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The continuum shell model represents a merger of the traditional shell model, the tool for understanding
nuclear structure, with the physics of reactions. In this work a new time-dependent approach to the continuum
shell model is presented, where construction and application of the time-dependent evolution operator culminate
in an effective and successful strategy for tackling the nonstationary many-body dynamics. Details behind
the technique and methods to overcome general problems associated with quantum many-body physics on
the verge of stability are discussed. Topics presented include the construction of the time-dependent Green’s
function, the full propagator from the exact solution of Dyson’s equation, a treatment of decays and virtual
self-energy terms, the explicit time dependence and survival probability of states, the strength function and
collective features of unstable systems, the center-of-mass problem, computation of the cross section and its
Blatt-Biedenharn angular decomposition, Coulomb amplitudes, and interference. An extensive comparison with
the R-matrix approach is offered. Realistic examples are used to demonstrate the techniques.
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I. INTRODUCTION

The problem of many-body physics on the verge of
stability has a long history. Fundamental ideas date back to
the works of Dirac, Wigner, Gamow, Feshbach, Rice, Fano,
and others [1–10]; a number of books are available on the
subject, among them are Refs. [11–15]. The problem, however,
remains extremely difficult and unsettled. A multitude of new
techniques attacking from different directions have emerged in
recent years. The techniques based on the R-matrix reaction
theory [4], which rely on the spatial separation of external
and internal regions [16,17], further developed by Lane and
Robson [18–21], found application in the recoil-corrected con-
tinuum shell model [22–25]. From the structure side, the shell
model embedded in continuum [26–28] and the continuum
shell model [29–31] are some, among many, variations of the
strategies that use Hilbert space projection method suggested
by Feshbach [10]. Many-body theories based on the discretized
continuum along the complex momentum path have been
suggested within the Gamow shell model and complex scaling
methods [32–35]. From the perspective of the many-body
approach all of these methods have a stationary state formalism
at the core, which is extended into a complex energy plane
describing decays and reactions. The broad experience with
the traditional shell model, effective matrix diagonalization
procedures, and even novel methods such as coupled-clusters
[36] make this strategy natural. However, away from the
perturbative regions of narrow noninterfering resonances these
methods face significant challenges. Problems range from the
physical interpretation of widths and extraction of observables
to technical issues such as nonlinearity of the eigenvalue
problem due to the energy-dependent effective Hamiltonian,
with branches of unphysical roots in the complex plane.
The solution of the complex-momentum-scattering problem,
formulation of interactions in the Gamow basis, and artifacts
of the projection where terms of nontrivial interaction structure
emerge are among numerous obstacles.

The time-dependent approach to the continuum shell model
(TDCSM) suggested here departs for the stationary state

formalism in favor of reconstructing the time dependence of
quantum many-body dynamics. This novel technique resolves
many of the above issues. The approach reflects the time-
dependent physics of unstable systems and makes the relation
to observables transparent. The linearity of equations in
quantum mechanics is maintained, allowing for fast numerical
implementation. To demonstrate the vast power of the time-
dependent continuum shell-model approach, the technique is
put to test on numerous realistic examples of the present
day interest and controversy. Explicit nonexponential time
dependence of states is shown, and the role of self-energy terms
in nuclear reaction cross sections and positions of resonances
is demonstrated, suggesting that it may be responsible for
the inconsistency between the traditional shell model and
experimentally observed positions of unbound states. The
interplay of electromagnetic transitions and particle decays
is explored in the context of recent experiments and in relation
to astrophysics. The strength function for dipole excitations,
decays and collectivity are discussed, including questions
related to the strength of the spurious center-of-mass states
and their elimination. The angular momentum decomposition
of the differential cross section, inclusion of Coulomb phase
shifts, and large-scale applications are shown among many
examples.

The time-dependent approach to the continuum shell model
stems from the Feshbach projection formalism. The relevant
structure and reaction features of this formalism are discussed
in Sec. II. The advantage of the method lies in the transition
to the time representation, which allows for the construction
of the Green’s function that covers the entire energy spectrum.
The analogous procedure in the energy representation targets
either an individual resonance or a specific energy; although
commonly used, it is extremely impractical for large-scale
computations. Furthermore, for narrow resonances or dense
spectra the matrix inversion near the poles of the propagator
becomes numerically unstable. The Gamow shell model
[33,34] and complex scaling [35] are two of many methods
to overcome this difficulty. The problem is not present in the
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time representation. The construction of the time-dependent
Green’s function for the stationary, nondecaying system is
discussed in Sec. III. With the Fourier transform energy
representation can be obtained, where the quality of the
approach is demonstrated in comparison to a direct matrix
inversion and in computations of strength functions. The
spectroscopic strength of the spurious center-of-mass states
and methods for dealing with them are addressed in this
context.

In Sec. IV the construction of the full propagator and time
evolution of states in the general nonstationary situations are
demonstrated. The exact solution of Dyson’s equation is used
to treat the decay terms, self-energy, and collectivities along the
real axis. It also allows one to adjust shell-model interactions
to reproduce experimental data. Realistic nuclear examples are
used to show these techniques from different angles, including
time dependence of survival probability, effects of decays on
the strength functions and on nuclear structure, as well as the
role of the self-energy terms.

The full power of the time-dependent continuum shell-
model approach is demonstrated in Sec. V where the realistic
nuclear applications are considered and the analysis of the
related experimental data is discussed. The interplay of
particle and electromagnetic channels and its astrophysical
implications are shown for 9C, which has been a subject
of recent studies [37]. Angular decomposition of the dif-
ferential cross section, Coulomb interactions, and extensive
comparisons with R-matrix theory highlighting interference
between resonances are examined. A large-scale example with
about 105 resonances and hundreds of channels concludes the
presentation.

II. FESHBACH FORMULATIONS

A. Structure

This section is limited to the basics of the Feshbach ap-
proach, details of which can be found in the textbooks [12,13]
and in numerous publications, among them Refs. [29–31].
First, the Hilbert space is separated into bound, internal states
|1〉 and an energy-labeled continuum of external states |c; E〉.
The bound states are viewed as forming the traditional shell-
model (SM) basis. For the continuum, |c; E〉 are observable
reaction channels, with independent decay products in their
eigenstates with total energy E. All intrinsic and relative
quantum numbers identify the channel c. Although the treat-
ment of the continuum-continuum interaction and many-body
final-state reaction channels is possible in this framework
(see Refs. [28,31]), these topics are outside the scope of
the present article. The energy-continuum part of the Hilbert
space can be eliminated using the projection formalism. Within
the “intrinsic” SM space, also referred to as the P space [31],
the new effective Hamiltonian H(E) emerges [12,13]

H(E) = H + �(E) − i

2
W (E). (1)

The H here is the original Hamiltonian, but its action
is restricted to the intrinsic space; this implies projection
operators that are omitted for the simplicity of this expression.

Due to the projection, new interaction terms emerge. The
Hermitian term �(E), commonly referred to as the self-energy,
describes virtual excitations into the excluded space and the
imaginary term W (E) represents irreversible decays to the
continuum of excluded states. These terms are expressed via
energy-dependent channel vectors

|Ac(E)〉 = PPH |c; E〉, (2)

where PP is the projection operator onto the intrinsic space.
In the explicit SM basis PP = ∑

1 |1〉〈1| and |Ac(E)〉 =∑
1 Ac

1(E)|1〉, where the matrix elements of the full Hamil-
tonian between internal and external spaces

Ac
1(E) = 〈1|H |c; E〉, (3)

are the energy-dependent many-body amplitudes. With
the energy-based normalization of the reaction states
〈c; E|c′; E′〉 = 2πδ(E − E′) δcc′ , one obtains

�(E) = 1

2π
−
∫

dE′ ∑
c

|Ac(E′)〉〈Ac(E′)|
E − E′ (4)

and

W (E) =
∑

c(open)

|Ac(E)〉〈Ac(E)|. (5)

The bar in the notation for the integral in Eq. (4) stands for
the principal value. The kinematics of the decay process is the
primary source of the energy-dependence in the amplitudes,
which for the channels of interest can be expressed as

|Ac(E)〉 = ac(E) |c〉. (6)

The ac(E) is the channel amplitude and |c〉 is a constant
(energy-independent) channel vector, representing the struc-
ture of the spectator components. In this work we focus on the
single-particle and electromagnetic channels. The collection
of equations discussing these channels, their amplitudes, kine-
matic behavior at low energy, and structural components, and
angular-momentum recouplings are given in Appendices A
and B; see also Ref. [31]. The one-body continuum part of the
interaction is described by a spherically symmetric potential.
Unless explicitly mentioned otherwise we assume it to be of the
Woods-Saxon form with the parametrization from Ref. [38].
The one-body problem is solved numerically, in this case the
width and self-energy are

γc(E) = |ac(E)|2, and �c(E) = 1

2π
−
∫

dE′ |ac(E′)|2
E − E′ . (7)

Within the traditional SM approach, in the limit of weak
decays, it is common to treat the imaginary part of Eq. (1)
perturbatively, assuming in the lowest order that the resonant
state is described with the SM Hamiltonian eigenstate |α〉, with
energy and width from

H |α〉 = Eα|α〉, and �α = 〈α|W (Eα)|α〉. (8)

From Eqs. (5) and (6) it follows

�α =
∑

c

�c
α, where �c

α = γc(Eα) |〈c|α〉|2, (9)

this relates the constant channel vectors to the SM spec-
troscopic factors C2S = |〈c|α〉|2. The same overlap for an
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electromagnetic decay equals to the reduced transition rate
B(EM) = |〈c|α〉|2 with our normalization of amplitudes. The
transition rates and spectroscopic factors are defined here
as in Ref. [39]. Electromagnetic transitions are typically
orders of magnitude weaker than the particle decays but the
time-dependent approach allows one to treat all channels on the
same footing. In the traditional SM the self-energy is usually
included implicitly by fitting the parameters of the interaction
to observations. However, in the above perturbation approach
the correction to energy �α = 〈α|�(Eα)|α〉 gives

�α =
∑

c

�c(Eα)|〈c|α〉|2. (10)

From random interactions to realistic systems that range
from microwave cavities to hadrons, there are numerous stud-
ies of the dynamics generated by the non-Hermitian energy-
dependent Hamiltonians (1), where the complex eigenvalue
problem

H(E)|α〉 = E |α〉 (11)

is solved; see Refs. [27–29,40] and references therein. Summa-
rizing the challenges, the Hamiltonian has an explicit energy
dependence, making the internal dynamics highly nonlinear.
The transition into a complex energy plane may be rather
impractical. It causes computational complications related to
the complex-plane branch cuts and unphysical roots, and the
relation to observables becomes perplexing. The Hamiltonian
(1) that emerges as a result of the projection contains many-
body interaction terms.

B. Scattering matrix and reactions

The same dynamics can be explored with the Feshbach
formalism from the reaction side, represented by the channel
space. Here, the transition matrix of the scattering theory is
given by

Tcc′ (E) = 〈Ac(E)|
[

1

E − H(E)

]
|Ac′

(E)〉, (12)

which describes a process with an entrance channel c′, an
intrinsic propagation driven by the effective Hamiltonian (1),
and an exit in the channel c; see Refs. [12,13]. The scattering
matrix can be written as

Scc′ (E) = exp(iξc) {δcc′ − i Tcc′ (E)} exp(iξc′). (13)

The additional phase shifts ξc(E) describe the potential scatter-
ing or a contribution of remote resonances outside of the model
space. In our studies we include Coulomb phase shifts ξC

l =
arg[�(1 + l + iη)] that depend on the angular momentum
l and the Coulomb parameter η. Then the total scattering
amplitude is a sum of the nuclear terms from Eq. (12),
appropriately modified by the additional phases, and the
Coulomb amplitude f C(θ ); explicit equations are summarized
in Appendix C. The studies reported here show no need in
the additional potential contributions, although in the spirit of
R-matrix techniques one can consider using hard-sphere phase
shifts.

The total cross section follows directly from the above T -
matrix [12]:

σ = π

k′2
∑
cc′

(2J + 1)

(2s ′ + 1)(2I ′ + 1)
|Tcc′ |2, (14)

where the primed variables k′, s ′, and I ′ stand for the initial in-
cident momentum, projectile spin, and target spin, respectively.
The J = J ′ is the total spin of the channel. The summation is
over all incoming and outgoing channels contributing to the
reaction. In the approximation of an isolated narrow resonance
α of spin Jα the T -matrix in Eq. (12) is dominated by a single
complex eigenvalue of the Hamiltonian Eα = Eα − i�α/2.
This eigenvalue is determined by treating the non-Hermitian
components in the interaction perturbatively using Eqs. (8) and
(9). The approximation results in the Breit-Wigner expression
for cross section:

σ = π

k′2
∑
cc′

(2Jα + 1)

(2s ′ + 1)(2I ′ + 1)

�c
α�c′

α

(E − Eα)2 + �2
α/4

. (15)

An in-depth discussion, expressions for the differential cross
section, and its Blatt-Biedenharn angular decomposition are
presented in Appendix C; related information is also available
in the literature [11,12,14,41].

III. STATIONARY SYSTEMS

A. Time evolution approach

The many-body evolution operator is at the center of the
TDCSM approach. Although the method is general, we start
with stationary systems. We build the evolution operator as
a function of time using a Chebyshev polynomial expansion
method, suggested in Refs. [42–44]. The expansion factorizes
the evolution operator as follows:

exp(−iH t) =
∞∑

n=0

(−i)n(2 − δn0)Jn(t)Tn(H ), (16)

where Jn is the Bessel function of the first kind and Tn

stands for the Chebyshev polynomials; see Appendix D. In
comparison to the Taylor expansion or other methods of
evaluating the Green’s function, the Chebyshev polynomials
provide a complete set of orthogonal functions covering
uniformly the interval [−1, 1]. The asymptotic behavior of
the Bessel functions assures convergence of the series (16) at
long times, which allows controlling of energy resolution in
the cross sections. The “angular addition” relation in Eq. (D5)
provide an efficient iterative technique for evaluating Cheby-
shev polynomials of the Hamiltonian operator acting on
any state [Eq. (E2)]. For technical details and numerical
advantages, see Appendix E.

The energy representation of the retarded propagator is
given by the Fourier image of the evolution operator,

G(E) = 1

E − H
= −i

∫ ∞

0
dt exp(iEt) exp(−iH t), (17)

where H is set to have an infinitesimal negative-definite
imaginary part.
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FIG. 1. (Color online) The effectiveness of the propagator ex-
pansion technique is shown using a 10-dimensional Hamiltonian
matrix H selected at random. The quantity G(E) = �〈α| 1

E−H+i0 |α〉
with an arbitrarily chosen vector |α〉 is plotted as a function of
E. The solid line corresponds to a numeric inversion at each
energy E using the standard LU decomposition techniques [45];
the dots show the same quantity computed at 1024 points using the
time-dependent Chebyshev polynomial expansion technique (marked
as TD) discussed in the text.

In Fig. 1 the quality of this approach is demonstrated.
Here, following Eq. (17), the Green’s function in the energy
representation is obtained with a direct matrix inversion
for every E. This is compared to the second approach
that uses a Fourier image of the evolution operator in the
time representation, obtained with the Chebyshev polynomial
expansion.

In the Chebyshev polynomial expansion the imaginary part
of the Green’s function (17) is an excellent and numerically
stable representation of the δ functions associated with the
energy poles in the operator. Thus, it can be used to address
the strength functions and densities of states [43]. The strength
function for a state |λ〉 is defined as

Fλ(E) = 〈λ|δ(E − H )|λ〉 = − 1

π
Im 〈λ|G(E)|λ〉. (18)

It is also related to a Fourier image of the time evolution

Fλ(E) = 1

2π

∫ ∞

−∞
dt eiEt 〈λ|e−iH t |λ〉.

B. Center-of-mass separation

The translational invariance is a difficult problem for most
of the many-body methods that rely on the construction of
single-particle basis states that are given by the mean-field
or an arbitrary confining potential. The fixed origin of the
confining potential is incompatible with the translational
invariance and leads to an uncertain translational momentum.
The spurious center-of-mass (c.m.) states in the SM treat-
ment appear because of the redundant coordinates. Indeed,
any intrinsic SM state described in the body-fixed particle
coordinates �ra is subject to a condition that it does not
depend on the center-of-mass �R = ∑

a �ra that is taken as
�R = 0. The spurious components of the Hilbert space must

be removed before diagonalization; the direct construction of

such many-body basis states was discussed in Ref. [46], and
other projection techniques have been suggested in Ref. [47].
A more practical approach is to modify the Hamiltonian by
adding a harmonically confining R2 term that changes the
translational continuum into center-of-mass oscillations [48].
The most common is the so-called Lawson method; see
Ref. [49] and references therein, where intrinsic Hamiltonian
is modified by adding a center-of-mass oscillator Hamiltonian

Hc.m. = 1

2AM
P 2 + 1

2
AMω2R2 − 3

2
h̄ω

with some scaling β,H (β) = H + βHc.m.. Where P is the
total momentum, M is the nucleon mass, and A stands for
the atomic mass number. In the large β limit the physical
space, associated with the 0h̄ω center-of-mass mode remains
unchanged, while the other spurious states are pushed to high
energy.

The time-dependent Green’s function technique can be used
to demonstrate the workings of the Lawson’s method. As
an example we consider the case of 20O isotope, where the
Hamiltonian is taken in the full s-p-sd-pf shell-model space
with the positive-parity valence configurations restricted to
the sd shell, while the negative-parity states include all
possible one particle-hole excitations from the sd shell. The
two-body interaction is chosen as WBP [50]. A Lawson
technique is used to address the center-of-mass problem with
Hc.m. included with a scaling factor that places spurious states
to around 100 MeV in excitation energy. We consider a
dipole operator �D = ∑

a ea�ra where ea is the effective charge
of a particle a. In Fig. 2 the dipole strength FD(E) for
excitations from the 0+ ground state of 20O is shown, i.e., the
strength function Eq. (18) is plotted for a state |D〉 = D|0+

g.s.〉.
The choice of the magnetic projection in the operator D,
a component of vector �D, does not matter in this case.
The Chebyshev polynomial expansion of the time-dependent
Green’s function is used. Depending on the choice of the
effective charges for the protons and neutrons, the operator
�D can change from the pure center-of-mass operator to the

isovector operator containing no center-of-mass component.
If all charges are equal ea = e, then �D = e �R and state |D〉 is
purely a spurious isoscalar T = 0 center-of-mass excitation
with no strength at low physical energies; see top plot in
Fig. 2. An arbitrary choice of the effective charges, shown
in the middle, leads to a mixed state, still containing spurious
components. The physical isovector operator

�D =
∑

p

e(�rp − �R) =
∑

p

e

(
1 − Z

A

)
�rp −

∑
n

e
Z

A
�rn (19)

requires that ep = e(1 − Z/A) for protons and en = −eZ/A

for neutrons. As seen in Fig. 2, this choice removes the
spurious center-of-mass component completely. In this work
the operator �D is dimensionless being expressed relative to the
product of the elementary charge and the oscillator radius of
the confining potential with h̄ω = 1.

Despite the apparent success, Lawson technique still has
drawbacks, especially when it comes to reaction physics.
Because H and Hc.m. do not commute, it is only in the limit
of β → ∞ the relative intrinsic motion is separated in the
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FIG. 2. (Color online) Strength function FD(E) of the dipole
operator. (Upper plot) Effective charges for protons and neutrons
are selected equal leading to a pure isospin T = 0 center-of-
mass operator; only the center-of-mass states with energies around
100 MeV have nonzero strength. (Middle plot) Effective charges
are selected as −1 and +1 for neutrons and protons, respectively,
the resulting mixed operator shows strength in both center-of-mass
and non-center-of-mass states. (Lower plot) The effective charges
are selected as en = −N/A = −0.4 and ep = Z/A = 0.6, which for
20O excludes center-of-mass component from the dipole operator; the
resulting strength shows no center-of-mass excitation.

diagonalization of H (β). In practice, for the typical nuclear
scales the convergence in energy for low-lying states is reached
already for the values of β that place the spurious 1h̄ω center-
of-mass states at about 100 MeV of excitation. Unfortunately,
for such values of β the eigenstates are still contaminated
by the spurious components, which may render them useless
in sensitive reaction physics. The spectroscopic factors or
reduced matrix elements for electromagnetic transitions, if
small, can be sensitive to unphysical contaminations. On the
opposite extreme, very large β effects numerical stability
of any diagonalization procedure, and spurious components
overshadow the physically interesting energy region. The
similar problem emerges in the time-dependent method,
because the widening of the spectrum leads to a deteriorating
energy resolution (see Appendix D). Moreover, the potential
scattering component in the cross section that comes as a
collective effect from numerous tails of high-lying resonances
is not expected to be cured with Lawson’s technique.

In this work the center-of-mass contaminants are removed
with a projection technique. The approach is exact in the
Harmonic oscillator basis and very efficient as well. Indeed,
all spurious center-of-mass excitations can be sequentially
removed by acting (Hc.m. − nh̄ωA) with n = 1, 2 . . ., leaving
exclusively the physical 0h̄ω center-of-mass space. The va-

lence space places limitation on the number of center-of-mass
quanta possible. For the oxygen example in Fig. 2 only n = 1
is possible, thus the computational overhead is small.

IV. NONSTATIONARY SYSTEMS

Next we extend the above time-dependent approach to a
general nonstationary or, alternatively, energy-dependent non-
Hermitian Hamiltonian (1). Although Chebyshev polynomials
diverge on the complex plane, see Eq. (D6), it is possible
to regularize this divergence with a complex scaling. The
resulting procedure has been tested to work; however, because
of complex arithmetics it is not as efficient and, more
importantly, it is not as flexible as the method described below.

In this work, to obtain the propagator in the nonstationary
case we take the following steps. First, we construct a
stationary Green’s function for the energy-independent part
of the interaction, Eqs. (16) and (17), which takes most of
the computational effort. Then with the exact solution to the
Dyson’s equation we find a full propagator that includes all
other terms in the effective Hamiltonian, such as energy-
dependent non-Hermitian part, self-energy, and possibly ad-
ditional interaction terms needed to reproduce observations.
The advantage is that once the stationary Green’s function
is available it takes little computational effort to modify
it with different factorizable Hermitian and non-Hermitian
energy-dependent corrections, thus allowing for an efficient
exploration of various aspects.

If the original interaction H is perturbed by energy-
dependent and generally non-Hermitian V (E),

H(E) = H + V (E) (20)

then the relation between the original and full propagators

G(E) = 1

E − H
and G(E) = 1

E − H(E)
(21)

is established through Dyson’s equation G(E) = G(E) +
G(E)V (E)G(E). For the intrinsic space the perturbations from
continuum occur exclusively via channel vectors, which are
also referred to as the doorway states. Thus, the structure
of self-energies and continuum couplings is confined to
a channel subspace spanned over the energy-independent
channel vectors |a〉, |b〉, . . .

V (E) =
∑
ab

|a〉Vab(E)〈b|. (22)

The channel subspace is a small part of the full intrinsic SM
Hilbert space. We now consider all operators as matrices
within the channel subspace denoting them in bold, e.g.,
Gab = 〈a|G(E)|b〉 and Gab = 〈a|G(E)|b〉. These matrices are
generally energy-dependent, here and in what follows for
simplicity of notations this dependence is not shown explicitly.
Then confining Dyson’s equation to this subspace we find the
following matrix relations:

G = G [1 − VG]−1 = [1 − GV]−1 G, (23)

where the matrix inversion, indicated by the −1 superscript,
takes place in the channel subspace. The scattering matrix (13)
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and transition matrix (12) are confined to the same channel
subspace. The T -matrix in Eq. (12) is

T = a†Ga, where acc′ = δcc′ac(E) (24)

is seen as a diagonal matrix of amplitudes for each channel
ac(E). Within the eigenchannel approach [51] that we use here
the perturbation due to continuum is diagonal. From Eq. (1)
we have V = � − iW/2, where the matrix elements are

�cc′ = δcc′�c(E), Wcc′ = δcc′γc(E), (25)

with single-particle width and self-energy from Eq. (7).
In summary, the strategy for nonstationary systems is to

construct in the channel space the Green’s function G for
the original part of the interaction H in Eq. (20), which is
stationary and, in this work, is associated with the traditional
SM Hamiltonian. Then the exact solution of the Dyson’s
equation (23) is used to include other terms V (E) that are
generally nonstationary and energy dependent. The transition
matrix, cross section, or explicit time dependence of the
survival probability for nonstationary states follow from the
resulting nonstationary Green’s function.

The following subsections demonstrate some specific appli-
cations of the procedure. If in Eq. (20) the perturbation V (E)
is taken to represent the energy-dependent non-Hermitian
component W (E), the factorized nature of such perturbation
upholds unitarity, Sec. IV A, and leads to the decay of states,
Sec. IV B. In addition, V (E) can contain Hermitian terms
that are used to modify the original Hamiltonian giving rise
to collective modes, such as giant resonances, see Secs. IV C
and IV D, or for the positioning of individual resonant states in
accordance with experimental observations, Sec. IV E. Finally,
the self-energy �(E) is another Hermitian component that is
energy dependent and is determined by the reaction physics;
its role is demonstrated in Sec. IV F.

A. Unitarity

The factorized structure W = aa†, Eq. (5), implies unitarity
[52,53]. Indeed, with a structure of perturbation V = XY†,
where X and Y are arbitrary block matrices, another version
of a geometrical series that follow from the Dyson’s equation
can be obtained

G = G + GX(1 − Y†GX)−1Y†G, (26)

which is known in computer science as Sherman-Morrison-
Woodbury matrix inversion equation [45]. In Eq. (26) 1 stands
for the identity matrix. Applying Eq. (26), and for a moment
treating the non-Hermitian part as a perturbation V = −iW/2
with X = −i/2 a and Y = a, while assuming self-energy to
be a part of the original H, we obtain

T = K
1 + i/2 K

and S = 1 − i/2 K
1 + i/2 K

, (27)

where K = a†Ga. Unitarity SS† = S†S = 1 is evident from
Eq. (27), similar consideration may be found in Ref. [12].

To demonstrate the conservation of probability, in Fig. 3
we show a 6He(n, n)6He cross section. This fully realistic
illustration is based on the p-shell valence SM space with the
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FIG. 3. (Color online) Cross section for the neutron scatter-
ing 6He(n, n). The solid curve is the total elastic cross section
6Heg.s.(n, n)6Heg.s.. For the dotted line, labeled as 6He(n, n)6He[0+],
only channels with 6He in its 0+

1 ground state are considered. The
dotted curve marked as 6He(n, n)6He∗ shows the inelastic cross
section with 6He in the 2+

1 final state. The lowest thresholds for
the channels 0+

1 and 2+
1 are marked with the vertical grid lines, and

the two 3/2− resonances in 7He are labeled. Energies are relative to
the α-particle core. The insert in the lower right uses linear scale and
magnifies the area near the 2+

1 threshold.

interactions from Refs. [54,55], the decay of states in 6He is not
considered. The solid line, marked as 6He(n, n)6He, is the full
calculation with all channels included. It is well known that
the cross section due to unitarity experiences discontinuities
or cusps at the threshold locations where other channel(s)
open [14]. Recently this was discussed in simple models [56]
and within the Gamow shell-model approach [57]. In this case
the elastic cross section has such a discontinuity when the
inelastic channel, where 6He is in its 2+

1 final state, opens at
0.515 MeV of energy (relative to the α-particle core). The cross
section for this inelastic channel is shown by the line labeled as
6He(n, n)6He∗; it is rising sharply at the threshold taking up a
portion of the flux. Because of unitarity the elastic cross section
drops at the same point. To show this we plot an elastic cross
section for a model calculation that includes only channels
where 6He is in its ground state. This is shown with a line and
marked as 6He(n, n)6He[0+]. Below the 0.515-MeV threshold
the reduced model agrees with the full calculation. However,
the 6He(n, n)6He[0+] cross section continues smoothly over
the threshold because other channels are not included. The
area near the threshold is magnified in the insert of Fig. 3.
The difference between curves associated with the loss of flux
into inelastic single-particle channel of partial wave l behaves
according to the phase-space volume as �(ε) εl+1/2, where ε

is the energy above the threshold and �(ε) is the Heaviside
step function, see Refs. [14,41] and Appendix A. Thus, in
this example the discontinuity could be visible only in the
derivative. Another phenomenon to note, is that the second
3/2− resonance does not appear in the full calculation, because
it is broad due to inelastic decay channels. These channels are
not included in the truncated model, allowing for the resonant
peak to become visible.
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FIG. 4. Time evolution of several low-lying states in 24O. The ab-
solute value of the survival overlap |〈α|U(t)|α〉| is shown as a function
of time. Different lines, as marked, correspond to states α(Eα, �α) :
2+

1 (4.180, 2.7), 1+
1 (5291, 195.1), 4+

1 (6947, 0.0), 2+
3 (8107, 92.5), and

2+
4 (9673, 17.5). They are eigenstates of the traditional USD SM but

are nonstationary resonances in the TDCSM, except for the 4+
1 which

due to its high spin does not decay within the sd valence space. To
emphasize the nonexponentiality in the decay law the unmarked solid
line shows the exp(−�αt/2) function with parameters for the 2+

4 state.

B. Time evolution of decaying states

Next the explicit time evolution of nonstationary states is
discussed with the help of the above Green’s function. We use
the inverse Fourier transform to define an evolution operator
for the restricted P space

U(t) = − 1

2πi

∫ ∞

−∞
G(E) exp (−iEt) dE. (28)

In Fig. 4 the time evolution of the overlap |〈α|U(t)|α〉| for
several states α in 24O is shown. For this study, the channel
space is extended to include the states of interest |α〉, so that
the corresponding expectation values of the Green’s function
are available. This can be done with the general approach.
However, it is most interesting to discuss how the eigenstates
of the original stationary SM Hamiltonian H are perturbed by
the presence of the continuum. In that case if H |α〉 = Eα|α〉,
no additional numerical work is needed because for any state
|c〉, 〈α|G(E)|c〉 = 〈α|c〉/(E − Eα + i0).

In Fig. 4 the states |α〉 are the eigenstates of the traditional
USD SM Hamiltonian [58]; however, depending on the
quantum numbers and open channels they are not in general
stationary within the TDCSM. When the non-Hermitian
components are small such states can be viewed as resonances.
If the effective Hamiltonian is energy independent, which is the
case for a stationary system or in the Breit-Wigner description
of isolated narrow resonances, then U(t) = exp(−iHt). For
this example we assume the self-energy term to be a part of the
USD interaction. See Sec. IV F for an all-inclusive treatment.
We select several most representative in terms of the decay
width states: 2+

1 (4.180, 2.7), 1+
1 (5291, 195.1), 4+

1 (6947, 0.0),
2+

3 (8107, 92.5), and 2+
4 (9673, 17.5), which are listed here with

their excitation energy followed by the decay width, both in
keV. These parameters are quoted from the traditional SM
using definitions in Eq. (8). The overlap |〈α|U(t)|α〉| = 1

for the stationary states, such as 4+
1 , which cannot decay

in this model due to high angular momentum. In accord
with the Breit-Wigner approximation, the decay of narrow
isolated resonances is well described with the exponential law
|〈α| exp(−iEαt)|α〉| = exp(−�αt/2), which at small times, is
close to linear |〈α| exp(−iEαt)|α〉| ≈ 1 − �αt/2. The broad
resonances exhibit nonexponential decay law; this behavior
is expressly visible in the time evolution of the 1+

1 and 2+
3

states. The nonexponential decay of open quantum systems
is an extensively discussed topic, with issues ranging from
specific applications, experimental observations and quantum
tunneling to Zeno paradox and theory of measurement, see
Refs. [29,59,60] for example.

C. Collectivity and strength function

While the non-Hermitian components in the Hamiltonian
discussed above spur irreversible decays the Hermitian terms
of factorizable nature are known to be responsible for the
collective phenomena such as giant resonances. Figure 5
demonstrates the emergence of dipole collectivity in 22O.
This choice of the nucleus is motivated by the recent interest
in the distribution of the dipole strength in neutron-rich
oxygen isotopes [61]. Here, the same WBP model Hamiltonian
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FIG. 5. (Color online) Strength function FD(E) of the isovector
dipole operator in 22O. Panel (a) shows the strength function of
the original SM Hamiltonian, for panels (b), (c), and (d) the
additional dipole collectivity is introduced into the Hamiltonian with
strength κ = 10, 20, and 60 MeV, respectively. All figures include the
smoothed curve that profiles the behavior of the strength distribution.
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is used for 22O as in Fig. 2. The spurious center-of-mass
states are removed with the projection, and the collective
dipole strength is added to the SM Hamiltonian by including
energy-independent V = κ|D〉〈D| in Eq. (23). As before,
|D〉 = D|0+

g.s.〉 and D is the isovector dipole operator (19). The
dependence of the dipole strength FD(E) on the parameter κ

is demonstrated. As κ is increasing from Figs. 5(a)–5(d) the
enhanced dipole collectivity in the Hamiltonian gives rise to
a pronounced giant dipole resonance. Finally, in Fig. 5(d), the
entire dipole strength is concentrated in a single state.

D. Collectivity and decay

Targeting the question of interplay between the dipole
collectivity and particle decay we further extend our example
of 22O. In addition to the dipole collectivity we allow
for the neutron decay from the 1p0f shell by adding the
corresponding energy-dependent non-Hermitian terms. We
generalize Eq. (18) for the states λ embedded in continuum

Fλ(E) = − 1

π
Im 〈λ|G(E)|λ〉. (29)

In the limit of bound states this equation coincides with
Eq. (18). Within the projection approach, however, there are
subtle complications. In the intrinsic space the effective Hamil-
tonian is energy dependent, and the full set of eigenvectors for
this nonlinear problem in Eq. (11) is generally not complete
within the P space. Thus, the normalization condition∫ ∞

−∞
Fλ(E)dE = 〈λ|λ〉 (30)

holds true only for the energy-independent, although not
necessarily Hermitian, effective Hamiltonian. Nevertheless,
the definition (29) is good, practical, and appropriate for
examining the strength distribution in a way that is continuous
in going from bound states to resonances. This minor mathe-
matical complication is common when a continuum of states
is portrayed with a set of discrete resonances. As demonstrated
in what follows, the deviation in Eq. (30), and thus the lack of
completeness, are small.

In Fig. 7 we show the isovector dipole strength FD(E)
built on the 22O ground state in the presence of l = 1
neutron decay from the states with excitations in 0f 1p shell.
As before, the WBP SM interaction is used, limited to all
sd-valence configurations and 1h̄ω excitations into the lower
p and upper fp oscillator shells. The original SM interactions
seem to lack the dipole collectivity, thus the collectivity
was induced with an additional factorizable dipole-dipole
interaction with κ = 20 MeV strength. To be more specific,
the distribution of the dipole strength in Fig. 5(c) was judged
to be realistic, and the corresponding Hamiltonian is selected
for the discussion below. To better explore the effects of the
continuum besides the non-Hermitian part that comes from
the reaction calculations in the Woods-Saxon potential, we
also consider cases where W (E) is scaled by factors of 3 and
10, referred to as medium and strong coupling limits in the
following discussion.

With the oscillator wave functions with h̄ω = 1 the total
SM dipole strength is known analytically to be 〈D|D〉 =

3
4π

28
11 ≈ 0.6076. This quantity is 0.6072 when reproduced

by the integrated strength in Eq. (30), obtained from the
time-dependent Green’s function technique. This shows an
excellent numerical quality of both the time-dependent Green’s
function approach and the inclusion of real-valued corrections
via the solution of Dyson’s equation. As already discussed, the
energy dependence of the Hamiltonian modifies the cumulative
value of the dipole strength. With realistic decay the integrated
strength is 0.5849; for medium and high continuum couplings
the strength is 0.5639 and 0.5666, respectively.

Being embedded in continuum, the peaks associated with
individual resonances become broader and shorter, while the
averaged distribution of the strength shown by the solid line
in Fig. 6, is not affected significantly by the decays. For an
in-depth picture, the low-lying energy region is shown in
Fig. 7. Curve (a) in Fig. 7 corresponds to the calculation with
realistic coupling to continuum; decay widths at these low
energies are small and indistinguishable from the traditional
shell-model results. Curves (b) and (c) in Fig. 7 show the
medium and strong couplings to the continuum, when all
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FIG. 6. (Color online) Isovector dipole strength function FD(E)
for 22O. The panel correspond to (a) no decay, (b) realistic decay
width computed with Woods-Saxon potential [38], (c) enhanced by
a factor of 3 coupling to continuum, and (d) a factor of 10 stronger
decay than realistic. For this calculation the dipole collectivity is
induced with κ = 20. The dipole operator is computed with Harmonic
oscillator wave functions with h̄ω = 1 and is expressed here in the
corresponding units. The solid line in each case represents a smoothed
curve showing the general trend.
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FIG. 7. (Color online) Isovector dipole strength function for 22O.
Top panels depicts the strength function FD(E) and the lower panel
shows the cumulative strength up to a given energy ID(E) (integral
of the curves on the upper panel). The curves correspond to (a)
realistic decay width computed with Woods-Saxon potential [38];
(b) enhanced by a factor of three coupling to continuum; (c) a factor
of 10 stronger decay than realistic. The standard SM result is almost
indistinguishable from the curve (a), on the lower figure it may be
noticed by its characteristic sharp steps. The model is the same as in
Fig. 6.

widths are artificially enhanced by factors of 3 and 10,
respectively. In the upper panel of Fig. 7 the strength function
is shown as a function of energy, as in Fig. 6 but on a
different scale. Note that curve (a) in Fig. 7, which is a
set of δ functions, is scaled on the upper panel and hence
only relative heights of peaks can be discussed. As the
coupling to continuum is artificially increased the effects
of interaction between 1−

2 and 1−
3 resonances are visible.

This is known as energy attraction and width repulsion, see
Refs. [40,62]. The lowest three 1− states are marked in Fig. 7,
only the neutron-bound one 1−

1 at 5.313 MeV in this model
may have been experimentally observed at about 5.8 MeV of
excitation.

The lower panel in Fig. 7 represents an integrated strength

Iλ(E) =
∫ E

−∞
Fλ(E′)dE′, (31)

i.e., the area under the strength function curve up to a certain
energy. The lines for the traditional discrete-level SM and
for the realistic decay are almost indistinguishable. Note, that
for the traditional SM the integrated strength is a sum of the
reduced transition rates

ID(E) =
Eα<E∑

α

B(E1; α → 0+
g.s.); (32)

the curve has a steplike behavior with steps at every contribut-
ing SM eigenvalue Eα . For medium and strong couplings to the
continuum the strength distribution transforms into a smooth
curve. In the strong decay limit there is an accumulation of

dipole strength in the low end of the spectrum. Although the
decay strength here is not realistic, this shows the interplay of
the dipole collectivity and collectivization by the decay, see
Refs. [63,64].

E. Position of resonances

The reaction kinematics is very sensitive to the energy, see
Appendix A, which may deem the SM energies useless in
calculations of reaction cross sections and lifetimes. Thus, it
is a common practice to combine the spectroscopic factors
and the reduced transition rates from the traditional SM
with the experimentally observed Q values. This practice
can be extended in the TDCSM. Although the discrepancies
in energies of states can have different sources, varying
from poorly selected interaction or small valence space to
self-energy terms, here we demonstrate how interaction can be
fitted to position resonances according to observation. Similar
fitting is typical in experimental analyses with the R-matrix
approach.

Positioning of the resonances in TDCSM approach is
achieved by adding a Hermitian correction term V in the
factorizable form V = ∑

α |α〉Vα〈α|, where Vα are interaction
parameters to be adjusted and α’s are the stationary SM states,
H |α〉 = Eα|α〉. In the TDCSM each such state becomes a
resonance, whose position on the real axis of energy is then
shifted approximately to Eα + Vα .

An example of such a shift is demonstrated in Fig. 8, where
the cross section for the elastic 23O(n, n)23O reaction is shown.
A model same as the one in Fig. 4 is used. The solid line depicts
a cross section based on the USD shell-model Hamiltonian,
while the dashed line shows a single state 1+, originally at
5.29 MeV of excitation, shifted upward by exactly V1+ =
1 MeV. The new resonance peak, being at a higher energy,
is broader and a contribution from its tail is visible at higher
energies, whereas all other resonances and features in the
cross section remain the same. The minimal computational
overhead, and thus ability to try multiple adjustments, is an
advantage of the TDCSM.
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FIG. 8. The total l = 2 cross section of 23O(n, n)23O reaction
depicting resonances in 24O is shown for the original USD interaction
(solid line) and for the Hamiltonian with the location of the first 1+

state shifted by 1 MeV (dashed line). The shift of this state from
5.29 to 6.29 MeV in the excitation energy is indicated with an arrow.
Additional x-axis tick marks show locations of the USD SM levels.
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from Ref. [66] with uncertainties, E2+

1
= 4.72(11) MeV and E1+

1
=

5.33(12) MeV.

F. Self-energy

The role of self-energy terms in the same model of 24O via
23O(n, n)23O reaction is shown in Fig. 9. These terms emerge
from the virtual excitations into the continuum of scattering
states. In the channel space, which now covers all open and
closed channels the Hermitian self-energy part is diagonal,
see Eq. (25). The terms �c(E) in Eq. (7) can be computed
numerically for every channel of interest. The behavior being
dominated by the phase-space integral is discontinuous near
thresholds, see Appendix A. This is consistent with the
discontinuity of the spectroscopic factors, recently addressed
in Refs. [57,65]. In this study, the near threshold behavior
is assumed by virtue of Eq. (A2). It is analogous to the
energy dependence of the width in potential scattering that
is well described with the γc(ε) ∼ εl+1/2 scaling, typically up
to several MeV above the threshold [39], where ε is the energy
relative to the threshold. The number of virtual channels is
limited, but the results presented here are stable with respect
to the truncation in the channel space. Virtual transitions to
continuum via high-lying states are suppressed by the energy
denominator and the complex many-body structure of those
states, where the spectroscopic overlap is very small. The effect
is analogous to the compound resonances, which are narrow
due to complexity in the structure, despite high excitation
energy. In Fig. 9 the l = 2 cross section is shown with and
without the self-energy term �(E).

The positions of the low-lying 2+ and 1+ resonances
shift upward due to the virtual interaction with continuum.
Although this example is intended to demonstrate the effect
of self-energy, it is remarkable that the resulting model is in
good agreement with experiment and partially corrects the
discrepancy in the traditional USD shell model. In Fig. 10
the predictions for the 1+ and 2+ resonances in 24O from
various theoretical calculations are summarized and compared
to the recent experimental data [66]. It appears that the older
USD interaction that was fitted to bound states is improved
substantially after the inclusion of continuum effects. This
matter requires further systematic investigation.
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FIG. 10. The predicted energies E2+
1

and E1+
1

of the 2+
1 (solid

line) and 1+
1 (dashed line) excited states from different theoretical

calculations are compared with experiment. The experimental values
of E2+

1
= 4.72(11) MeV and E1+

1
= 5.33(12) MeV are from Ref. [66],

with uncertainties as indicated by the shaded areas. The theoretical
studies labeled as USD [67], USDA and USDB Ref. [68], Obe05 [69],
Kha02 [70], HBUSD [30,58], SDPF-M [71] can be found in the
corresponding references.

V. APPLICATIONS

A. Resonance spectroscopy of 9C

In a recent experiment [37] the structure of 9C was studied
using the elastic scattering of 8B on protons. As a result of
the R-matrix analysis a new excited state in 9C was found
at an excitation energy of 3.6 MeV and its spin and parity
are determined as 5/2−. These findings are supported by
the TDCSM, which describes the observed cross section and
positions of resonances relatively well. The conclusions in
Ref. [37] depend on the proper evaluation of the cross section
for the contaminating inelastic reaction 8B(2+

g.s.)(p, p′)8B(1+
1 ).

The evaluation of this cross section with TDCSM and with
other methods is discussed in Fig. 11. The TDCSM study is
based on the WBP [50] interaction with continuum described
by the Woods-Saxon potential, as parametrized in Ref. [38].
The bulk of the contribution to the cross section comes from
the 3/2−

2 resonance, which interferes with a higher-lying
broad 3/2−

3 state. The total cross section and the one for
J = 3/2− channels exclusively are shown for comparison.
The Breit-Wigner description, Eq. (15), for which the reduced
widths are calculated with the spectroscopic factors of the
traditional SM, is shown for both the 3/2− states. The problem
with the energy-independent width in the Breit-Wigner picture
precludes a correct near-threshold behavior. The interference
between the resonances is a primary source of the discrepancy
between the TDCSM and R-matrix approach, the latter
including a single 3/2− resonance. An in-depth comparison
of R-matrix and TDCSM is presented in another example in
Sec. V B.

It is compelling to discuss the astrophysical implica-
tions from the newly observed 5/2− resonance for the
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FIG. 11. (Color online) The inelastic cross section for the scat-
tering process 8B(2+

g.s.)(p, p′)8B(1+
1 ). The solid curve corresponds

to a full TDCSM calculation with all l = 1 channels with spin and
parities 1/2−, 3/2−, and 5/2−. The blue dotted curve shows the
TDCSM cross section when only J π = 3/2− channels are included
in the model. The red dashed curve is a result of the R-matrix
calculation from Ref. [37] that uses similar reaction parameters and
takes into account only the 3/2−

2 resonant state. The figure contains
two Breit-Wigner curves, Eq. (15), for the 3/2−

2 and 3/2−
3 states. The

locations of resonant states in 9C are marked with the vertical tick
marks.

8B(2+
g.s.)(p, γ )9C(3/2−

g.s.) process. The electromagnetic tran-
sition is a theoretical component in this investigation with no
direct experimental data available. Because electromagnetic
transitions are typically much weaker than the particle decays,
the perturbative treatments based on the spectroscopic factors
and Breit-Wigner expressions for the widths are often used.
The perturbative approach in the photon channels with the SM
embedded in continuum for (p, γ ) reactions was demonstrated
in Ref. [26]. In the TDCSM the γ channels are regarded
on the same footing with the particle channels, because
the time-dependent approach permits a reliable treatment of
resonances that differ in the width by many orders of the
magnitude. The cross section for the (p, γ ) reaction populating
the ground state of 9C is shown in Fig. 12. The upper panel,
on a large energy scale, depicts several resonances from the
TDCSM calculation. The 1/2−

1 state has been known before
and the question here centers on the role of a newly discovered
5/2−

1 state.
From the standpoint of the traditional SM, the spectro-

scopic factors for the 5/2−
1 state are C2S(p3/2) = 0.11 and

C2S(p1/2) = 0.68, which lead to the total proton decay width
of �

p

5/2−
1

= 1.44 MeV, see Eqs. (8) and (9). For the electromag-

netic decay B(M1) = 0.075µN and B(E2) = 2.6 e2 fm4, the
corresponding partial decay widths are �M1

5/2 = 40 meV and
�E2

5/2 = 1.3 meV.
The (p, γ ) reaction in the astrophysically relevant region

of energies is presented in the lower panel of Fig. 12. Here
the TDCSM is used to assess the importance of the 5/2−
resonance, and hence the contributions to the cross section
from different angular momenta of the channels are separated.
The resonance 1/2− is dominating, while the 5/2− peak is
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FIG. 12. (Color online) The astrophysically interesting proton
capture cross section for the 8B(2+

g.s.)(p, γ )9C(3/2−
g.s.) reaction. All

l = 1 proton partial wave channels are included as well as all
M1 and E2 electromagnetic channels. The PWT interaction with
adjusted to the Q values from 8B(p, p)8B experiment [37]. Upper
panel shows a general overview of the cross section, while the
lower panel magnifies the low-energy region. Contributions from
the most important angular-momentum channels are separated.
Arrows indicate the locations of the 1/2−

1 and newly observed 5/2−
1

resonances.

weak with negligible contribution at low energy. From this we
conclude that the contribution of the 5/2− resonance to the
astrophysical (p, γ ) process is unimportant.

B. The 7Be( p, p′) reaction

In this subsection we demonstrate the TDCSM in the
7Be(p, p′) study. This discussion aims at the resonances
in the 8B system that are of interest in astrophysics. The
possibility of several, yet unobserved, low-lying states found
in some of the traditional SM studies [72] and suggested by
Halderson using the recoil-corrected continuum shell model
[22,24] is important, and experimental efforts to find them
are underway [73,74]. As it was discussed by Halderson
[22,24] the observation of such states and interpretation of
the cross sections demands a theory that combines structural
many-body physics with an advanced treatment of reactions.
States predicted with the traditional SM approach may not be
visible in reaction studies due to the complex nature of the
interference between overlapping resonances. On the other
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hand the R-matrix approach lacks the structural information
and requires too many parameters; high sensitivity to these
parameters and their phases may prevent a definite conclusion.
The study below shows the success of the TDCSM in
confronting these features; the presentation is done in parallel
with the R-matrix treatment to affirm the consistency of the
new theory.

For this study we use a Hamiltonian that consists of the
SM interaction WBP [50] and interaction with one-body
continuum given by the Woods-Saxon potential, with param-
eters from Ref. [38]. The Hamiltonian describes the energies
of the experimentally observed 2+

g.s., 1+
1 (0.7695 MeV), and

3+
1 (2.32 MeV) states relatively well. We adjust the reaction

Q values relative to a narrow 1+
1 resonance via modification

of the channel thresholds so that the experimentally observed
proton separation energy and excitation energy of the first
excited 1/2− (0.4291 MeV) state in 7Be are reproduced. The
quality of the WBP Hamiltonian does not warrant inclusion
of self-energy neither any separate adjustment of the observed
broad 3+

1 state. However, unlike most SM interactions, the
WBP predicts nearly degenerate low-lying 1+

2 and 0+
1 states at

1.94 and 1.97 MeV in the excitation energy. The objective is
to see if and how these states can be detected experimentally.
The TDCSM calculation presented here includes a Blatt-
Biedenharn angular decomposition [75] and Coulomb effects,
see Appendix C. The elastic 7Be(p, p)7Be cross section is
shown in Figs. 13 and 14(a).

The R-matrix studies [4], depicted in Figs. 13 and 14(b),
are conducted in parallel and include five l = 1 resonances,
namely 1+

1 , 1+
2 , 0+

1 , 3+
1 , and 2+

2 . The channel radii for the
7Beg.s. and the first excited state are selected at 4.5 fm. The
locations of the resonances are adjusted to reproduce exactly
the TDCSM results via boundary conditions, see arguments in
Ref. [76]. Traditional SM calculation is used for all R-matrix
decay amplitudes, see Table I.
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FIG. 13. Elastic 7Be(p, p)7Be differential cross sections at 148◦

from TDCSM (solid line) and from R-matrix study (dashed line) are
shown. Experimental data are from Ref. [74], the experimental error
bars do not include a 12◦ uncertainty in the angle.
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FIG. 14. Elastic 7Be(p, p)7Be differential cross section from
TDCSM (a) and from R-matrix study (b). In both cases the solid
line corresponds to 90◦ scattering angle and the dashed line to 148◦.
The tick marks indicate location of resonances and their spin parity.
For the R-matrix study (b) only included resonances are marked.

The experimental data from Ref. [74] and theoretical
predictions from the TDCSM and R-matrix are shown in
Fig. 13. Despite a relatively good overall agreement the reader
is urged not to make a detailed comparison with experiment,
both theoretical models use resonances predicted by the WBP
SM interaction. This interaction was selected to contemplate
the suggestion about the low-lying 1+

2 and 0+
1 resonances

suggested in Ref. [22], for which no evidence was found
in Ref. [74]. Here we concentrate on the theoretical models.
Figures 14–16 and Fig. 18 all have the TDCSM results in
the upper panel and R-matrix results in the lower panel, for
the purposes of comparison. There is an overall consistency.
However, there are a few apparent differences summarized
below:

(i) Only a finite number of resonances can be technically
included and successfully fitted with the R-matrix
method. Here we include all states up to 3 MeV of
excitation energy, they are indicated with the tick marks.

TABLE I. R-matrix amplitude parameters in the j -coupling
scheme. The amplitudes here are overlaps 〈α|c〉 between the channel
vectors c and SM eigenstates α. The channels for l = 1 proton in the
continuum and 7Be in the ground state and first excited state are listed
in columns. The eigenstates α of 8B are in rows, the spin, parity, and
excitation energy are indicated.

J π E(MeV) p3/2(g.s.) p1/2(g.s.) p3/2 p1/2

1+
1 0.7693 −40.563 0.303 0.867 −0.138

1+
2 1.947 0.597 0.826 0.284 0.240

0+
1 1.967 0.693 0 0 −0.918

3+
1 2.2098 0.612 0 0 0

2+
2 2.628 0.149 0.326 −0.632 0
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FIG. 15. Inelastic 7Beg.s.(p, p′)7Be1/2− differential cross sections
at 90◦ (solid line) and at 148◦ (dashed line) are shown from TDCSM
approach (a) and from the R-matrix study (b). Tick marks and line
styles are identical to those in Fig. 14.

This leaves out the third 2+
3 , and the peak associated

with it does not appear in the cross section. Furthermore,
with this truncation the interference between the 2+
resonances is lost, while it is present in the TDCSM.

(ii) The R-matrix is constructed using amplitudes and
energies of the states from the traditional SM, Table I.
A better approach would be to use the TDCSM and match
the poles in the scattering matrix.

(iii) The R-matrix, in its traditional construction, includes an
additional hard-sphere phase shifts. Note the increase
in the elastic θ = 148◦ cross section at higher energy,
Figs. 13 and 14(b). This behavior mimics the contri-
bution from all remote resonances. Despite truncation
of the valence space the continuum shell model has
a lot of high-energy resonances included and there
is no need in the additional phase shifts. Similar to
the Coulomb interaction, introduction of the additional
phase shifts presents no technical difficulty. The reaction
contributions coming from outside the SM valence space
is an important topic but is to be discussed elsewhere.

Although both the theoretical approaches are in good agree-
ment with observation [74], Fig. 14 shows that the contri-
bution from the states 1+

2 , 0+
1 , and 2+

2 is too small to be
detected in the elastic scattering. Thus, an inelastic process
7Beg.s.(p, p′)7Be1/2− has been suggested [22,24]. The results
for inelastic scattering from TDCSM, Fig. 14(a), and from
R-matrix are shown in Fig. 15(b). The cross section is now
dominated by the 2+

2 resonance with a visible peak due to 1+
2

and 0+
1 states.

The angular dependence of the differential cross section
allows one to obtain some structural information about the
states, this information is more stringent than the typical
comparison of excitation energies and spectroscopic factors.
The 2+

2 resonance is a good example of this because it has
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FIG. 16. Inelastic 7Beg.s.(p, p′)7Be1/2− cross section where the
phase of J π = 2+ channel corresponding to a single-particle with j =
1/2 in the continuum and 7Be in its ground state has been reversed.
The figure is not expected to represent a realistic situation but is to be
compared with Fig. 15 that has identical notations and markings.

a significant anisotropy, which depends on its structure. For
this reaction, with l = 1 scattering partial wave, Eq. (C6)
has the form dσ

d�
= 1

8k2 [B0 + B2P2(cos θ )] and the sign of B2

depends on the relative phases. This effect is demonstrated in
Fig. 16, where the sign in the phase of the Jπ = 2+ channel
corresponding to the single particle with j = 1/2 coupled to
the 7Be ground state has been changed to the opposite. In
the R-matrix approach it is a trivial change in the sign of
the corresponding amplitude, while in TDCSM approach all
phases are fixed by the many-body structure and to obtain
Fig. 16(a) an extra sign had to be introduced in the code
making it erroneous. The comparison between Figs. 15
and 16 shows that, although the 2+

2 resonance is at an identical
energy with identical spectroscopic factors and partial decay
widths, the anisotropy of the cross section is quite different.
As predicted by the TDCSM based on the WBP interaction
the cross section for the 2+

2 resonance should be higher at a
scattering angle of θ = 90◦. This and similar predictions can
be helpful in experimental identification of resonances.

Next we direct our attention to the two states 1+
2 and 0+

1 . In
this model, due to a choice of the WBP intrinsic interaction,
these states appear low in energy, but their positions are
debated. Most shell-model studies predict them to be much
higher, and they have not been observed experimentally [74].
Moreover, how they could be observed is another question.
Thus, it is instructive to move these states, with the methods
discussed in Sec. IV E, and examine the cross section. For
elastic scattering this is demonstrated in Fig. 17. Although it
is difficult to draw any definite conclusions, this comparison
supports the earlier arguments [74], showing lack of evidence
for the low-lying 1+

2 and 0+
1 states. It should be noted that

the 2− resonance, suggested to be at around 3.5 MeV [74],
may account for some discrepancy. As discussed in Ref. [22],
the inelastic cross section is more sensitive to the presence
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FIG. 17. Elastic differential cross section 7Beg.s.(p, p)7Beg.s. at
θ = 148◦ angle obtained with TDCSM. The solid line corresponds to
the original position of the 1+

2 and 0+
1 (indicated by solid tick marks)

states and the dashed line shows the cross section when both of these
resonances are shifted up by 1.5 MeV. The shift is indicated with the
arrow and the new positions of the states are marked with the dashed
tick marks. Experimental data from Ref. [74] is included.

of the resonances in question. This cross section at θ = 148◦
angle is shown in Fig. 18(a), where the solid line shows the
original curve from Fig. 15, while the dashed line demonstrates
the case when both states are moved up in energy by 1.5 MeV.
Similar shift of the resonance positions is done in the R-matrix
investigation in Fig. 18(b). From the figure it is evident that at
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FIG. 18. Inelastic 7Beg.s.(p, p′)7Be1/2− differential cross section
at θ = 148◦. Panel (a) form TDCSM and panel (b) from R-matrix
calculations. In each case the solid line corresponds to the original
position of 1+

2 and 0+
1 (indicated with solid tick marks) and the dashed

line shows the cross section when both of these resonances are shifted
up by 1.5 MeV. The shift is indicated with the arrow and the new
positions of the states are marked with the dashed tick marks.
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FIG. 19. Inelastic 28Sig.s.(p, p′)28Si∗ differential cross section at
a θ = 12◦ center-of-mass angle.

high energy the peaks associated with 1+
2 and 0+

1 become too
broad to be observed. Hopefully, with the detailed theoretical
predictions presented here, future experiments will resolve this
controversy.

C. The 28Si( p, p′) reaction

As a final demonstration in Fig. 19 we show a large
scale calculation for the 28Si(p, p′)28Si∗ reaction. This study
is motivated by the ongoing experimental investigation of
the (p, p′) reactions in light nuclei, directed at the giant
resonances and fine structure of the spectra. Here, we leave
aside the problem of giant resonances and examine only the
fine structure of complex reaction cross sections in the sd

shell-model space. At low energies, up to 15 MeV of excitation,
the contribution from the states with the particle-hole structure
outside the sd shell is suppressed due to a low density of such
states and difficulty in populating them in a single-particle
reaction from the ground state of 28Si. The results in Fig. 19
show the differential cross section at 12◦ center-of-mass angle
used in the experiments. To stress the power of TDCSM
approach, this continuum calculation includes over 80,000
resonant many-body states in 29P, so that the direct matrix
inversion is impossible, there are 132 channels, corresponding
to the 14 lowest states in 28Si. All of the final states up to 6+

1 at
8543.56 keV are identified experimentally with the sd model
space and the channel thresholds are adjusted correspondingly
to reproduce the reaction kinematics. The discussion of this
reaction is to be conducted on completion of the experimental
investigations.

VI. CONCLUSIONS

A new time-dependent approach to the continuum shell
model is presented in this article. This method takes its
roots in the well-established Feshbach projection formalism
and overcomes numerous difficulties, ranging from obtaining
observables and treatment of self-energies to computational
limitations of the many-body reaction physics and numerical
stability for broad and narrow resonances. The large scope
of this articles and many applications demonstrated here
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emphasize the broad capability and versatility of the time-
dependent approach.

We demonstrate the time evolution of many-body states,
highlighting the complexity and nonexponential nature of the
process. Illustrations combining chaotic and collective many-
body dynamics with electromagnetic and particle decays are
presented. While addressing the center-of-mass problem and
its solution in the TDCSM, we show the effectiveness of the
underlying time-dependent Green’s function techniques. The
realistic application to unbound states in oxygen exemplifies
the renormalization of the Hamiltonian due to the interactions
with continuum; these contributions improve the traditional
SM approach and position the resonant states in agreement
with the experimental observation. The TDCSM is presented
in full readiness for the analysis of experiments, capturing the
best from the traditional SM and uniting the structural features
with reaction techniques. Adjustments of the interactions,
positioning of the resonances, and incorporation of the inter-
ference features into the reaction physics are demonstrated. An
in-depth comparison with R-matrix techniques are presented,
revealing both consistency and superiority of the TDCSM. For
the purpose of this comparison the controversial example of 8B
is selected with the interaction Hamiltonian that, as suggested
in Refs. [22,24], produces several low-lying states, the position
of which have been disputed. With the TDCSM approach the
interpretation of the experimental data can be taken to a level
beyond the position of peaks and their spectroscopic factors.
As demonstrated with the case of 8B, the angular distribution
of the cross section has a strong dependence on the structure of
many-body states and on the phases of individual components,
thus providing for a direct experimental test of the underlying
theoretical assumptions.

This article is built on realistic applications, all of them
being inspired by different experiments of present-day interest.
This is done to establish the broad applicability of the TDCSM
and to demonstrate valuable capabilities and features that
include effective handling of large model spaces with hun-
dreds of different continuum channels, inclusion of Coulomb
phases, extraction of full angular-momentum behavior, and
the possibility of adjusting the interactions. It is the author’s
hope that the time-dependent approach to the continuum
shell model, introduced here, will take its place among the
most powerful and practical modern techniques unifying the
many-body physics of structure and reactions.
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APPENDIX A: CHANNEL AMPLITUDES

As it was said in Sec. II A, the terms W (E) and �(E)
are determined with the help of energy-dependent P-space
vectors |Ac(E)〉. Because the dynamics of the decay is usually
driven by a simple coupling term in the interaction and the
energy-dependent part is mostly determined by the kinematics,
the many-body amplitude vector can be separated into two
components |Ac(E)〉 = ac(E)|c〉. Here the amplitude ac(E) is
the scalar function of energy and |c〉 is the energy-independent
channel vector. In what follows we discuss amplitudes ac(E)
for particle decays and electromagnetic transitions, the corre-
sponding to these reactions channel vectors are addressed in
Appendix B.

The decay amplitude for a single particle is determined by

ac(ε) =
√

4µ

k

∫ ∞

0
drFl(kr) Vc(r) uj(r), (A1)

where Vc(r) is a potential part of the Hamiltonian H for a
particular channel c, which is modeled here by the Woods-
Saxon shape, and uj(r) is a radial shell-model wave function.
Fraktur font j is used to denote a full set of single-particle
quantum numbers; j, l, and s are among them. The Fl

represents a regular continuum wave function given by either
a Coulomb function, in case of a charged particle, or with
a spherical Bessel function Fl(kr) = krjl(kr). The µ is the
reduced mass and momentum is k2 = 2µε, note that ε is the
total energy E relative to the channel threshold. The channel
label c includes single-particle quantum numbers; among them
are angular momentum j and partial wave l. Equation (A1)
can be viewed as a coordinate representation of Eq. (3) applied
for a one-particle SM with a single intrinsic state uj(r).

For a neutral particle, near the decay threshold, namely at
low kinetic energies, we have

Fl = (kr)l+1/(2l + 1)!! ∝ ε(l+1)/2.

This together with Eq. (A1) results in the proportionality
ac(ε) = κε(l+1)/4, where the coefficient of proportionality κ

is

κ =
√

2(2µ)(l+3/2)/2

(2l + 1)!!

∫ ∞

0
rl+1Vc(r)uj (r)dr.

This near-threshold behavior in Eq. (7) gives

γc(ε) = �(ε)κ2εl+1/2 and �c(ε) = κ
2

2
�(−ε)εl

√−ε,

(A2)

In Eq. (A2) �(ε) is the Heaviside step function that assures
proper consideration of ε = 0 threshold, see also Refs. [14,31,
41].

The corresponding equations are well known in relation to
the square well potential of radius Rc and the so-called Wigner
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limit of the single-particle width [14,39]

γc(ε) = 2(kRc)

µR2
c

{
1 l = 0

(kRc)2l

[(2l−1)!!]2

(
2l−1
2l+1

)
l �= 0

.

Similar equations are available for the charged particles. The
analytic expressions for the low-energy asymptotic of the
Coulomb functions are more complicated [14,77]

Fl(kr, η) = (kr)l+1

(2l + 1)!!

1

l!

√√√√ 2πη

e2πη − 1

l∏
l′=1

(l′2 + η2), k → 0.

For example, for l = 0, s wave F0(kr, η) ∼ (kr) exp(−πη)
leads to the decay amplitude ac(ε) ∼ exp(−πη). This behavior
is used to define an S factor

S = σ (ε)ε exp(2πη),

that unlike the cross section σ (ε) is constant in the low-energy
limit.

It is possible to introduce an amplitude for the electromag-
netic transitions, separating structural overlap from the energy
dependence. The channel c is identified here with the type of
transition (electric or magnetic), multipolarity L, and the final
state I . The equation for the decay width, see Ref. [39], is

�c
α = |ac(ε)|2B(EM; α → c), (A3)

where we define the amplitude as

|ac(ε)|2 = 8π (L + 1)k2L+1

L[(2L + 1)!!]2
. (A4)

Here k is the photon momentum that is proportional to
its energy ε. The reduced electromagnetic transition rate
B(EM; α → c) is a structural overlap obtained from the
energy-independent channel vector.

APPENDIX B: CHANNEL VECTORS

In what follows we discuss the energy-independent vector
|c〉 from the full channel |Ac(E)〉 = ac(E) |c〉. This vector
reflects the spectroscopic structure of the decay process. The
channel vector belongs to the intrinsic P space. In addition to
the total angular-momentum quantum number J, the channel
label c carries information about the states of the decay
products and their relative motion.

For a single-particle channel the channel vector includes the
single-particle quantum numbers, among them are particle’s
spin s, information about the eigenstate |I 〉 of the daughter
nucleus with total spin I, and the partial wave quantum number
l of the relative motion. These angular-momentum quantum
numbers couple to the total channel spin J . For the following
discussion we expand our notation for the channel vector
by displaying its angular momentum J and by showing the
intermediate angular-momentum couplings to the extent as
needed. To be specific, a channel |c〉 = |c; J 〉 with the total
angular momentum J in the j coupling scheme is expressed
in full as |c; {{ls}j , I }J 〉. Here the notation {ls}j stands for a
spin-orbit coupling. The resulting single-particle momentum
j together with the spin of the daughter nucleus I couple to
the total angular momentum of the channel J .

In the standard j -scheme SM the channel vector for a
single-particle decay is constructed by from the single-particle
creation operator a

†
j

acting on an eigenstate |I 〉 of the daughter
nucleus:

|c; {jI }J 〉 = {a†
j
|I 〉}J . (B1)

The result is coupled to the total channel angular momentum
J as indicated with brackets.

In the traditional SM approach, see perturbative treatment
in Eqs. (8), (9), and (10), the overlap C2S = |〈α|c〉|2 between
the channel vector and the eigenstate of the SM Hamiltonian
α is known as the spectroscopic factor for the decay α → c.
It is straightforward to check that definition (B1) is consistent
with the standard textbooks, Ref. [39].

The normalization of the channel vectors is related to the
occupation numbers nj(I ) = ĵ 〈I |{a†

j
aj}0|I 〉 of SM orbitals j

in the state |I 〉 of the daughter system:∑
J

Ĵ 2 〈c; {jI }J |c; {jI }J 〉 = Î 2[ĵ 2 − nj (I )].

Here and in what follows we use ĵ = √
2j + 1.

The spin-channel representation is often used in the litera-
ture [4] because of its direct relation to the angular momentum
of the projectile. In this representation the spin I of the target
and spin s of the projectile are first coupled to the total spin S

of the channel; the total angular momentum J is then a sum of
S and l. The corresponding recoupling equations are

|c; {l, {Is}S}J 〉

=
∑

j

(−1)l+s+I+J ĵ Ŝ

{
s l j

J I S

}
|c; {{ls}j , I }J 〉. (B2)

The electromagnetic channels are constructed similarly:

|c; {LI }J 〉 = {ML|I 〉}J ,

where ML is the electric or magnetic multipole operator,
which is constructed from the particle-hole operators {a†

j
aj′ }L

as discussed in Ref. [39]. With this definition the electromag-
netic transition rate is B(EM; α → c) = |〈α|c〉|2, and together
with the energy-dependent amplitude the decay width of a state
is given by Eq. (A3).

APPENDIX C: DIFFERENTIAL CROSS SECTION

In this subsection we expand our discussion in Sec. II B and
examine the procedure of the cross section calculation starting
from the T -matrix. We consider reactions with unpolarized
projectiles and targets, so the differential cross section is
azimuthally symmetric and depends only on the zenith angle
θ . We consider a general process 1 → 2 and subscripts 1 and 2
will denote quantities in the initial and final states, respectively.
In most cases, apart from energy, initial and final states in an
observed scattering process are identified with a target state of
spin I and a projectile spin s.

It is convenient to start with a spin-channel representation
and discuss independently the parts of the cross section that
correspond to specific total S in the couplings {Is}S for initial
and final states, S1 and S2. The angular dependence of the
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cross section is expended via Legendre polynomials PL(cos θ )
as [11,75]

dσ (1→2)

d�
(S1, S2) = 1

Ŝ2
1k2

1

∑
L

B
(1→2)
L (S1, S2)PL(cos θ ), (C1)

where Blatt-Biedenharn coefficients are

B
(1→2)
L (S1, S2)

= 1

4

∑
J1l1l

′
1

∑
J2l2l

′
2

ZL(l1J l′1J
′, S1)ZL(l2J l′2J

′, S2)

× Re
[
TJ

l2S2;l1S1

(
TJ ′

l′2S2;l′1S1

)∗]
. (C2)

The matrix elements of the T -matrix in the channel space,
Eq. (12), are denoted as

TJ
lS;l′S ′ = Tcc′ , (C3)

where the quantum numbers l and S for the spin-channel
representation |c〉 = |c; {l{Is}S}J 〉 are explicitly shown in the
subscript. The T -matrix is block diagonal due to the angular-
momentum conservation J = J ′; in the notation defined by
Eq. (C3) the total angular momentum is indicated with a
superscript. The angular-momentum recoupling coefficients
are

ZL(lJ l′J ′, S) = (−)S+J Î Î ′Ĵ Ĵ ′
{

l J S

J ′ l′ L

}
(l0, l′0|L0).

(C4)

The total, angle-integrated, cross section is

σ (1→2)(S1, S2) = π

Ŝ2
1k2

1

∑
J

Ĵ 2
∑
ll′

∣∣TJ
l′S2;lS1

∣∣2
. (C5)

The j -coupling scheme is commonly used within the
typical SM approach, it is also advantageous in work with
single-particle reactions where Hamiltonian contains a spin-
orbit interactions. By recoupling matrix elements (C3) with
(B2) and after summation over all contributing spin-channels
we obtain

dσ (1→2)

d�
= 1

ŝ2
1 Î

2
1 k2

1

∑
L

B
(1→2)
L PL(cos θ ), (C6)

where the coefficients are

B
(1→2)
L = 1

4

∑
j1j2l1l2J

j ′
1j

′
2l

′
1l

′
2J

′

AL(j1j
′
1; I1JJ ′)AL(j2j

′
2; I2JJ ′)

× Re
[
TJ

I2j2;I1j1

(
TJ ′

I2j
′
2;I1j

′
1

)∗]
, (C7)

with

AL(jj′; IJJ ′)

= Ĵ Ĵ ′ l̂ l̂′ĵ ĵ ′(−)I−s+J

{
l l′ L

j ′ j s

}{
J J ′ L

j ′ j I

}
(l0, l′0|L0).

Here j denotes a set of the single-particle quantum numbers
{j ls}, and the elements of the T -matrix TJ

I j;I ′j′ = Tcc′ are taken
with channels in the j -coupling scheme |c〉 = |c; {{ls}j , I }J 〉.
Eq. (C6) integrated over all angles gives total cross section in
Eq. (14).

Scattering in the presence of Coulomb interactions is dis-
cussed in textbooks [12,14,41]. For pure Coulomb scattering
the cross section is

dσC

d�
= |f C(θ )|2, (C8)

where the Coulomb amplitude is

f C(θ ) = − η

2k

1

sin2(θ/2)
exp[−2i{η ln(sin(θ/2)) − ξC

0 }].

In general, for an elastic scattering process (1 → 1) of charged
particles, a Coulomb phase ξC

l = arg[�(1 + l + iη)] in the
channel with angular momentum l is to be inserted in Eq. (13).
Moreover, the Coulomb effects are to be introduced in all
partial waves that do not contribute to the nuclear interaction.
The resulting total expression is a sum of the Coulomb cross
section (C8), the nuclear cross section (C6), and an interference
term. The interference part of the cross section is given by the
same Eq. (C6), where different Blatt-Biedenharn coefficients

BI
L = −k

∑
J j l=L

Ĵ 2 Re
{
TJ

I j;I je
2iξL [f C(θ )]∗

}
(C9)

are to be used.

APPENDIX D: CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials is a complete set of orthogonal
polynomials Tn(x), n = 0, 1 . . . ∞, where both the domain of
argument and the range of the function are in the [−1, 1]
interval. The Chebyshev polynomials can be defined via
trigonometric relation

Tn[cos(θ )] = cos(nθ ), (D1)

the explicit polynomial expression is

Tn(x) = n

2

k � n/2∑
k=0,1,...

(−1)k

n − k

(
n − k

k

)
(2x)n−2k. (D2)

The Chebyshev polynomials form a complete and orthogonal
set of functions on the interval [−1, 1]

δnm = 2 − δn0

π

∫ 1

−1

Tn(x)Tm(x)√
1 − x2

; (D3)

they also form a complete and orthogonal set on the index
space

δ(x − y) =
∞∑

n=0

2 − δn0

π

Tn(x)Tn(y)√
1 − x2

. (D4)

The Chebyshev polynomials obey an “angular addition”
identity that follows from the definition (D1)

2Tn(x)Tm(x) = Tn+m(x) + Tn−m(x), n � m. (D5)

The Chebyshev polynomials can be taken analytically onto a
complex plane using definition

Tn(z) = 1
2 [(z + √

z2 − 1)n + (z − √
z2 − 1)n]. (D6)

The Chebyshev polynomial diverge as n increases if argument
is complex, this divergence can be regularized with complex
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scaling. However, the technique based on the complex scaling
is less numerically appealing because it cannot take a full
advantage of the factorized nature of the terms that emerge
due to the continuum coupling, see Sec. IV.

APPENDIX E: EVOLUTION OPERATOR EXPANSION

In summary of some of the earlier statements, the time-
dependent approach allows for a numerically stable and
computationally efficient treatment of many-body systems
that feature both stable and unstable states. The success of
the approach lies in its reflection of the underlying time-
dependent, nonstationary physics. On the technical side, the
method is iterative, based on the Hamiltonian matrix-vector
multiplication, which is the most efficient operation available.
Although there are many possibilities, the convergence proper-
ties are paramount. In a fixed number of iterations the desired
precision at each point in time is to be reached, there is to be
a defined cutoff at large times that corresponds to an energy
resolution.

Not every representation of the evolution operator
exp(−iH t) has these properties. For example Taylor expansion
in powers of exp(−iH t) = ∑

(−i)nHntn/n! is a rather poor
approach. To attain a satisfactory energy resolution large times
are to be considered, which requires extremely small terms
Hn/n! to be multiplied by the large tn, and then summed
with the oscillating signs; this leads to numerical instability.
In the recent past expansions in orthogonal polynomial have
been advertised as an alternative [42–44]. In particular, the
Chebyshev polynomial expansion

exp(−iH t) =
∞∑

n=0

(−i)n(2 − δn0)Jn(t) Tn(H ), (E1)

appears to be effective. Jn(t) in Eq. (E1) represents an n-th
order Bessel function. The evaluation of the Tn(H )|λ〉 acting
on any state λ can be done efficiently via recurrence relations.
A finite SM Hamiltonian can be rescaled so that all eigenvalues
lie within [−1, 1]; the polynomials then provide a good
coverage of the region. There is a possibility to target a specific
energy region, see Ref. [43]. Another important factor is that
the expectation values of Tn(H ) do not go to zero for large
n, so the construction of high-order polynomials can proceed

as long as the errors propagated by the recurrence method are
small.

Denoting |λn〉 = Tn(H )|λ〉, we have the following iterative
procedure for calculating |λn〉:

|λ0〉 = |λ〉, |λ1〉 = H |λ〉, and

|λn+1〉 = 2H |λn〉 − |λn−1〉. (E2)

With the (D5) property of the Chebyshev polynomials the
expectation values for the Hermitian H are

〈λ′|Tn+m(H )|λ〉 = 2〈λ′
m|λn〉 − 〈λ′|λn−m〉, n � m. (E3)

Below are some of the technical details, see also Ref. [43].
The spectrum of a the SM Hamiltonian is confined to a
region [Emin, Emax], where Emin and Emax can be taken as
the smallest and the largest eigenvalues. Thus, the Green’s
function is to be mapped onto a generic interval [−1, 1]
by rescaling the Hamiltonian and selecting an energy scale
H → (H − E)/�E where E = (Emax + Emin)/2 and �E =
(Emax − Emin)/2. With the energies bounded by [−1, 1], the
sampling time interval should be �t = π . Given N (assume to
be an even number) sampling points the time t = πτ , where
τ = 0 . . . N − 1. With a discrete Fourier transform we obtain
a set of energy points Ep = p/(2N ) with p = −N/2 . . . N/2.
The expectation value of the evolution operator in Eq. (17) at
these discrete energies is

〈λ′|G(Ep)|λ〉 = −iπ

{
N−1∑
τ=0

e2πipτ/N

nmax(τ )∑
n=0

(−i)n(2 − δn0)

× Jn(πτ )〈λ′|Tn(H )|λ〉
}

. (E4)

The number of terms nmax(τ ) needed in the expansion
of the evolution operator for each time τ is controlled
by the asymptotic form of the Bessel function Jn(x) ≈√

1/(2πn)[ex/(2n)]n, requiring nmax > eπτ/2. It was found
that nmax(τ ) = 4τ or 30, whichever is larger, assures maxi-
mum numerical precision with minimal effort in computing
the Chebyshev polynomials. The asymptote at fixed n but
large times Jn(t) ≈ √

2/(πt) cos(t − πn/2 − π/4) ensures no
divergences in the low-n terms at large time. Thus, to obtain
N -energy points with the resolution of 2/N on the [−1, 1]
energy interval, 2N Hamiltonian-vector multiplications are
required.
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