obtained with the Gogny D1 interaction [16–
18].

The complete D1 interaction was used in computing the
HF single-particle energies and wave functions, while we
neglected the contribution of the spin-orbit term in the RPA
calculations. This is a good approximation if the contribution
of the residual Coulomb interaction is also neglected [50], as
we have done. The RPA results presented in this section were
obtained by considering both direct and exchange terms of the
D1 interaction, similar to what we did in the HF calculations.
This makes the connection between the properties of the exci-
tation spectrum and the various parts of the interaction much
more complicated than in the phenomenological approach,
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FIG. 9. Same as Fig. 3, but for the 9+ and 11+ states in 208Pb. The
data are from Ref. [3].

where only direct matrix elements were considered, because
each interaction term can now contribute to the other chan-
nels through the exchange diagrams. For example, in the
phenomenological case, scalar and isospin channels do not
contribute to the excitation of unnatural parity states, whereas
these two channels produce a contribution to the spin and spin-
isospin channels in the exchange diagrams in the calculations
done with the D1 interaction.

To complete the information about our RPA calculations,
we point out that we have also included the so-called
rearrangement terms, related to the density-dependent part
of the interaction. They arise by considering the effective
interaction as the second derivative of the energy with respect
to the single-particle density [51]. Quantitatively, we found the

1.5 2.0 2.5 3.0
10-8

10-7

10-6

10-5

R
T

[M
eV

−1
]

qeff [fm−1]

208Pb(e,e’)208Pb

14− (6.74 MeV)

FIG. 10. Same as Fig. 3, but for the 14− states in 208Pb. The data
are from Ref. [3].
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FIG. 11. Electromagnetic responses of the 1+ isospin doublet in
12C. The full lines show the results of Fig. 2 obtained with the FR
interaction. The dotted lines were obtained with the D1 interaction
but using the set of single-particle wave functions and energies used
in the phenomenological approach. The dashed lines are the results
of a self-consistent calculation with the D1 interaction. This means
that the single-particle basis was generated by a HF calculation with
the D1 interaction. The dotted and dashed curves in the IS panel
were obtained by using the RPA amplitudes of the higher energy
1+ solution. The lower energy amplitudes were used to generate the
curves shown in the IV panel.

contributions of these terms to be negligible in all the cases we
investigated.

In the following, we present two different types of results.
In the first case, the Gogny D1 interaction is used in the RPA
calculations, but the size of the configuration space and the
single-particle wave functions and energies are taken to be the
same as in the phenomenological approach. The results of these
calculations are represented by the dotted lines in Figs. 11–13.
The second case is fully self-consistent, i.e., the single-particle
basis is produced by a HF calculation with the same interaction
used in RPA. The size of the configuration space is chosen as
described in Sec. II. The corresponding results are shown in
the figures as dashed lines. The comparison between these two
cases allows us to distinguish between the role played by the
single-particle basis and that played by the residual interaction.
In the figures, the full lines show the results obtained in the
phenomenological approach by using the FR interaction. This
interaction has a finite range, but it does not include the
tensor terms; therefore, among the four interactions we have
defined in the previous section, it is the most similar to the D1
interaction.

044311-11



V. DE DONNO et al. PHYSICAL REVIEW C 79, 044311 (2009)

10-8

10-7

10-6

10-5

10-4

10-3

1.0 1.5 2.0 2.5 3.0 3.5
10-8

10-7

10-6

10-5

10-4

10-3

10-2

0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0

R
T

[M
eV

−1
]

R
T

[M
eV

−1
]

qeff [fm−1]qeff [fm−1]qeff [fm−1]

12C(e,e’)12C 16O(e,e’)16O 40Ca(e,e’)40Ca

4− (18.27 MeV) IS

4− (19.50 MeV) IV

4− (17.79 MeV) IS

4− (18.98 MeV) IV

4− (5.61 MeV) IS

4− (7.66 MeV) IV

FIG. 12. Electromagnetic responses of some 4− isospin doublets. The meaning of the lines is the same as in Fig. 11. Also, the low-energy
D1 responses are plotted together with the high-energy phenomenological responses, and vice versa.

We start our discussion with the 1+ isospin doublet in 12C,
whose electromagnetic responses are shown in Fig. 11. The
striking result is that when the D1 interaction is used, the
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FIG. 13. Same as Fig. 11, but for the 1+ isospin doublet in 208Pb.

position of the IS and IV states is inverted. In the self-consistent
calculations with the D1 interaction, we obtain the lowest 1+
state at 7.72 MeV. In Fig. 11, the response obtained with the
RPA amplitudes of this state is presented in the lower panel,
together with the data and with the phenomenological response
for the IV state. The self-consistent response obtained with the
D1 interaction at 10.66 MeV is shown in the upper panel of
the figure, together with the IS phenomenological response.

We obtain this inversion also in the calculations done with
the D1 interaction and the phenomenological single-particle
wave functions and energies (dotted curves). The response
function of the lowest energy state, at 3.85 MeV, is shown in
the lower panel together with the IV data. In the upper panel
of the figure, we show the response obtained by using the RPA
amplitude of the state at 8.12 MeV. It is not simple to identify
the IS state among those we have obtained in this energy
region. We have chosen the state showing large values of the
RPA amplitude for the [(1p1/2)(1p3/2)−1] proton and neutron
transitions. The shape of this response is very different from
that of the other responses and from the data.

We found the inversion of the IS and IV partner states in all
the cases we investigated. Examples are shown in Fig. 12 for
a set of 4− states and in Fig. 13 for the 1+ states in 208Pb.

The energies, in MeV, of the self-consistent calculations
of the 4− states are 1.64 and 18.64 for 12C, 15.49 and 18.81
for 16O, and 7.59 and 7.83 for 40Ca. The comparison with
the phenomenological results and with the experimental data
is always done by associating the responses corresponding
to the higher energy values with the IS states, and those
corresponding to lower energy with the IV states. The energies
of the 208Pb 1+ states are 6.75 MeV (IV) and 9.40 MeV (IS).
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We stress that the inversion is obtained in both types of
RPA calculations done with the D1 interaction, and therefore
it does not depend on the single-particle basis, but it is related
to the characteristics of the interaction itself. We repeated
our calculations with another Gogny-like force with different
values of the parameters, the D1S interaction [52], and also
observed the inversion of the isospin partner states.

V. CONCLUSIONS

We have studied the magnetic excitation spectrum of
doubly-closed nuclei to investigate the properties of the spin,
spin-isospin, and tensor terms of the effective interaction. In a
phenomenological approach, where the single-particle basis is
obtained by using Woods-Saxon wells, we introduced four
different interactions that reproduce the energy of specific
magnetic excited states in 12C, 16O, 40Ca, 48Ca, and 208Pb
with the same accuracy. We first considered a zero-range
interaction having only the four central channels, and we then
progressively complicated the structure of the interaction by
adding tensor terms and a finite range. The RPA calculations
done for a large number of magnetic excitations indicate
that all four interactions are able to describe with reasonable
accuracy the experimental spectra and, to a lesser extent, the
electromagnetic responses. We found, and pointed out, a few
cases where the role of the finite range and the tensor terms is
relevant, for example, the neutronic 12− state of 208Pb shown
in Fig. 7.

In some cases, we found large disagreement between our
calculations and the experimental data, as, for example, for the
4− state of 40Ca at 7.66 MeV, shown in Fig. 5. In these cases,
however, the discrepancies between calculations and data are
more related to the inadequacy of the RPA description than to
a bad parametrization of the interaction.

The validity of our approach was then tested with the
Gogny D1 interaction, for which we repeated the calculations

of the magnetic excitation of all the states considered in
the phenomenological approach. The calculations were done
both using the same single-particle basis employed in the
phenomenological case and in a fully self-consistent approach,
where the single-particle basis was generated by a HF calcula-
tion. The striking result we obtained is that the D1 interaction
inverts the energy sequence of isospin partner excitations,
independent of the single-particle basis adopted and for all
the nuclei studied. For a fixed multipolarity, the experimental
evidence is that the IS excitation has lower energy than the IV
one, while this order is inverted in the RPA calculations with
the D1 interaction. Nuclear matter studies of the pairing gap
done with the D1 interaction indicate anomalous behavior in
the isospin T = 0 channel [53]. The two problems could be
related. In these circumstances, the role of both the spin orbit
and the residual Coulomb terms of the interaction, which are
neglected in our RPA calculations, should be investigated to
control the validity of the D1-like interactions for this kind of
calculation.

Improvements of Gogny-like interactions have recently
attracted a lot of attention [54–56], because self-consistent
calculations have a wider predictive power than phenomeno-
logical approaches. The description of exotic nuclei, which
will be produced and studied in future nuclear physics
facilities, requires the use of well-grounded self-consistent
calculations. We think that the analysis of the magnetic spectra
and their electromagnetic properties is an important filter
for selecting the nucleon-nucleon interactions to be used in
effective nuclear theories.
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