
PHYSICAL REVIEW C 79, 044310 (2009)

Mass tensor in the Bohr Hamiltonian from the nondiagonal energy weighted sum rules
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Relations are derived in the framework of the Bohr Hamiltonian that express the matrix elements of the
deformation-dependent components of the mass tensor through the experimental data on the energies and the
E2 transitions relating the low-lying collective states. These relations extend the previously obtained results for
the intrinsic mass coefficients of the well-deformed axially symmetric nuclei on nuclei of arbitrary shape. The
expression for the mass tensor is suggested, which is sufficient to satisfy the existing experimental data on the
energy weighted sum rules for the E2 transitions for the low-lying collective quadrupole excitations. The mass
tensor is determined for 106,108Pd, 108–112Cd, 134Ba, 150Nd, 150−154Sm, 154−160Gd, 164Dy, 172Yb, 178Hf, 188–192Os,
and 194–196Pt.
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I. INTRODUCTION

In our previous publications [1,2], on the basis of the
experimental data, we have shown that in the case of the
well-deformed axially symmetric nuclei the mass coefficients
for β and γ vibrations are several times larger than the mass
coefficient for the rotational motion. However, if we start with
the Bohr Hamiltonian written in the laboratory frame and if we
have, as it is usually assumed, a constant mass coefficient in the
expression for the kinetic energy term, then the Hamiltonian
transformed into the intrinsic frame will have the same mass
coefficients for the rotational motion and for the β and γ

vibrations. This means that in the Bohr Hamiltonian written
in the laboratory frame the mass tensor cannot be reduced to
a constant mass coefficient if we want to have different inertia
coefficients for the rotational and the vibrational modes.

The kinetic energy term is a vector product of the two
operators of the collective momentum and the mass tensor. The
operators of the collective momentum −ıh̄ ∂

∂α2µ
, each having

the angular momentum equal to 2h̄ units, can be coupled to
the total momentum L, taking the values 0, 2, and 4 (L = 1
and 3 are absent because of the symmetrization). Because the
kinetic energy term is a scalar, the mass tensor will also have
components with L = 0, 2, and 4. The component of the mass
tensor with L = 0 can be a constant, but the component with
L = 2 contains at least one degree of the collective coordinate
α2µ. The component with L = 4 can be at least of the second
order in α2µ. If the mass tensor is restricted to be a constant,
then it can be used as a scaling parameter to fit the energy
of the first 2+ state. However, if the mass tensor contains
the deformation-dependent components with L = 2 and 4, we
suggest a procedure for extracting the information about the
mass tensor from the experimental data.

The aim of the present article is to extend the analysis of the
mass tensor performed by us earlier for the well-deformed ax-
ially symmetric nuclei to the spherical and transitional nuclei.
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We consider the Bohr collective Hamiltonian in the laboratory
frame with the mass tensor of the most general form. By using
the experimental data for different nuclei we show that the
mass tensor definitely contains nonvanishing quadrupole and
hexadecupole components and therefore cannot be reduced to a
scalar mass as it is assumed in many recent publications [3–6].
We should mention, however, that a deformation-dependent
mass tensor having not only a monopole component has been
considered in Refs. [7–12].

II. THE RELATIONS FOR THE COMPONENTS OF THE
MASS TENSOR

We consider the collective quadrupole Bohr Hamiltonian

H = T + V (α2µ), (1)

with the most general form of the kinetic energy term

T = −h̄2

2

∑
µ,µ′

∂

∂α2µ

(B−1)lab
µ,µ′

∂

∂α2µ′
, (2)

where (B−1)lab
µ,µ′ is an inverted mass tensor. This Hamiltonian

generates all eigenstates that will be considered. Because the
angular momentum L is a good quantum number that is used
to characterize the excited states, it is convenient to express
the mass tensor through the components having fixed values
of L,

(B−1)lab
µ,µ′ =

√
5

∑
LM

CLM
2µ2µ′(B−1)lab

LM, (3)

where CLM
2µ2µ′ is a Clebsch Gordan coefficient. In the special

case when the kinetic energy term is characterized by only one
constant mass coefficient, one finds from Eq. (3) that in this
case the mass tensor does not contain components with L = 2
and 4. Our task is to check on the basis of the experimental data
for different nuclei whether these components are present in
the mass tensor or whether they are equal to zero in real nuclei.
We determine, however, only two matrix elements of the mass
tensor and do not describe the mass tensor as a function of the
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collective variables. To get more information about the mass
tensor we need a larger number of its matrix elements but there
is not enough experimental data to determine them.

To obtain information about the quadrupole and the
hexadecupole components of the mass tensor we calculate
a double commutator [[H,Q2µ],Q2µ′ ] using Bohr’s form of
the quadrupole moment operator

Q2µ = qα2µ, (4)

where q = 3
4π

eZr2
0 A2/3. The double commutator [[H , Q2µ],

Q2µ′] is suitable to obtain information about the mass tensor
because of the crucial fact that the potential energy does not
contribute to it (see Appendix A) [13,14]. Indeed, both the
potential energy and the quadrupole operator depend only
on the collective coordinate α2µ, whose components with
different values of µ commute with each other. We note that,
as shown in Eq. (A1) in Appendix A, the potential energy
V (α2) does not already contribute to the single commutator.
Of course both parts of the collective Hamiltonian, the mass
tensor and the potential energy, are equally important for the
description of the collective properties of nuclei but the matrix
elements of the double commutator considered above give us
an opportunity to obtain those relations between the excitation
energies and the reduced E2 transition probabilities that are
sensitive only to the mass tensor.

It is convenient to express the coefficient q in terms of the
Weisskopf units for E2 transitions because the experimental
data for B(E2) are given frequently in Weisskopf units (Wu)
[13],

q = 5√
4π

Z
√

B(E2)Wu. (5)

The result for the double commutator is [see Appendix A,
Eq. (A2)]

[[H,Q2µ],Q2µ′] = −h̄2q2
√

5
∑

L=0,2,4

∑
M

CLM
2µ2µ′(B−1)lab

LM. (6)

We stress once more that the double commutator (6) is
independent of the value of the potential V .

Taking the matrix elements of both sides of Eq. (6)
between some eigenstates of a nucleus, we get on the left
an expression containing only the measurable quantities,
namely, the excitation energies and the matrix elements of
the quadrupole operator, and on the right we get the matrix
elements of the mass tensor.

Let us introduce for convenience a short notation for the
matrix elements of the double commutator,

S(L) ≡ √
2L + 1〈LM|

∑
µ,µ′

CLM
2µ 2µ′[[H,Q2µ],Q2µ′ ]|0+

gs〉,

(7)

where |LM〉 is the lowest state with angular momentum L,
and express the matrix element of the mass tensor through the
reduced matrix elements

〈LM|(B−1)lab
LM |0+

gs〉 = 1√
2L + 1

〈L‖(B−1)lab
L ‖0+

gs〉. (8)

Then taking the matrix element of Eq. (6) between the ground
state and the first excited state with angular momentum L

(|LM〉) and using definitions (7) and (8), we obtain [see
Appendix B, Eq. (B1)]

S(L) = 1√
5

∑
i

(E(L) − 2E(2+
i ))〈L‖Q2‖2+

i 〉〈2+
i ‖Q2‖0+

gs〉

= −h̄2q2
√

5〈L‖(B−1)lab
L ‖0+

gs〉. (9)

Equation (9) is the main result of this article. It shows that
one can obtain information on the mass tensor from excitation
energies and B(E2)’s. In the case of L = 2 or 4, S(L) is equal
to zero if the mass tensor is approximated by the one constant
mass coefficient.

In most cases we can keep with good accuracy in the sum
in Eq. (9) only the three lowest 2+ states. In the case of the
well-deformed axially symmetric nuclei, these three states are
the 2+ states of the ground, β, and γ bands. In the case of the
spherical nuclei they are usually one-, two-, and three-phonon
2+ states.

Below we use the notation 2+
1 for the first 2+ state. However,

it is inconvenient to use the numeration i = 2 and 3 for the
higher lying 2+ states because in the well-deformed nuclei in
some cases the second 2+ state is 2+

γ but in some cases, like
154Sm, it is 2+

β . So, everywhere in the text below we use the
notations 2+

γ and 2+
β for the higher lying 2+ states that will be

taken into account in our formulas. This will be done not only
for the well-deformed nuclei but also for the transitional nuclei,
where it would be more correct to call these states quasi-γ and
quasi-β. In order not to use different notations for different
types of nuclei, we use these notations also for the spherical
nuclei. In this case the notation 2+

γ is used for the two-phonon
state and 2+

β for the three-phonon state. It has some meaning
because both the three-phonon 2+ state in spherical nuclei and
the 2+

β state in the well-deformed nuclei have a node in the
β-dependent part of the wave function. Nevertheless the wave
functions for these states are completely different.

The matrix elements in Eq. (9) can be expressed through the
excitation energies and the reduced E2 transition probabilities.
To do this we use some phase relations for the reduced matrix
elements of the quadrupole operator. The details are considered
in Appendix B. The final results are

S(4) ≡
∑

i=1,β,γ

S
(4)
i =

∑
i=1,γ,β

(E(4+
1 ) − 2E(2+

i ))

×
√

B(E2; 0+
gs → 2+

i ) · B(E2; 2+
i → 4+

1 ), (10)

S(2) =
∑

i=1,β,γ

S
(2)
i = −E(2+

1 )

√
35

32π
|Q(2+

1 )|

·
√

B(E2; 0+
gs → 2+

1 ) + (2E(2+
γ ) − E(2+

1 ))

×
√

B(E2; 2+
γ → 2+

1 ) · B(E2; 0+
gs → 2+

γ )

− (2E(2+
β ) − E(2+

1 ))

×
√

B(E2; 2+
β → 2+

1 ) · B(E2; 0+
gs → 2+

β ), (11)
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where the notation S
(L)
i is introduced for the separate terms in

the sums. For S(0) we get

S(0) = −2
√

5
∑

i=1,β,γ

E(2+
i )B(E2; 2+

i → 0+
gs). (12)

Using the existing experimental data for the excitation en-
ergies, B(E2) values, and spectroscopic quadrupole moments,
we can calculate the values of S(4), S(2), and S(0). Deviations
of S(4) and S(2) from zero indicate the presence of the nonzero
components with L = 4 and 2 in the mass tensor. As a measure
of deviations we can compare the values of S(4) and S(2) with
the values of the first terms in the sums (10) and (11), namely,
with S

(4)
1 and S

(2)
1 , which are the largest ones among S

(4)
i and

S
(2)
i , respectively.

For the aim of presentation it is convenient to introduce the
nondimensional quantities

S̃(L) = S(L)

E(2+
1 )B(E2; 2+

1 → 0+
gs)

, (13)

which fluctuate from nucleus to nucleus less than S(L).
The results of calculations of S̃(L) are presented in Table I.

In the cases of the Os and Pt isotopes and also in 110Pd, 134Ba,
160Gd, and 164Dy there is no data on E2 transitions from the
2+

β to the 4+
1 and 2+

1 states. However, in the case of S̃(4) the
expected corrections are small because of the usually small
values of the corresponding transition probabilities. In the

case of S̃(2) the corresponding terms will only increase the
absolute value of S̃(2). As is discussed in detail in Appendix
B, the signs of S(4) and S(2) depend on the agreement about
the phases of the states that appear only once in Eq. (9).
However, for our conclusion only the fact of deviation of
the absolute values of S(4) and S(2) from zero is important.
Of course the mass tensor is independent of the choices of
phases.

In the Table I the results for nuclei with different collective
properties (spherical, transitional, and deformed) are shown.
As is seen from these results, the values of S̃(4) are large
in all considered nuclei. The nonzero values of S̃(4) are the
consequence of the absence of a full compensation of the
positive and negative terms in the sum. Because in many cases
S̃(4) is comparable with S̃

(4)
1 , the negative terms in the sum for

S̃(4) are rather small. It means that the component of the mass
tensor with L = 4 is strongly different from zero and should
be taken into account in all these nuclei. The negative value
of S̃(4) in the case of 150Sm is a consequence of the unusually
large value of the B(E2; 2+

β → 4+
1 ) given in Ref. [15].

For the calculations of S̃(2) in the case of transitional and
deformed nuclei it is important to determine correctly what 2+
state is considered as 2+

β (quasi-β) and what state is considered
as 2+

γ (quasi-γ ). For that we have followed the indications
given in Ref. [15]. The values of S̃(2) are also large in the
majority of the considered nuclei excluding 110Cd and 190,192Os

TABLE I. The calculated values of S̃(L) and S̃
(L)
i . They are determined in the text

by Eqs. (10)–(13). The values of S̃(4) and S̃
(4)
1,2 are given assuming a positive sign of the

product 〈4+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉. The values of S̃(2) and S̃
(2)
1,2 are given assuming a negative

sign of the product 〈2+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉. The experimental data were taken from
Ref. [15].

Nucleus S̃(4) S̃
(4)
1 S̃

(4)
2 S̃(2) S̃

(2)
1 S̃

(2)
2 S̃(0)

106Pd 1.1(2) 1.5 −0.1 −0.9(4) −2.0 1.2 −4.78
108Pd 1.1(1) 1.5 −0.2 −1.1(3) −2.1 1.1 −4.66
110Pd – – – −1.4(4) −2.3 0.9 −4.61
110Cd – – – 0.0(8) −1.8 1.8 −5.08
112Cd – – – −1.0(3) −1.6 0.7 −4.78
114Cd 0.6(2) 1.3 – −0.8(2) −1.5 0.8 −4.74
134Ba 1.1(1) 1.2 −0.1 0.4(7) −0.7 1.1 −4.77
150Nd 2.1(4) 3.4 −0.6 – – – −5.56
150Sm −0.9(5) 1.3 −0.8 – – – −5.25
152Sm 2.6(3) 3.6 −0.7 −1.6(2) −2.7 1.5 −5.66
154Sm 3.2(4) 3.5 −0.7 – – – −6.26
154Gd 2.6(2) 3.8 −0.6 −1.7(2) −2.7 1.5 −5.95
156Gd 3.5(2) 4.4 −0.4 −1.3(2) −2.6 1.7 −6.11
158Gd 3.9(5) 4.7 −0.5 −1.2(2) −2.6 1.5 −5.73
160Gd – – – −1.2(1) −2.7 1.5 −5.58
164Dy – – – −1.4(3) −2.6 1.2 −5.37
172Yb 4.3(3) 4.6 −0.2 – – – −5.06
178Hf 4.2(2) 4.7 −0.3 – – – −6.00
188Os 2.3(4) 4.2 −1.9 −0.8(4) −2.6 1.8 −5.63
190Os – – – −0.1(6) −2.3 2.2 −5.57
192Os – – – 0.1(3) −2.0 2.1 −5.40
194Pt – – – −0.8(3) −1.5 0.6 −4.52
196Pt – – – −1.7(2) −1.7 0.0 −4.47
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where S̃(2) is practically zero. Therefore, in many nuclei the
mass tensor should contain the component (B−1)lab

2M in the
expression for the kinetic energy term in the Bohr collective
Hamiltonian.

In Table I, not only the summed quantities S̃(L) but also
separate terms, namely, S̃

(L)
1 and S̃

(L)
2 , are shown.

Some lines for the values of S̃(4) in Table I are empty
because of the absence of data for the 4+

1 → 2+
γ,β transitions

in the corresponding nuclei. The absence of experimental
information about the spectroscopic quadrupole moment is
the reason for the appearance of the empty lines for the values
of S̃(2) in some nuclei.

The main contribution to S(0) comes from the product
E(2+

1 )B(E2; 2+
1 → 0+

gs). For this reason the nondimensional

quantity S̃(0) contains a large constant term equal to −2
√

5.
This explains the approximate constancy of the values of S̃(0)

given in the last column of Table I.
What are the consequences of the fact that the values of S(4)

and S(2) are not equal to zero?
Equation (9) together with the nonzero values of S(2) and

S(4) that follow from the experimental data tells us that the
mass tensor cannot be reduced to a constant. We see from Eqs.
(6) and (9) that we obtain from the energies and B(E2)’s the
matrix elements of the mass tensor and not the mass tensor
directly. However, if we make the plausible ansatz for the
mass tensor as being a quadratic function of the α’s then we
can determine the three constant parameters A0, A2, and A4

from the three constants S(0), S(2), and S(4). And in this way
we can determine the mass tensor. The simplest form of the
mass tensor sufficient to satisfy Eq. (9) is

h̄2(B−1)lab
LM = h̄2

A0
δL0 + h̄2

A2
α2M · δL2 + h̄2

A4
(αα)4MδL4, (14)

where A0, A2, and A4 are numbers. Instead of the quadrupole
tensor α2M we can introduce (αα)2M or their linear combi-
nation. However, in the last case there will not be sufficient
experimental information to determine all parameters using
Eqs. (10) and (11). The same is true for the (αα)4M

tensor where the other possibilities are (α(αα)2)4M and
((αα)2(αα)2)4M .

The expressions for the parameters of the mass tensor
A4, A2, and A0 in terms of S(L) and some reduced E2 transition
probabilities are derived in Appendix C. They are

h̄2

A0
= −S(0)

q2
(15)

h̄2

A2
= S(2)

q

√
B(E2; 0+

gs → 2+
1 )

(16)

h̄2

A4
= − S(4)√

B(E2; 0+
gs → 2+

1 )B(E2; 2+
1 → 4+

1 )
. (17)

Equations (15), (16), and (17) determine completely the
simplest form of the mass tensor (14) that is still compatible
with the existing experimental data and therefore determines
the anharmonic terms in the Hamiltonian coming from the
kinetic energy term. Substituting Eqs. (10) and (11) into

Eqs. (16) and (17), we obtain the expressions for h̄2/A2 and
h̄2/A4 in terms of the measurable quantities. Because the
quantities h̄2/A2 and h̄2/A4 have a dimension of energy it
is convenient to give them in units of E(2+

1 ).

h̄2

A2E(2+
1 )

= −
√

35

32π

|Q(2+
1 )|

q
+

(
2
E(2+

γ )

E(2+
1 )

− 1

)

×
√

B(E2; 2+
γ → 2+

1 )B(E2; 0+
gs → 2+

γ )

q2B(E2; 0+
gs → 2+

1 )

−
(

2
E(2+

β )

E(2+
1 )

− 1

)

×
√

B(E2; 2+
β → 2+

1 )B(E2; 0+
gs → 2+

β )

q2B(E2; 0+
gs → 2+

1 )
(18)

− h̄2

A4E(2+
1 )

=
(

E(4+
1 )

E(2+
1 )

− 2

)
−

∑
i=2,3

(
2
E(2+

i )

E(2+
1 )

− E(4+
1 )

E(2+
1 )

)

×
√

B(E2; 4+
1 → 2+

i )B(E2; 2+
i → 0+

gs)

B(E2; 4+
1 → 2+

1 )B(E2; 2+
1 → 0+

gs)
(19)

The values of the parameters A0, A2, A4 are given in
Table II. They are independent of the choices of the phases of
the wave functions. Looking at the results presented in Table II
we see that the values of the parameters h̄2/AL(L = 0, 2, 4) are
quite similar for the well-deformed nuclei. Although they can
deviate much more from these values in the case of spherical
and γ -unstable nuclei.

The parameter h̄2/A0 is approximately proportional to the
Grodzins product for the first 2+ state. For this product it was
shown in Ref. [16] that its dependence on charge Z and the
mass number A is described by the function Z2/A2/3. Together
with Eq. (15) it indicates that h̄2/A0 is proportional to A−2.
This fact is illustrated by the values of h̄2/A0 · (A/100)2 shown
in the last column of Table II.

The results presented above tell us that the mass tensor
in the collective Hamiltonian cannot be taken as a constant
and the deformation-dependent quadrupole and hexadecupole
components of the mass tensor should be taken into account.
However, it is very useful to know not only this fact but also
the most characteristic qualitative effect of an inclusion of
these components of the mass tensor into the expression for
the kinetic energy. This point is clarified below.

Equations (10) and (11) are given by the sums of terms
having different signs. The first term in these sums represents
a contribution of the matrix elements characterizing E2
transitions inside the ground state band and have the largest
values as compared to the other terms in the sums. The next
two terms in Eq. (10) include the matrix elements describing
the interband E2 transitions to the 4+

1 state. These terms are
negative. From this we can see the effect of an increase in the
value of the hexadecupole component of the mass tensor that
is proportional to S(4) [see Eq. (9)]. The large absolute value
of 〈41‖(B−1)lab

4 ‖0+
gs〉 means the large value of S(4). However,

the first term in Eq. (10), i.e., S
(4)
1 , being measured in units of

E(2+
1 )B(E2; 2+

1 → 0+
gs) is restricted in value. Therefore, the
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TABLE II. The values of R4/2 = E(4+
1 )/E(2+

1 ) and the calculated values of h̄2/A4, h̄
2/A2,

and h̄2/A0 determined in the text by Eqs. (15)–(17). The last three quantities are given in units
of 10−1 MeV. In the last column, A is the nuclear mass number. The experimental data are
taken from Ref. [15].

Nucleus R4/2 h̄2/A4 h̄2/A2 h̄2/A0 h̄2/A0(A/100)2

106Pd 2.40 −1.52(19) −0.22(8) 0.26 0.29
108Pd 2.41 −1.35(17) −0.22(9) 0.24 0.28
110Pd 2.46 – −0.27(7) 0.24 0.29
110Cd 2.34 – 0.01(9) 0.20 0.24
112Cd 2.29 – −0.21(6) 0.19 0.24
114Cd 2.30 −0.74(14) −0.16(5) 0.18 0.23
134Ba 2.32 −1.85(4) 0.07(11) 0.16 0.29
150Nd 2.93 −0.78(13) – 0.12 0.27
150Sm 2.31 0.71(47) – 0.13 0.29
152Sm 3.00 −0.87(4) −0.12(1) 0.13 0.30
154Sm 3.26 −0.77(7) – 0.12 0.28
154Gd 3.02 −0.86(4) −0.13(2) 0.14 0.33
156Gd 3.24 −0.87(2) −0.08(1) 0.125 0.30
158Gd 3.29 −0.86(2) −0.08(1) 0.11 0.27
160Gd 3.32 – −0.070(5) 0.10 0.26
164Dy 3.32 – −0.07(1) 0.095 0.26
172Yb 3.29 −0.94(1) – 0.09 0.27
178Hf 3.30 −1.09(2) – 0.09 0.29
188Os 3.08 −0.93(13) −0.06(2) 0.06 0.21
190Os 2.93 – −0.01(2) 0.065 0.23
192Os 2.82 – −0.01(1) 0.06 0.22
194Pt 2.47 – −0.080(15) 0.06 0.23
196Pt 2.46 – −0.15(1) 0.05 0.19

large value of S(4) can be obtained only due to the small values
of the relative interband transitions to the 4+

1 state. Thus, in
the Hamiltonian the component of the mass tensor with L = 4
can be used to regulate the strength of the interband transitions
decreasing them.

In the case of Eq. (11), which determines the component
of the mass tensor with L = 2 through Eq. (9), two terms,
namely, the first one containing the spectroscopic quadrupole
moment and the matrix element for the E2 transition inside
the ground band and the third one related to the transitions
between the β (quasi-β) and the ground bands, are negative.
But the second term with the matrix elements connecting the
γ (quasi-γ ) and the ground bands is positive. Thus, increasing
the absolute value of the component of the mass tensor with
L = 2 we can also decrease the relative intensity of the E2
transitions between the γ (quasi-γ ) and the ground bands.

Equations (10) and (11) include the products of the energies
and B(E2)’s. But the energies of the states of the β (quasi-
β) and the γ (quasi-γ ) bands are restricted from below by
the energies of the states of the ground state band with the
same angular momentum. Therefore, decreasing the values of
the products of the energies of the collective state and the
B(E2)’s we can decrease down to zero only the values of the
E2 interband transition probabilities.

Regulating the values of both components of the mass
tensor with L = 4 and 2 we can regulate independently the
strength of the transitions between the β (quasi-β) and γ

(quasi-γ ) bands on one side and the ground state band on
the other side.

The effect described above is similar to that observed in our
previous article [2] where it was shown that by increasing the
mass coefficients for the β modes and the γ modes we decrease
the strength of the E2 transitions between the ground and the
collective excited bands, keeping unchanged the energies of
the band head states.

As an illustration of the idea discussed above let us consider
how the variations of the parameter h̄2/A4 can influence
the strength of the E2 transitions from the excited bands
to the ground band. Consider Eq. (19). The largest possible
value of E(4+

1 )/E(2+
1 ) is 10/3. The smallest possible value of

E(2+
i=γ,β )/E(2+

1 ) is 2. Therefore,

− h̄2

A4E(2+
1 )

�
4

3
− 2

3

∑
i=γ,β

√
B(E2;4+

1 → 2+
i )B(E2;2+

i → 0+
gs)

B(E2;4+
1 → 2+

1 )B(E2;2+
1 → 0+

gs)
. (20)

We see that if the value of − h̄2

A4E(2+
1 )

approaches 1.33, then

the product B(E2; 4+
1 → 2+

γ,β)B(E2; 2+
γ,β → 0+

gs) should go
to zero.

Let us consider concrete examples. In the spherical nuclei
106,108Pd the parameter −h̄2/(A4E(2+

1 )) takes the values 0.30
and 0.31, which are quite far from the critical value 1.33 when
the interband transitions disappear. In the transitional nuclei
150Nd and 152Sm, −h̄2/(A4E(2+

1 )) is equal to 0.60 and 0.71,
respectively. In the well-deformed axially symmetric nuclei
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154Sm and 158Gd, −h̄2/(A4E(2+
1 )) takes the values 0.94 and

1.08. Thus, this parameter approaches the critical value when
we go from spherical to deformed nuclei.

The fact that the mass tensor can be a reason for very weak
interband transitions is very interesting because it indicates
a possibility that in nuclei some excited bands can have a
collective nature and nevertheless their E2 transitions into the
ground state band are weak. A similar picture is observed in the
well-deformed nuclei where E2 transitions from the β band
to the ground band can be very small.

In our previous publications [1,2,17] we have shown that to
describe the experimental data on the interband E2 transitions
in the well-deformed axially symmetric nuclei, it is necessary
to use different mass coefficients for the rotational and β- and
γ -vibrational modes in the Bohr Hamiltonian presented in the
intrinsic frame. This result can be obtained using the more
general relations derived above. This is done in the Appendix
D where the more exact expressions for Brot, Bγ , and Bβ

are derived. However, using for E(4+
1 )/E(2+

1 ) the value 10/3
and neglecting the ratios E(2+

1 )/E(2+
β,γ ) and E(4+

1 )/E(2+
β,γ ),

which are small in the well-deformed nuclei, we come to the
results obtained in Ref. [1], namely,

h̄2

Brot
= E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2
(21)

h̄2

Bγ

= E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2
(22)

h̄2

Bβ

= 2E(2+
β )B(E2; 0+

gs → 2+
β )

q2
. (23)

The terms neglected in Eqs. (21) and (22) introduce the
errors of the order of (2–4)%. The terms neglected in Eq. (23)
can decrease the value of Bβ up to 30%.

III. SUMMARY

We have shown in this article on the basis of the experimen-
tal data that the mass tensor in the Bohr collective quadrupole
Hamiltonian given in the laboratory frame and written in terms
of Bohr’s collective variables α2µ cannot be reduced to one
constant mass coefficient. The mass tensor contains not only
scalar but also quadrupole and hexadecupole components and
therefore is a function of the collective coordinates.

We have shown that the matrix elements of the mass tensor
can be expressed through the nondiagonal energy weighted
sum rules. We have suggested also the simplest form of the
mass tensor that satisfies the relations derived in this article
[Eq. (14)]. The parameters of this mass tensor are determined
completely for many nuclei by the existing experimental data
(Table II). The values of these parameters derived from the
experimental data for the well-deformed axially symmetric
nuclei are quite close to each other, indicating the possibility to
use an approximately universal mass tensor for the description
of the well-deformed nuclei. There is not enough data to reach
a similar conclusion about a mass tensor for the spherical and
the γ -unstable nuclei. The second term in Eq. (14) was already
used in Refs. [10] and [12]. However, to our knowledge there

were no publications where the third term in Eq. (14) was used.
But as it follows from our analysis this term is very important.

In our previous publications we have derived the ex-
pressions for the mass coefficients Brot, Bγ , and Bβ for the
Bohr Hamiltonian written in the intrinsic frame for the well-
deformed axially symmetric nuclei. Above, these expressions
are obtained using the general form of the Bohr Hamiltonian
given in the laboratory frame.

The relations derived in this article show that the quadrupole
and the hexadecupole components of the mass tensor can
decrease the strength of the E2 transitions between the ground
and the excited collective bands if they approach sufficiently
large absolute values. This result is a generalization of the
result obtained in Ref. [2] for the well-deformed nuclei where
it was shown that an increase of the mass coefficients for the
β- and γ -vibrational modes decreases the strength of the E2
transitions, although the energies of the vibrational states can
be kept unchanged if the stiffness coefficient is varied in a
corresponding way.
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APPENDIX A

Let us calculate a double commutator [[H,Q2µ],Q2µ′ ]
with Q2µ = qα2µ and Eq. (2) for the kinetic energy term.
First of all let us calculate the commutator [H,Q2µ],

[H,Q2µ] = [T + V (α2), qα2µ] = q[T , α2µ]

= −h̄2

2
q

[∑
ν,ν ′

∂

∂α2ν

(B−1(α2))lab
ν,ν ′

∂

∂α2ν ′
, α2µ

]

= −h̄2

2
q

∑
ν

(
∂

∂α2ν

(B−1(α2))lab
ν,µ

+ (B−1(α2))lab
µ,ν

∂

∂α2ν

)
. (A1)

Using Eq. (A1), for the double commutator we get

[[H,Q2µ],Q2µ′] = −h̄2q2

2

(
(B−1(α2))lab

µ′,µ + (B−1(α2))lab
µ,µ′

)
= −h̄2q2

√
5

∑
LM

CLM
2µ2µ′(B−1)lab

LM. (A2)

APPENDIX B

In this appendix we derive the expression for S(L) in terms
of the excitation energies and the reduced matrix elements of
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the quadrupole operator. From a definition of S(L) we obtain

S(L) = √
2L + 1

∑
µ,µ′

CLM
2µ2µ′ 〈LM|HQ2µQ2µ′

−Q2µHQ2µ′ − Q2µ′HQ2µ + Q2µ′Q2µH |0+
gs〉

= √
2L + 1

∑
µ,µ′

CLM
2µ2µ′

×
∑

i

(〈LM|HQ2µ|2+
i µ′〉〈2+

i µ′|Q2µ′ |0+
gs〉

− 〈LM|Q2µ|2+
i µ′〉〈2+

i µ′|HQ2µ′ |0+
gs〉

− 〈LM|Q2µ′ |2+
i µ〉〈2+

i µ|HQ2µ|0+
gs〉)

= 1√
5

∑
i

(E(L) − 2E(2+
i ))〈L‖Q2‖2+

i 〉〈2+
i ‖Q2‖0+

gs〉,

(B1)

where |LM〉 is the lowest state with angular momentum L.
Now we use some phase relations for the reduced matrix
elements of the quadrupole operator. Because in Eq. (B1)
for L = 2 and 4 some eigenstates appear only once in the
nondiagonal matrix elements of Q2µ, the signs of S(4) and
S(2) depend on the agreement about the phases of these states.
However, for our conclusion only the fact of deviation of the
absolute values of S(4) and S(2) from zero is important. Of
course a mass tensor is independent of the choices of phases.

In the case of L = 4 it can be shown for the limits of the
well-deformed axially symmetric nuclei and of the spherical
nuclei with small anharmonicities that

sign(〈4+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉)
= sign(〈4+

1 ‖Q2‖2+
i 〉〈2+

i ‖Q2‖0+
gs〉), (B2)

at least for i = γ and i = β. Then

S(4) = sign(〈4+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉)
×

∑
i=1,β,γ

(E(4+
1 ) − 2E(2+

i ))

×
√

B(E2; 0+
gs → 2+

i ) · B(E2; 2+
i → 4+

1 ). (B3)

For definiteness we assume in the text and below in Ap-
pendices C and D that the product 〈4+

1 ‖Q2‖2+
1 〉〈2+

1 ‖Q2‖0+
gs〉

is positive.
In the case of L = 2 there is the well-known relation

between the signs of the reduced matrix elements of the
quadrupole operator [18,19]

sign(〈2+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉)
= −sign(〈2+

1 ‖Q2‖2+
γ 〉〈2+

γ ‖Q2‖0+
gs〉), (B4)

where in the spherical limit the 2+
γ state is the two-phonon

state. The last relation was obtained in the limits of the well-
deformed axially symmetric nuclei and of the spherical nuclei
with small anharmonicity. It was also checked in the IBA
with the consistent Q Hamiltonian [20] for the wide variations
of the parameters [21]. In the limits of the well-deformed
(see expressions for the matrix elements in Appendix D) and

spherical nuclei we can obtain also that

sign(〈2+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉)
= sign(〈2+

1 ‖Q2‖2+
β 〉〈2+

β ‖Q2‖0+
gs〉), (B5)

where the 2+
β state is the three-phonon 2+ state in the spherical

limit. Using these phase relations we can write

S(2) = sign(〈2+
1 ‖Q2‖2+

1 〉〈2+
1 ‖Q2‖0+

gs〉)

×
(

E(2+
1 )

√
35

32π
|Q(2+

1 )| ·
√

B(E2; 0+
gs → 2+

1 )

− (2E(2+
γ ) − E(2+

1 ))

×
√

B(E2; 2+
γ → 2+

1 ) · B(E2; 0+
gs → 2+

γ )

+ (2E(2+
β ) − E(2+

1 ))

×
√

B(E2; 2+
β → 2+

1 ) · B(E2; 0+
gs → 2+

β )

)
. (B6)

Note again that in Eq. (B6) we assume that in the case of
the spherical nuclei the 2+

γ state is the two-phonon state. We
see from Eq. (B6) that for the correct calculations of S(2) it
is important to do a correct assignment for the states. In our
calculations we have followed the assignments of Ref. [15].
For definiteness, we assume in the text and in Appendices C
and D that the product (〈2+

1 ‖Q2‖2+
1 〉〈2+

1 ‖Q2‖0+
gs〉 is negative.

The expression for S(0) follows directly from Eq. (B1)
and the expression for B(E2; 2+

i → 0+
gs) through the reduced

matrix elements of Q2,

S(0) = −2
√

5
∑

i=1,β,γ

E(2+
i )B(E2; 2+

i → 0+
gs). (B7)

APPENDIX C

Equation (9) expresses the components of the mass tensor
through S(L). Substituting Eq. (14) into Eq. (9) and taking into
account the phase conventions from Appendix B we have

h̄2

A0
= −S(0)

q2

h̄2

A2
〈2+

1 M|α2M |0+
gs〉 = S(2)

√
5q2

(C1)

h̄2

A4
〈4+

1 M|(αα)4M |0+
gs〉 = −S(4)

3q2
.

The matrix element 〈2+
1 M|α2M |0+

gs〉 can be expressed through
the B(E2),

〈2+
1 M|α2M |0+

gs〉 = 1

q

√
B(E2; 2+

1 → 0+
gs). (C2)

The same can be done for the matrix element
〈4+

1 M|(αα)4M |0+
gs〉, however, not exactly but in good approxi-

mation. The result is

〈4+
1 M|(αα)4M |0+

gs〉

= 1

q2

√
B(E2; 4+

1 → 2+
1 ) · B(E2; 2+

1 → 0+
gs). (C3)
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Using Eqs. (C1), (C2), and (C3), we obtain

h̄2

A0
= −S(0)

q2
(C4)

h̄2

A2
= S(2)

q

√
B(E2; 0+

gs → 2+
1 )

(C5)

h̄2

A4
= − S(4)√

B(E2; 0+
gs → 2+

1 )B(E2; 2+
1 → 4+

1 )
. (C6)

APPENDIX D

In this appendix we derive the expressions for the mass
coefficients Brot, Bγ , and Bβ considered in our previous
publications. From Eq. (9) we have

√
2L + 1〈LM|(B−1)lab

LM |0+
gs〉 = − S(L)

√
5h̄2q2

. (D1)

In the case of the well-deformed axially symmetric nuclei,

|LM〉 =
√

2L + 1

8π2
DL

M0

∣∣0+(int)
gs

〉
(D2)

|0+
gs〉 =

√
1

8π2

∣∣0+(int)
gs

〉
, (D3)

and the intrinsic components of the mass tensor are introduced
by the standard relation

(B−1)lab
LM = 1√

2(1 + δK0)
× (

DL
MK + DL

M−K

)
(B−1)int

LK. (D4)

Using Eqs. (D2), (D3), and (D4), we obtain

〈LM|(B−1)lab
LM |0+

gs〉 = 1√
2L + 1

(B−1)int
L0, (D5)

and from Eq. (9) we get

h̄2(B−1)int
L0 = − S(L)

√
5q2

. (D6)

In the case of the well-deformed axially symmetric nuclei we
can substitute into Eq. (D6) for the reduced matrix elements of
the quadrupole operator the expressions that follow from the
Alaga rules:

〈2+
1 ‖Q2‖0+

gs〉 =
√

B(E2; 0+
gs → 2+

1 ) (D7)

〈2+
β ‖Q2‖0+

gs〉 =
√

B(E2; 0+
gs → 2+

β ) (D8)

〈2+
γ ‖Q2‖0+

gs〉 =
√

B(E2; 0+
gs → 2+

γ ) (D9)

〈2+
1 ‖Q2‖2+

1 〉 = −
√

10

7

√
B(E2; 0+

gs → 2+
1 ) (D10)

〈2+
1 ‖Q2‖2+

β 〉 = −
√

10

7

√
B(E2; 0+

gs → 2+
β ) (D11)

〈2+
1 ‖Q2‖2+

γ 〉 =
√

10

7

√
B(E2; 0+

gs → 2+
γ ) (D12)

〈4+
1 ‖Q2‖2+

1 〉 = 3

√
2

7

√
B(E2; 0+

gs → 2+
1 ) (D13)

〈4+
1 ‖Q2‖2+

β 〉 = 3

√
2

7

√
B(E2; 0+

gs → 2+
β ) (D14)

〈4+
1 ‖Q2‖2+

γ 〉 = 1

2

√
2

7

√
B(E2; 0+

gs → 2+
γ ). (D15)

Above we have used the standard expressions for the eigen-
vectors of the well-deformed nuclei [7].

In Ref. [1] we derived the following relations valid for the
case of the well-deformed axially symmetric nuclei:

1

Brot
= (B−1)int

00 −
√

5

56
(B−1)int

20 −
√

8

7
(B−1)int

40 (D16)

1

Bγ

= (B−1)int
00 +

√
10

7
(B−1)int

20 +
√

1

14
(B−1)int

40 (D17)

1

Bβ

= (B−1)int
00 −

√
10

7
(B−1)int

20 +
√

18

7
(B−1)int

40 . (D18)

Substituting Eq. (D6) into Eqs. (D16)–(D18) and using
Eqs. (D7)–(D15), we obtain

h̄2

Brot
= E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2

− 12

35

(
10

3
− E(4+

1 )

E(2+
1 )

)
· E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2

+ (12E(4+
1 ) − 5E(2+

1 ))

35E(2+
β )

· E(2+
β )B(E2; 0+

gs → 2+
β )

q2

+ (2E(4+
1 ) + 5E(2+

1 ))

35E(2+
γ )

· E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2

(D19)

h̄2

Bγ

= E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2

− (20E(2+
1 ) + E(4+

1 ))

70E(2+
γ )

· E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2

+ 3

35

(
10

3
− E(4+

1 )

E(2+
1 )

)
· E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2

+ (10E(2+
1 ) − 3E(4+

1 ))

35E(2+
β )

· E(2+
β )B(E2; 0+

gs → 2+
β )

q2

(D20)

h̄2

Bβ

= 2E(2+
β )B(E2; 0+

gs → 2+
β )

q2

− (5E(2+
1 ) + 9E(4+

1 ))

35E(2+
β )

· 2E(2+
β )B(E2; 0+

gs → 2+
β )

q2
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+ 18

35

(
10

3
− E(4+

1 )

E(2+
1 )

)
· E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2

+ (10E(2+
1 ) − 3E(4+

1 ))

35E(2+
γ )

· E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2
.

(D21)

In Eqs. (D19)–(D21) the main contribution gives the first
terms. Only these terms were derived in Ref. [1]. In Eqs. (D19)
and (D20), the rest are of the order of (2–4)% of the first term.
In Eq. (D21) the contribution of the second and the third terms
is about 1/3 that of the first one. Using E(4+

1 )/E(2+
1 ) = 10/3

and neglecting the ratios E(2+
1 )/E(2+

β,γ ) and E(4+
1 )/E(2+

β,γ ),
which are relatively small in the well-deformed nuclei, we
come to the results obtained in Ref. [1], namely,

h̄2

Brot
= E(2+

1 )B(E2; 0+
gs → 2+

1 )

q2
(D22)

h̄2

Bγ

= E(2+
γ )B(E2; 0+

gs → 2+
γ )

q2
(D23)

h̄2

Bβ

= 2E(2+
β )B(E2; 0+

gs → 2+
β )

q2
. (D24)
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