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Large-scale shell-model calculations of elastic and inelastic scattering rates of lightest
supersymmetric particles (LSP) on 127I, 129Xe, 131Xe, and 133Cs nuclei
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We discuss the dark-matter detection rates for the elastic and inelastic scattering of the lightest supersymmetric
particle (LSP) off nuclei. For this we use an easily accessible formalism where the underlying nuclear physics
is condensed in structure coefficients multiplying the key parameters of supersymmetric theories. In this work
we compute these coefficients for the stable iodine, xenon, and cesium nuclei by application of the nuclear shell
model in a model space involving the 2s, 1d, 0g7/2, and 0h11/2 single-particle orbitals. As an interaction we
use the renormalized Bonn-CD G matrix. By using fitted nuclear gyromagnetic factors we have successfully
reproduced the relevant spectroscopic data on magnetic moments and M1 decays in the discussed nuclei.
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I. INTRODUCTION

According to present conception an overwhelming part
of the energy content of the Universe is made up of dark
energy and dark matter. The dark-matter component exhausts
some 30% of the energy balance and is mostly in the
form of cold dark matter (CDM). The CDM is believed
to consist of nonrelativistic heavy particles called WIMPs
(weakly interacting massive particles). The first observational
indications of the existence of dark matter were the rotational
curves of galaxies [1]. The WIMPs are believed to constitute
the major component of dark matter in our own galactic halo.

WIMPs interact very weakly with ordinary matter, which
makes them extremely difficult to detect. For the moment,
the only way to access the nature of dark matter is by direct
detection experiments in laboratories. These experiments look
for recoil signals of the nucleus on which the WIMP has
scattered elastically or inelastically. The average nuclear recoil
energies in WIMP-nucleus scattering are typically less than
few tens of keV and thus very sensitive detectors with low
energy thresholds are needed. Furthermore, the interaction
rate in WIMP-nucleus scattering is very low (less than one
event/kg/yr according to present experimental evidence) so
that the cosmic rays and other background become a serious
problem. Because of these complications the experiments are
located in underground facilities and protected with extensive
shielding.

At the moment, there are a great number of different exper-
iments to detect WIMPs. For example, for light WIMP masses
an ultra-low-energy germanium detector has been developed
by the TEXONO Collaboration [2]. For the higher WIMP
masses the CDMS [3] and EDELWEISS [4] experiments use
germanium crystal detectors. The CRESST experiment [5]
uses detectors based on scintillating CaWO4 crystals. Further
experiments include the ZEPLIN and XENON experimental
programs, with published results for the ZEPLIN I [6] and
XENON10 [7] experiments. These experiments use liquid
xenon detectors. The liquid xenon detector is also used in the
DAMA/WIMP-129Xe inelastic scattering experiment [8–10],
where the background can be reduced by coincidence signals
coming from the de-excitation γ rays of the two lowest excited

states of 129Xe. The calculations of the present article are
relevant for the DAMA/129Xe experiment and also the ZEPLIN
and XENON experimental programs since they use 129Xe and
131Xe as stable detector materials. Related to this, the planned
XMASS 800-kg detector uses ultra-pure liquid xenon and
has recently completed a prototype research and development
stage [11].

The KIMS experiment has recently reported new limits on
the WIMP-nucleon cross section with CsI(Tl) crystal detectors
using 3409 kg day exposure data [12]. It is notable that
this experiment uses the 127I and 133Cs detector nuclei, 127I
being shared with the DAMA experiment discussed in the
following, and both nuclei being the topic of study in this
paper. The nucleus 127I is involved also by the NAIAD [13]
experiment. Many other experiments have been devised and
have taken and/or are currently taking data; these include the
ROSEBUD [14] (Al and O as detector nuclei), the SIMPLE
[15] (19F as detector nucleus), and the PICASSO [16] (again
19F as detector nucleus) experiments. The recent results of the
COUPP experiment [17] are connected with the present article
via 127I, which is one component in the CF3I target material.

An important characteristic of WIMP-nucleus scattering is
its annual modulation. The event rate depends on the direction
of the Earth’s orbital motion relative to Sun’s movement
through the Milky Way galactic disk and its dark-matter halo.
This modulation can be used to distinguish the WIMP signal
from the background. So far the only experiment to measure
this modulation is the DAMA/NaI experiment [18–20] that
uses scintillating NaI crystals containing the nucleus 127I,
discussed in the present paper. The data of DAMA apparently
contradict results of the other experiments, and only a small
window is left where the DAMA data could coexist with
the other data [12]. In Ref. [21] an attempt was made to
reconcile the different observations by the competition of
the spin-independent and spin-dependent channels assuming a
suitable SUSY scenario for the LSP (lightest supersymmetric
particle) dark-matter candidate.

Supersymmetry naturally provides WIMP constituents of
the CDM [1]. Here we assume that the WIMP is an LSP.
In the minimal supersymmetric standard model (MSSM) the
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LSP is stable or almost stable and can be simply described as
a Majorana fermion that can be formed as the lowest energy
linear combination of the neutral components of gauginos and
higgsinos [22,23]. The relative weight of different components
in the LSP state produces different effects (e.g., in the relic
abundance of the LSPs [24]). The LSP scatters off the nuclei
via the neutral current interactions, exchanging, for example.
a Z boson or a squark [25].

In this work we study both the elastic and inelastic channels
of the LSP-nucleus scattering off the 127I, 129Xe, 131Xe, and
133Cs detector nuclei. We calculate the corresponding detection
rates in a SUSY-model-independent way by using nuclear-
structure coefficients that separate from the SUSY parameters.
For the nuclear-structure calculations we use the nuclear
shell model in the full 2s1d0g7/20h11/2 valence space for
protons and in the 0g7/21d5/2-2s1/21d3/20h11/2 particle-hole
space for neutrons. As the two-body interaction we use the
renormalized Bonn-CD G matrix. This work is an extension
of Ref. [26], where the elastic and inelastic detection rates of
the LSP-nucleus scattering off the 129Xe and 131Xe nuclei were
discussed.

There are few earlier calculations of the elastic LSP-nucleus
scattering cross sections available for the nuclei of interest
in this paper. In Ref. [27] the independent single-particle
shell model and in Ref. [28] the odd group model were
applied to a large number of nuclei. In Ref. [29] a very
rudimentary nuclear wave function for the ground state of
131Xe was used to compute the structure functions related
to elastic LSP-131Xe scattering. In Ref. [30] the interacting
boson fermion model (IBFM) was used and in Ref. [31] the
theory of finite Fermi systems was applied to several nuclei,
including the ones that are under discussion in this work.
Later, the elastic LSP-nucleus scattering differential cross
sections of the 127I, 129Xe, and 131Xe nuclei were discussed in
Ref. [32] by the use of a large-scale shell model with Bonn and
Nijmegen-II two-nucleon interactions. In Ref. [32] the adopted
single-particle valence space was the same as in this work but
the truncations in the number of included configurations were
more severe. In Ref. [21] the nucleus 127I, among others, was
studied by computing the elastic LSP-nucleus detection rates
in the 2s1d0g7/20h11/2 valence space. There the shell-model
results were compared with those calculated by the use of the
microscopic quasiparticle-phonon model (MQPM) [33].

Only very few earlier works exist for the inelastic channel.
In Refs. [34–36] very rough estimates were given for the
scattering cross sections or event rates. In none of these works
were the needed nuclear wave functions actually calculated
in a reliable microscopic nuclear framework. In Ref. [35] the
inelastic LSP-nucleus matrix elements were related to M1
transition matrix elements between the involved states. As
discussed later in this article, our microscopic calculations
show that this is not a good approximation in all cases. The
first work to address both the elastic and inelastic event rates
within a unified and complete nuclear scheme was Ref. [26].
In Ref. [26] event rates for the detector nuclei 129Xe and 131Xe
were discussed.

This article is organized as follows. In Sec. II we discuss
the underlying shell-model calculations for the 127I, 129Xe,
131Xe, and 133Cs detector nuclei. We discuss our results for the

elastic LSP-nucleus scattering rates in Sec. III and those for
inelastic scattering in Sec. IV. In Sec. V we discuss the annual
modulation effect and apply our formalism to a number of
proposed sets of SUSY parameters. In Sec. VI we draw our
conclusions.

II. NUCLEAR-STRUCTURE CALCULATIONS

In the present work we perform large-scale shell-model
(SM) calculations in a realistic model space with realistic
effective two-body interactions. Details of the calculations are
described in the following.

A. Valence space and truncations

The SM calculations for the nuclei considered here
were made using the shell-model code EICODE [37].
The single-particle orbitals 0g7/2, 1d5/2, 2s1/2, 1d3/2, and
0h11/2 were used for the nuclei 127I,129 Xe,131 Xe, and
133Cs of interest in this work. For the nucleon-nucleon
two-body interaction we used an effective interaction
based on the Bonn-CD G matrix [38]. The starting
point of the calculations are the experimental single-
particle energies ε0g7/2 = −0.3 MeV, ε1d5/2 = 0.0, ε2s1/2 =
1.3 MeV, ε1d3/2 = 1.5 MeV, and ε0h11/2 = 1.9 MeV relative to
the Z = 50 core, as given in the work of Ref. [38]. During
the many-body calculation these energies were renormalized
by the two-body interactions to produce effective neutron
single-particle energies relative to the N = 64 core.

The SM calculations for all the nuclei were made using
truncated many-body bases. Proton many-body configurations
were not restricted because of the small number of valence
protons in the calculations. Thus for protons we used the
full 2s1d0g7/20h11/2 valence space. For neutrons we used
the 0g7/21d5/2-2s1/21d3/20h11/2 particle-hole space such that
in the case of 127I and 129Xe the neutron configurations
were restricted to allow at most one-particle-one-hole (1p-1h)
excitations from the full 1d5/2 and 0g7/2 shells. For 129Xe the
allowed neutron configurations were additionally restricted by
their centroid energies using the method of Horoi et al. [39].
For the nucleus 131Xe, up to two-particle-two-hole excitations
from the full 1d5/2 and 0g7/2 shells were allowed, on top of
which also energy-centroid restrictions were imposed. For
the nucleus 133Cs the full neutron 2s1d0g7/20h11/2 valence
space was used and only the number of configurations was
restricted by their centroid energies. The maximum allowed
centroid energy relative to the lowest one was 4.0 MeV for
129Xe,131 Xe, and 133Cs.

The resulting energy spectra for the nuclei of interest are
compared with experimental data in Figs. 1 and 2. As seen
in Fig. 1 the low-energy spectrum of 129Xe is rather well
reproduced by the SM calculation. However, for 131Xe the
calculated lowest 1/2+ and 3/2+ states are a good 100 keV
too high, above the 9/2− and 11/2− states that come too low
in energy in the calculations. Here it is worth noting that the
lowest 1/2+ and 3/2+ states that are relevant for elastic and
inelastic LSP scattering are grouped next to each other both in
the calculations and in experiment.
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FIG. 1. Comparison of the calculated and
experimental energy spectra of 129Xe and 131Xe.

In the case of 127I of Fig. 2 the computed and experimental
spectra correspond nicely to each other. The ground state 5/2+
is correctly predicted by the SM and the lowest 7/2+ state,
relevant for inelastic LSP-nucleus scattering, is not far in the
computed and experimental spectra. For 133Cs the situation is
not as good, as witnessed from the two rightmost spectra of
Fig. 2. The location of the first 5/2+ state is almost correctly
predicted by the SM but the experimental ground state, 7/2+,
is predicted some 350 keV too high.

The quality of the wave functions of the first 1/2+ and
3/2+ states (129Xe and 131Xe) and the first 5/2+ and 7/2+
states (127I and 133Cs), involved in the LSP-nucleus scattering
calculations, can be further tested by computing their magnetic

dipole moments and M1 decay rates and comparing these with
the available data. This is done in the following.

B. Effective gyromagnetic factors and spin-operator
renormalization

When a SM calculation is made in a restricted valence
space, such as in a one-oscillator major shell, the renormalized
effective interaction must be used to take into account
correlation effects coming from outside the model space. This
is routinely accomplished in an approximate way by using
effective two-body interactions. To be consistent, all other

FIG. 2. Comparison of the calculated and
experimental energy spectra of 127I and 133Cs.
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operators should be renormalized too. However, usually other
operators, such as electromagnetic multipole operators, are
not renormalized. In general, an effective electromagnetic
multipole operator has one-body and two-body parts in a
two-body cluster approximation and its two-body part is much
more complex than its one-body part. Therefore, rigorous
renormalization is usually considered too complex and simple
approximations for it are used instead.

In the context of the LSP-nucleus scattering the operators
of interest are the proton and neutron spin operators and the
related magnetic dipole operator. We have looked for a simple
renormalization of the magnetic dipole operator by introducing
effective spin and orbital angular momentum gyromagnetic
factors (g factors). The four optimal effective g factors were
determined by a linear least-squares (LLS) fit to 11 known
magnetic moments of the nuclei 127I,129 Xe,131 Xe, and 133Cs.
We did not introduce M1 transitions to the fit because the
phases of the experimental M1 matrix elements are unknown.
The experimental states used in the fit and their magnetic
moments are summarized in Table I. For comparison we have
included the Bonn-A results of Ref. [32].

For the xenon isotopes (see Fig. 1) the lowest 1/2+, 3/2+,

and 11/2− states have simple one-particle structure and
for each of them a SM state could be assigned without
ambiguity. Here one-particle structure means that the dominant
component of the shell-model wave function corresponds to
a configuration where an odd nucleon occupies the given
single-particle state and the rest of the nucleons are paired
off to angular momentum zero. Hence, the major compo-
nent of the wave function corresponds to a seniority-one
configuration.

Five magnetic moments are known for these nuclei and all
were included in the LLS fit. As discussed earlier, for 127I and
133Cs the SM calculations were not able to produce the correct

TABLE I. Experimental and calculated magnetic moments in
units of µN/c. The column “Bare” shows magnetic moments
calculated using the standard g factors gs,n = −3.826, gs,p =
5.586, gl,n = 0, and gl,p = 1 in units of µN . The column “Fitted”
shows magnetic moments calculated using effective g factors
resulting from the LLS fit. For comparison we have included the
Bonn-A results of Ref. [32].

State Exp. Present Ref. [32]

Fitted Bare Fitted Bare

127I(5/2+
g.s.) 2.81 2.74 3.55 2.47 2.77

127I(3/2+
1 ) 0.97 0.66 −0.29 – –

127I(7/2+
1 ) 2.54 2.24 1.05 – –

129Xe(1/2+
g.s.) −0.78 −0.80 −0.94 −0.63 −0.98

129Xe(3/2+
1 ) 0.58 0.47 0.45 – –

129Xe(11/2−
1 ) −0.89 −0.81 −1.17 – –

131Xe(3/2+
g.s.) 0.69 0.68 0.72 0.64 0.98

131Xe(11/2−
1 ) −0.99 −1.01 −1.37 – –

133Cs(7/2+
g.s.) 2.58 2.87 1.67 – –

133Cs(5/2+
1 ) 3.45 3.33 4.03 – –

133Cs(5/2+
2 ) 2.00 2.31 1.82 – –

order of energies for their lowest states (see Fig. 2). For 127I
the SM calculations produce the correct 5/2+ ground state, but
the first excited state is a 1/2+ state at 15 keV and the lowest
7/2+ state is at 120 keV. The SM also gives two 3/2+ states
roughly at the energy of the experimentally observed lowest
3/2+ state. For the LLS fit we chose the lowest state of each
angular momentum and parity for which a magnetic moment
is known. In the nucleus 133Cs magnetic moments are known
for the ground state and two lowest 5/2+ states. Here we used
the corresponding SM states for the LLS fit, even though the
SM is not able to produce the correct ground-state angular
momentum.

The g factors resulting from the LLS fit are gs,n =
−3.370, gs,p = 3.189, gl,n = 0.01903, and gl,p = 1.119 in
units of µN . The largest renormalization happens for gs,p, all
other factors being renormalized only by about 10% or less.
From Table I one can see that the largest improvements for
magnetic moments happen in the proton-odd nuclei 127I and
133Cs. This explains the large renormalization of gs,p, since for
proton-odd nuclei gs,n and gl,n affect the magnetic moments
very little (and vice versa for neutron-odd nuclei). The rms
error of the LLS fit is 0.2396µN compared to an rms error of
0.9117µN when using the bare g factors. The use of the fitted
effective g factors therefore improves the calculated magnetic
moments substantially both for the ground states and for the
lowest excited states of the nuclei considered.

The last two columns of Table I list values of magnetic
moments coming from the SM calculation of Ref. [32] by using
the Bonn-A interaction. The Nijmegen-II calculated results of
Ref. [32] are of the same quality as the Bonn-A results and are
not included in the table. As can be seen, our fitted magnetic
moments are much better than the corresponding ones of
Ref. [32]. This is even more striking upon remembering that
we have included in our fit also a host of magnetic moments of
excited states in the four discussed nuclei, whereas in Ref. [32]
only the ground states of 125Te,127 I,129 Xe, and 131Xe were
included.

Table II shows our calculated B(M1) values for the M1
decays determined by using either the bare or the effective g
factors. The use of effective g factors improves slightly the
M1 transitions to ground states. The rms deviation of B(M1)
values from experimental ones is 0.0376µN/c when using
the effective operator whereas with the bare operator it is
0.0432µN/c. We can thus say that the improvement for the
ground-state transitions is not significant. The rms deviations
are average quantities, and for some states the agreement
with experiment actually becomes slightly worse by using
the effective M1 operator. For transitions between excited
states the use of effective g factors improves the calculated
results more significantly. Using the effective g factors seems
to produce more cancellation between various components of
transition matrix elements. This can be seen from the fact that
transitions whose experimental B(M1) values are very small
are usually reproduced better by the use of the renormalized
M1 operator.

In conclusion, the renormalization of the M1 transition
operator substantially improves the description of magnetic
moments and also slightly improves the description of M1
transitions (on average) when the g factors are determined
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TABLE II. B(M1) values for M1 transitions between lowest
excited states and ground state of the calculated nuclei in units of
(µN/c)2. The column “fitted” shows B(M1) values calculated using
effective g factors resulting from the LLS fit.

M1 transition Exp. Th. (fitted) Th. (bare)

127I(7/2+
1 → 5/2+

g.s.) 0.022 8.46 × 10−4 5.01 × 10−3

127I(3/2+
1 → 5/2+

g.s.) 0.008 0.066 0.128
127I(5/2+

2 → 5/2+
g.s.) 0.132 0.036 0.077

129Xe(3/2+
1 → 1/2+

g.s.) 0.049 0.033 0.042
129Xe(3/2+

2 → 1/2+
g.s.) 9.85 × 10−3 1.40 × 10−3 1.20 × 10−3

131Xe(1/2+
1 → 3/2+

g.s.) 0.062 0.043 0.059
131Xe(5/2+

1 → 3/2+
g.s.) 6.62 × 10−4 0.020 0.028

131Xe(3/2+
2 → 3/2+

g.s.) 0.011 0.013 0.020
133Cs(5/2+

1 → 7/2+
g.s.) 4.24 × 10−3 1.39 × 10−4 2.65 × 10−3

133Cs(5/2+
2 → 7/2+

g.s.) 2.09 × 10−3 6.62 × 10−3 4.93 × 10−3

127I(1/2+
1 → 3/2+

1 ) 0.134 1.58 × 10−4 7.47 × 10−6

127I(5/2+
2 → 3/2+

1 ) 0.037 0.021 0.131
127I(5/2+

2 → 7/2+
1 ) 0.027 0.069 0.021

129Xe(3/2+
2 → 3/2+

1 ) 4.55 × 10−3 0.011 0.018
129Xe(5/2+

1 → 3/2+
1 ) 0.018 0.115 0.153

131Xe(9/2−
1 → 11/2−

1 ) 1.79 × 10−4 0.012 0.013
131Xe(3/2+

2 → 1/2+
1 ) 0.011 5.15 × 10−3 6.92 × 10−3

133Cs(5/2+
2 → 5/2+

1 ) 0.138 0.014 0.038
133Cs(3/2+

1 → 5/2+
2 ) 2.60 × 10−3 0.055 0.179

133Cs(3/2+
1 → 5/2+

1 ) 0.043 0.128 0.352

by an LLS fit to experimental magnetic moments. Because of
this success, we introduce a renormalization of the proton and
neutron spin operators with the renormalization factors

rp = 3.189

5.586
= 0.571 (protons), (1)

rn = 3.370

3.826
= 0.881 (neutrons). (2)

In the following we use these renormalized spin operators
to compute the detection rates of elastic and inelastic LSP-
nucleus scattering off the four discussed nuclei.

For completeness, we also give the calculated proton and
neutron spin and orbital angular momentum matrix elements
for the two lowest states in the discussed nuclei in Table III. For
the 5/2+ ground state of 127I we can compare our results with
the results of the SM calculations of Refs. [21,32]. For the
xenon nuclei we quote the results of Ref, [32]. In Ref. [32]
the comparison was extended to other, more rudimentary
calculations for 127I,129 Xe, and 131Xe. In Ref. [21] the same
effective interaction, namely the Bonn-CD G matrix, was used
as here and only the truncation scheme in the calculation was
different. In Ref. [32] both the Bonn-A and the Nijmegen-II
interactions were used. As can be seen in Table III, all the
results for the 127I ground state are similar, in particular for
the leading matrix element 〈Lp〉. Also for 131Xe the various
SM results coincide nicely. For 129Xe there is no dominating
matrix element and the results of the present calculation deviate
somewhat from those of Ref. [32].

TABLE III. Calculated proton and neutron spin and orbital
angular momentum matrix elements for the two lowest states in the
discussed nuclei. For the ground states of 127I and the xenon nuclei
we have included other SM calculations.

State 〈Sn〉 〈Sp〉 〈Ln〉 〈Lp〉
127I(5/2+

g.s.) 0.030 0.418 0.867 1.331

[21] (Bonn-CD) 0.038 0.330 0.702 1.430
[32] (Bonn-A) 0.075 0.309 0.779 1.338
[32] (Nijmegen) 0.064 0.354 0.664 1.418

127I(7/2+
1 ) 0.056 −0.327 0.852 3.093

129Xe(1/2+
g.s.) 0.273 −0.0019 0.113 0.115

[32] (Bonn-A) 0.359 0.028 −0.114 0.227
[32] (Nijmegen) 0.300 0.013 −0.185 0.372

129Xe(3/2+
1 ) −0.049 −0.0034 1.297 0.256

131Xe(3/2+
g.s.) −0.125 −0.00069 1.417 0.209

[32] (Bonn-A) −0.227 −0.009 1.572 0.165
[32] (Nijmegen) −0.217 −0.012 1.514 0.215

131Xe(1/2+
1 ) 0.293 −0.0034 0.095 0.116

133Cs(7/2+
g.s.) 0.021 −0.318 0.448 3.524

133Cs(5/2+
1 ) 0.013 0.391 0.348 1.893

III. RESULTS FOR THE ELASTIC SCATTERING RATES

In Ref. [21] a derivation was given for the event rate of
elastic LSP scattering off an Earth-bound detector. The final
result could be written as

〈R〉el =
[(

f 0
A

)2
D1 + 2f 0

Af 1
AD2 + (

f 1
A

)2
D3

+A2

(
f 0

S − f 1
S

A − 2Z

A

)2

D4

]
mdet[kg], (3)

where mdet[kg] is the detector mass in units of kilograms,
A is the mass number of the target nucleus, and the f

coefficients are specific to the chosen SUSY model [25,40].
The coefficients Dn are folded with the symmetric Maxwell-
Boltzmann velocity distribution of the LSPs expressed as

f (v, vE) = (
√

πv0)−3e−(v+vE )2/v2
0 , (4)

where vE is the velocity of the Earth with respect to the galactic
center and v is the velocity of the LSP particle with respect to
the LSP detector. The velocity vE can be written as

vE = v0 + v1, (5)

where v0 denotes the Sun’s velocity in galactic coordinates
and v1 denotes the Earth’s velocity with respect to the Sun.

The coefficients Dn contain all the information about the
nuclear structure. They are defined as

D1 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F00(u)�2
0dξdψdu, (6)

D2 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F01(u)�0�1dξdψdu, (7)

044302-5



TOIVANEN, KORTELAINEN, SUHONEN, AND TOIVANEN PHYSICAL REVIEW C 79, 044302 (2009)

D3 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F11(u)�2
1dξdψdu, (8)

D4 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )|F (u)|2dξdψdu, (9)

where F (u) is the nuclear form factor [25] and Fρρ ′ (u), ρ, ρ ′ =
0, 1 are the usual spin structure functions

Fρρ ′ =
∑
λ,κ

�(λ,κ)
ρ (u)�(λ,κ)

ρ ′ (u)

�ρ�ρ ′
, (10)

where

�ρ = �(0,1)
ρ (0) (11)

are the static spin matrix elements and

�(λ,κ)
ρ (u)

=
√

4π

2Ji + 1

⎛
⎝Jf ‖

A∑
j=1

[Yλ(�j ) ⊗ σ ]κjλ(
√

urj )ωρ(j )‖Ji

⎞
⎠ ,

(12)

with ω0(j ) = 1 and ω1(j ) = τ3(j ). The angles �j are the solid
angles for the position vectors of the nucleons, Yλ is a spherical
harmonic, σ is the Pauli spin matrix, and jλ is a spherical Bessel
function. The variable u is related to the momentum transfer
to the nuclear target, q, by

u = q2b2/2, (13)

where b is the nuclear harmonic oscillator size parameter
obtained from the nuclear mass number A as described,for
example, in Ref. [41].

The expression for the modulation function G(ψ, ξ ) is given
by

G(ψ, ξ ) = ρ(0)

mχ

σ0

Amp

(
1

mpb

)2
e−λ2

√
π

c2

v0
ψe−ψ2

e−2λψξ , (14)

with ψ = v/v0 and λ = vE/v0. Here σ0 = 0.77 ×
10−38 cm2,mχ is the mass of the LSP, ρ(0) = 0.3 GeV/cm3

is the LSP density near Earth, mp is the proton rest mass, A

is the nuclear mass number, c is the velocity of light, v is the
speed of the LSP relative to the Earth-bound detector, and
v0 = 220 km/s is the circulation speed of the Sun around the
galactic center. The speed of Earth with respect to the galactic
center can be expressed as

vE =
√

v2
0 + v2

1 + 2v0v1 sin γ cos a, (15)

where γ = 29.80◦, a represents the phase of the Earth [25],
and v1 is Earth’s speed with respect to the Sun. The upper
limit of the integration over ψ can be obtained from the upper
bound vesc = 625 km/s for the speed |v + vE| of the LSP in
galactic coordinates. This leads to the inequality

|v + vE|2 = v2 + v2
1 + v2

0 + 2v · vE + 2v0 · v1 < v2
esc. (16)

We then obtain the following limits:

ψmin = c

v0

(
Qthr

2µr

)1/2

, (17)

TABLE IV. Calculated results for the static spin matrix elements
of the discussed nuclei. The results are given for both the bare and
effective g factors.

Nucleus g factors Elastic Inelastic

�0 �1 �0 �1

127I Bare 1.001 0.868 0.098 0.066
Effective 0.592 0.475 0.061 0.033

129Xe Bare 0.941 −0.954 0.306 −0.311
Effective 0.831 −0.838 0.270 −0.273

131Xe Bare −0.326 0.322 0.236 −0.224
Effective −0.286 0.284 0.206 −0.199

133Cs Bare 0.643 0.732 0.059 0.050
Effective 0.353 0.432 0.035 0.027

ψmax = −λξ +
√

λ2ξ 2 + 7.05 − 0.135 cos a, (18)

umin = µrQthrb
2, (19)

umax = 2(ψµrbv0/c)2, (20)

where Qthr is the detector threshold energy and µr is the
reduced mass of the LSP-nucleus system.

The nuclear form factor F (u) we evaluate directly by using
our nuclear wave functions. The usual way to avoid this
computationally demanding task is to simply start from the
nuclear mass distribution without going into details of the
many-body physics behind this distribution. Since the nuclear
mass distribution is hard to measure it is assumed that it is of the
same form as the experimentally well known nuclear charge
distribution. A suitably smoothed mass distribution gives a
simple analytical expression for the nuclear form factor. The
most used form factor of this kind is the Helm form factor [42].
This form factor can be improved by using the elastic electron
scattering data, as shown in Ref. [43].

The static spin matrix elements (SSME), present in
Eqs. (6)–(8), are reviewed in Table IV for both the elastic and
inelastic scattering channels and for all the discussed nuclei.
Variations in the values of the g factors induce variations in the
values of the final computed SSMEs as seen in Table IV. For
127I and 133Cs the bare and fitted results for the SSMEs deviate
substantially (some 40%–50%) from each other. This is not
the case for 129Xe and 131Xe where the deviation is only of the
order of 12%. This difference between the two groups of nuclei
is understandable if one notices that the biggest improvements
in the computed magnetic moments occur for 127I and 133Cs,
as seen in Table I. For 129Xe and 131Xe the improvements are
minor.

The differences in the final computed D coefficients
[Eqs. (6)–(8)], when going from the bare to the effective
g factors, is a reduction of the order of 20% for 129Xe and
131Xe. For 127I and 133Cs the reduction amounts to a factor of
1/3 owing to the big changes in the values of the computed
magnetic moments when using the effective g factors. This
leads to the conclusion that the manipulation of the g factors
causes roughly a 20% variation in the values of the relevant
LSP-nucleus scattering observables for 129Xe and 131Xe and
roughly a factor of 3 for 127I and 133Cs.
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The SSME values for 127I, obtained in Ref. [21] for the
elastic channel and bare g factors, were �0 = 0.871 and �1 =
0.690. The difference between these values and the present
ones stems from the different truncation schemes. In Ref. [21]
at most six neutrons were allowed to be in the 0h11/2 orbital
and here we allow at most one-particle-one-hole excitations
from the full 1d5/2 and 0g7/2 shells. In the present calculation
we had to resort to a more severe truncation than in Ref. [21]
since we wanted to calculate also the 129Xe, 131Xe, and 133Cs
nuclei on the same footing, posing no restrictions to the proton
configurations.

In the case of 127I for the elastic channel our results
�2

0 = 0.350 and �2
1 = 0.226 using effective g factors are

rather close to the values of Refs. [30,31,34]. For our bare
g factors and the calculation of Ref. [32] these quantities
assume notably bigger values. For this duality of the results it
is hard to judge the reliability of the present calculation for 127I.
The differences might be associated with possible deformation
effects, as discussed in more detail in the context of inelastic
scattering in the next section. For the xenon isotopes the elastic
channel seems to be well described when the effective g factors
are used: The calculated magnetic moments agree nicely with
the measured ones. For 133Cs the effective g factors produce
very good magnetic moments and the description of elastic
LSP-nucleus scattering seems rather reliable. Discussion of
the SSME values for inelastic scattering is postponed to the
next section.

In Fig. 3 we plot the spin structure functions Fρρ ′(u) and
the nuclear form factor |F (u)|2 as functions of the momentum
transfer u for elastic LSP-nucleus scattering on 127I (upper
panels) and 133Cs (lower panels). For the most relevant, small
u values we have a added linear scale on the right panels. As can
be seen the nuclear form factor and the spin structure functions
(SSFs) behave very similarly for small u (right panels) but
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FIG. 3. Spin structure functions Fρρ′ (u) and the nuclear form
factor |F (u)|2 plotted as functions of the momentum transfer u for
elastic LSP-nucleus scattering on 127I (a) and 133Cs (c). For the
important small u values we have added a linear scale in panels
(b) and (d).
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FIG. 4. Spin structure functions Fρρ′ (u) and the nuclear form
factor |F (u)|2 plotted as functions of the momentum transfer u for
elastic LSP-nucleus scattering on 129Xe (a) and 131Xe (b).

beyond that the behavior of the nuclear form factor differs
drastically from that of the SSFs.

In Fig. 4 we plot the SSFs and the nuclear form factor as
functions of the momentum transfer u for elastic LSP-nucleus
scattering on 129Xe [Fig. 4(a)] and 131Xe [Fig. 4(b)]. For 129Xe
all the curves behave in an identical way, but for 131Xe the form
factor behaves differently from the SSFs. Here it is appropriate
to note that in many other works (e.g., Refs. [29,32]), the SSFs
Fρρ ′(u) for the elastic scattering are replaced by the Sρρ ′ (q)
functions. These functions can be derived from the F functions
by the conversion formulas

S00(q) = 2Jg.s. + 1

16π
�2

0F00(u), (21)

S01(q) = 2Jg.s. + 1

8π
�0�1F01(u), (22)

S11(q) = 2Jg.s. + 1

16π
�2

1F11(u), (23)

where Jg.s. is the ground-state spin of the target nucleus.
The Dn factors of Eqs. (6)–(9) (in units of yr−1 kg−1) are

plotted in Figs. 5–8 as functions of the LSP mass for the nuclei
under discussion. The factors are given for three different
values of the detector threshold energy Qthr. In the plots the
seasonal variation in the detection rate (annual modulation)
is presented by the thickness of the line. The associated
computations were done by assuming the effective g factors.

All four Dn factors, for all the discussed nuclei, show the
same qualitative pattern, that is, a maximum at around mχ =
30 GeV (127I, 129Xe, 133Cs) or mχ = 30–90 GeV (131Xe) and
then a decaying tail approaching zero for large LSP masses.
Only for 131Xe does the position of the maximum depend
notably on the threshold energy Qthr. The magnitudes of the
spin-dependent coefficients D1,D2, and D3 are by far the
largest for 129Xe, the nucleus 127I having the next biggest
spin-dependent coefficients and 131Xe the smallest ones.

IV. RESULTS FOR THE INELASTIC SCATTERING RATES

Following the lines of derivation of the elastic event rate
in Ref. [21] we can write for the event rate of the inelastic
LSP-nucleus scattering as

〈R〉inel = [(
f 0

A

)2
E1 + 2f 0

Af 1
AE2 + (

f 1
A

)2
E3

]
mdet[kg]. (24)
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FIG. 5. (Color online) The Dn factors of
Eqs. (6)–(9), in units of yr−1 kg−1, plotted as
functions of the LSP mass for three different
threshold energies in the case of elastic scattering
of the LSP off an 127I nucleus: (a) D1, (b) D2,
(c) D3, and (d) D4. The thickness of the curves
describes the annual modulation effect.

Here we assume the same folding procedure with the LSP
velocity distribution as in the case of elastic scattering. It is
to be noted that here we have denoted the coefficients Di, i =
1, 2, 3, of our previous Letter [26] with the symbols Ei, i =
1, 2, 3, to better distinguish between the elastic and inelastic
channels. Hence, for these coefficients we have

E1 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F00(u)�2
0dξdψdu, (25)

E2 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F01(u)�0�1dξdψdu, (26)

E3 =
∫ +1

−1

∫ ψmax

ψmin

∫ umax

umin

G(ψ, ξ )F11(u)�2
1dξdψdu. (27)

We define the SSMEs for the inelastic scattering in the
same way as done for the elastic one [i.e., through Eqs. (11)
and (12)]. The SSMEs for the inelastic channel, present in
Eqs. (25)–(27), are given in Table IV for the nuclei under
discussion. Whereas for 129Xe and 131Xe the inelastic SSMEs
are of the same order of magnitude as the elastic ones, for 127I
and 133Cs they are at least an order of magnitude smaller than
the elastic SSMEs. This difference between the two groups
of nuclei stems from the nuclear wave functions since the
SSMEs contain the associated transition densities. There is no
explicit dependence on excitation energy for the SSMEs; the
excitation energy plays a role only in the integration limits of
the Dn coefficients. By their larger SSMEs 129Xe and 131Xe are
potentially more sensitive to inelastic LSP-nucleus scattering
than 127I and 133Cs.

FIG. 6. (Color online) The same as in
Fig. 5 for elastic scattering of the LSP off a
129Xe nucleus. Here panel (b) shows −D2.
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FIG. 7. (Color online) The same as in
Fig. 5 for elastic scattering of the LSP off a
131Xe nucleus. Here panel (b) shows −D2.

In the case of 127I we can compare our results with
the ones of Ref. [34] for the inelastic channel. Our results
�2

0 = 0.0096 (bare g factors) and �2
0 = 0.0037 (effective

g factors) deviate drastically from the value �2
0 = 0.312

obtained in Ref. [34] where deformed Nilsson single-particle
wave functions were used in a simplified calculational scheme
for oblate deformation. The reason for this difference might
be in the difficulty of the shell model in taking into account a
possible deformation. This difficulty is already seen in Table III
where the shell model predicts the strength B(M1; 7/2+

1 →
5/2+

g.s.) to be a factor of 4.4 (bare g values) and 26 (effective
g values) too weak. This rough factor of 6 difference in the
two shell-model calculations induces a factor of 2.6 difference
in the corresponding �2

0 values. Unfortunately, in Ref. [34]

the relevant B(M1) value was not given for comparison. It is
interesting to note, though, that the magnetic moments of the
involved states are predicted quite nicely by the SM, as seen
in Table I. In any case, the role of deformation in this context
is worth studying in possible future work.

For the xenon isotopes the SM predicted B(M1; 3/2+
1 →

1/2+
g.s.) (129Xe) and B(M1; 1/2+

1 → 3/2+
g.s.) (131Xe) values are

in excellent agreement with the data, so that the SSME for
the inelastic channel should be quite reliable. For 133Cs the
calculated B(M1; 5/2+

1 → 7/2+
g.s.) for the bare g factors is

close to the corresponding measured number but the value
calculated by using the effective g factors is clearly off.
Interestingly enough, this large difference of a factor 19 in
the computed B(M1) values induces only a difference of a

FIG. 8. (Color online) The same as in
Fig. 5 for elastic scattering of the LSP off a 133Cs
nucleus.
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factor of 2.8 in the values of �2
0 for the inelastic channel. In

this case, like in the case of 127I, the role of deformation is an
interesting subject for further studies.

At this point one could ask whether the used single-
particle space is big enough to produce reliable values for the
physical observables relevant for the LSP-nucleus scattering.
Most likely the space is enough for quantities to which the
calculations give values that are of the same order of magnitude
as the corresponding results for the extreme single-particle
shell model. These are quantities that are not suppressed
relative to simple estimates, as is the case for our results for
the xenon nuclei. If the computed values of observables are
much suppressed relative to the “standard” values, as happens
in several cases for 127I and 133Cs, it could be that contributions
coming from outside the chosen single-particle space become
important. Unfortunately, at the moment we do not know how
to estimate this effect in our calculations, as discussed in the
following.

It could be that the presently used effective interaction is not
at its best for systems that have very large neutron excess. One
then would like to extend the size of the active model space
of the calculation. One possibility would be to activate the
0g9/2 orbital and add it to the model space (e.g., by considering
particle-hole excitations from it up to the presently used model
space). The most restricted version of this extension of the
calculation would be to consider the 0g9/2 to 0g7/2 1p-1h
excitations. Unfortunately, we could not estimate the effect of
these particle-hole excitations for two reasons. First, the model
space would have become too large (being already very big
for a SM calculation), and second, we did not have a suitable
effective interaction available for that kind of model space.
We have used an effective interaction that divides the full
unrestricted model space into two regions: a P-space, which
consists of the 2s1/2, 1d5/2, 1d3/2, 0g7/2, and 0h11/2 orbitals,
and a Q-space, which contains everything else (100Sn core
plus unoccupied orbitals beyond our valence space). Hence
P + Q gives the full Hilbert space. The 1p-1h excitations
from the core to the P-space (core polarization) and from the
P-space to the Q-space above the P-space have been taken into
account approximately by the effective interaction equations as
described in Ref. [38]. Thus, including these 1p-1h excitations
in the present SM calculation would introduce uncontrollable
double counting. In the light of this problem, the extension of
the interaction to include the 0g9/2 orbital into the P-space, as
well as the subsequent massive SM calculation, has to be left
for future work with future computers.

In Fig. 9 we plot the SSFs Fρρ ′ (u) of Eq. (10) as functions of
the momentum transfer u for inelastic LSP-nucleus scattering
on 127I [Fig. 9(a)] and 133Cs [Fig. 9(c)]. The important low u
values are shown in Figs. 9(b) and 9(d). The SSFs differ from
each other much more than in the case of the elastic scattering
in Fig. 3. In addition, for elastic scattering the SSFs drop fast
below one but for inelastic scattering these functions grow

fast in the beginning and stay above unity for the range u � 5.
The reason for this described behavior of the SSFs is

the following. For inelastic scattering on 127I and 133Cs the
proton one-body transition densities (OBTDs) between the
single-particle orbitals 1d5/2 and 0g7/2, for the κ = 1 multipole
[see Eq. (12)], are much stronger than the other OBTDs. For
u > 0 these OBTDs affect strongly the SSFs through the
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FIG. 9. Spin structure functions Fρρ′ (u) plotted as functions of
the momentum transfer u for inelastic LSP-nucleus scattering on 127I
[(a) and (b)] and 133Cs [(c) and (d)].

λ = 2 channel [see again Eq. (12)]. It is notable that these
very strong OBTDs do not contribute to the SSMEs �0 and
�1 because of the angular momentum couplings and the zero
j2(0) = 0 of the spherical Bessel function j2. Owing to angular
momentum algebra these OBTDs do not contribute to the M1
transitions, either. This observation means that one cannot
relate the M1 transitions directly to the LSP-nucleus inelastic
matrix elements as done in Ref. [35].

In Fig. 10 we plot the SSFs as functions of u for inelastic
scattering on 129Xe [Fig. 10(a)] and 131Xe [Fig. 10(b)]. The
differences in the plots between the xenon nuclei and 127I and
133Cs are rather drastic. Whereas for 127I and 133Cs the SSFs
grow fast for small u, for the xenons the SSFs drop below
one. For 127I and 133Cs the SSFs stay above unity for the range
u � 5 whereas for the xenon nuclei they drop to the 10−4 level
within this range [26]. Hence, for the 127I and 133Cs nuclei
the SSFs have values that are much bigger than for the xenon
nuclei. The pronounced bump in the SSF of 131Xe [Fig. 10(b)]
stems from the very strong neutron transition 1d3/2 → 2s1/2

for multipole κ = 2 in Eq. (12). For λ = 2 the radial integral
over these orbitals and the associated Bessel function attains
its maximum around the bump region.

Let us next discuss how to obtain the lower and upper
limits for the integrals in Eqs. (25)–(27). The upper limit of
the integration over ψ = v/v0 is obtained in the same way as
for the case of elastic LSP-nucleus scattering. In the present
work we do not take into account the rotation of Earth on its
axis. Hence, for the upper limit of ψ we obtain the expression
given by Eq. (18).

The other integration limits can be obtained as follows. For
the initial and final kinetic energies of the LSP (Ei

χ , E
f
χ ) and

the nucleus (Ei
N,E

f

N ) we can write

Ei
χ + Ei

N = E∗ + Ef
χ + E

f

N, (28)

where E∗ represents the excitation energy of the nucleus in its
final state. In the center-of-mass system (CMS) one can write
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FIG. 10. Spin structure functions Fρρ′ (u)
plotted as functions of the momentum transfer u

for inelastic LSP-nucleus scattering on 129Xe (a)
and 131Xe (b).

the square of the exchanged three-momentum as

q2 = 2mχ

(
Ei

χ + Ef
χ

) − 2mχv′i
χ v′f

χ cos θ, (29)

where v′i
χ are v

′f
χ are, respectively, the initial and final speeds

of the LSP in the CMS and mχ is its rest mass. The maximum
exchanged momentum q2

max occurs at cos θ = −1. In the CMS
mχv

′f
χ = −mNv

′f
N , which leads to E

f
χ = (mN/mχ )Ef

N . Thus
one can write

Ef
χ = mN

mN + mχ

(
Ei

N + Ei
χ − E∗) . (30)

This equation can be inserted into Eq. (29) to yield

q2
max = m2

χ

(
v′i

χ

)2

[
1 +

√
1 − 2µrE∗(

mχv′i
χ

)2

]2

, (31)

where µr is the reduced mass of the LSP-nucleus system.
The velocity v′i

χ can be written in terms of the corresponding
laboratory velocity vi

χ as

v′i
χ = vi

χ − VCMS = vi
χ

mN

mN + mχ

. (32)

By inserting this into Eq. (31) one finally obtains

q2
max = µ2

r

(
vi

χ

)2

[
1 +

√
1 − 2E∗

µr

(
vi

χ

)2

]2

. (33)

The derivation for q2
min is similar; one just takes cos θ = +1.

This leads to the result

q2
min = µ2

r

(
vi

χ

)2

[
1 −

√
1 − 2E∗

µr

(
vi

χ

)2

]2

. (34)

Keeping in mind the definition of ψ and noting that u =
q2b2/2, where b is the nuclear harmonic-oscillator size
parameter, we obtain finally

umin = 1

2
b2µ2

r

v2
0

c2
ψ2[1 −

√
1 − �/ψ2]2, (35)

umax = 1

2
b2µ2

r

v2
0

c2
ψ2[1 +

√
1 − �/ψ2]2, (36)

where

� = 2E∗

µrc2

c2

v2
0

. (37)
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FIG. 11. (Color online) The En factors of
Eqs. (25)–(27), in units of yr−1 kg−1, plotted
as functions of the LSP mass for inelastic
scattering of the LSP off an 127I nucleus:
(a) E1, (b) E2, and (c) E3. The thickness of the
curves describes the annual modulation effect.

044302-11



TOIVANEN, KORTELAINEN, SUHONEN, AND TOIVANEN PHYSICAL REVIEW C 79, 044302 (2009)

10 2 5 10
2

2 5 10
3

0

1

2

3

4

5

6
E1(a)

129
Xe, geff

10 2 5 10
2

2 5 10
3

0

1

2

3

4

5

6
-E2(b)

10 2 5 10
2

2 5 10
3

0

1

2

3

4

5

6
E3(c)

MLSP [GeV]

E
n

[y
r-1

kg
-1

]

FIG. 12. (Color online) The same as in
Fig. 11 for inelastic scattering of the LSP off
a 129Xe nucleus. Here panel (b) shows −E2.

For ψmin we obtain

ψmin =
√

�. (38)

It is worth noting that at the limit E∗ → 0 the values of umin

and umax go to the corresponding ones of elastic scattering
with Qthr = 0.

The En factors of Eqs. (25)–(27) (in units of yr−1 kg−1)
are plotted in Figs. 11–14 as functions of the LSP mass
for the nuclei under discussion. In the plots the seasonal
variation in the detection rate (annual modulation) is presented
as in the case of the elastic scattering in Figs. 5–8. For the
computation we have adopted the effective g factors. All the En

coefficients for all the discussed nuclei behave qualitatively in
the same way (i.e., they have a maximum at around mχ = 150–
300 GeV, depending on the detector nucleus). These maxima

occur for about one order of magnitude heavier LSPs than in
the case of the maxima of elastic scattering.

Finally, it may be of interest to study the branching ratio

BRR = 〈R〉inel

〈R〉el + 〈R〉inel
(39)

to the inelastic channel. As can be seen from Eqs. (3) and (24)
the BRR depends on the SUSY parameters f . To have a rough
idea of the suppression of the inelastic channel relative to the
elastic channel one can plot the ratios of the individual Dn and
En coefficients,

BRRn = En

Dn + En

, n = 1, 2, 3, (40)

as functions of the LSP mass. This has been done in Fig. 15
for the nuclei of interest and for Qthr = 0. As can be seen, all
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FIG. 13. (Color online) The same as in
Fig. 11 for inelastic scattering of the LSP off
a 131Xe nucleus. Here panel (b) shows −E2.
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the branching ratios BRRn are quite small (at most of the order
of 0.1). In addition, one has to bear in mind that a considerable
contribution of the elastic rate comes from the D4 term of
Eq. (3), which further suppresses the branching given by
Eq. (39).

V. RESULTS FOR THE ANNUAL MODULATION

One can rewrite the Eqs. (3) and (24) by explicitly
separating the annual-averaged parts, D̄n and Ēn, and the
oscillating parts, Mn, in each of the coefficients Dn and En

according to Eq. (22) of Ref. [21]. The rewritten expressions
read

〈R〉 = (r0 + r1 cos a)mdet[kg]. (41)

The r0 and r1 amplitudes can be written for the elastic channel
as

rel
0 =

4∑
n=1

fnD̄n(mχ,Qthr), (42)

rel
1 =

4∑
n=1

fnD̄n(mχ,Qthr)Mn(mχ,Qthr), (43)

and for the inelastic channel we get

r inel
0 =

3∑
n=1

fnĒn(mχ ), (44)

r inel
1 =

3∑
n=1

fnĒn(mχ )Mn(mχ,Qthr = 0). (45)
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FIG. 15. The branching ratios [Eq. (40)] for
127I (a), 129Xe (b), 131Xe (c), and 133Cs (d). The
threshold energy is Qthr = 0.
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TABLE V. Computed auxiliary nuclear-structure coefficients dn(mχ ) in units of yr−1 kg−1 for elastic LSP-nucleus
scattering off the discussed nuclei. The dn for any LSP mass mχ can be linearly interpolated between the given
values of mχ .

mχ (GeV) αn βn

50 75 100 150 200 300

127I

d1 52.2 43.8 37.0 27.9 22.3 15.9 0.0277 0.000111
d2 43.1 36.6 31.1 23.6 19.0 13.6 0.0279 0.000077
d3 35.8 30.8 26.6 20.4 16.5 11.9 0.0283 0.000030
d4 163.0 136.0 113.0 82.6 64.6 44.6 0.0198 0.000260

129Xe
d1 100.8 83.0 69.0 50.9 40.2 28.3 0.0241 0.000226
−d2 101.6 83.7 69.5 51.2 40.5 28.5 0.0240 0.000229
d3 102.5 84.4 70.1 51.6 40.8 28.7 0.0239 0.000232
d4 160.5 133.7 111.0 81.0 63.2 43.7 0.0196 0.000267

131Xe
d1 14.9 14.8 14.2 12.4 10.8 8.4 0.0302 −0.000213
−d2 14.8 14.6 14.0 12.3 10.7 8.3 0.0302 −0.000212
d3 14.7 14.5 13.9 12.2 10.6 8.2 0.0302 −0.000212
d4 157.8 131.2 108.7 79.3 61.8 42.7 0.0195 0.000276

133Cs
d1 19.3 17.2 15.4 12.6 10.6 8.1 0.0341 −0.000141
d2 23.0 20.3 17.9 14.4 12.1 9.1 0.0338 −0.000111
d3 27.5 23.9 20.9 16.6 13.8 10.3 0.0335 −0.000078
d4 155.4 129.0 106.9 77.8 60.7 41.9 0.0193 0.000282

The redefined SUSY parameters are given by

f1 ≡ (
f 0

A

)2
, f2 ≡ 2f 0

Af 1
A, f3 ≡ (

f 1
A

)2
,

(46)

f4 ≡ A2

(
f 0

S − f 1
S

A − 2Z

A

)2

.

We can average the Dn coefficients over a to produce their
annual average values D̄n in Eqs. (42) and (43). Let us denote
by dn the Qthr = 0 values of D̄n and so then the dn depend
only on mχ . In Table V we list these dn coefficients for elastic
LSP-nucleus scattering off all the discussed nuclei (in units of
yr−1 kg−1) for selected values of mχ . The Qthr dependence of
D̄n can be conveniently fitted by the exponential

D̄n(mχ,Qthr) = e−(αn+βnµr )Qthrdn(mχ ) (47)

for 0 � Qthr � 30 keV. Here the reduced mass µr of the
nucleus-LSP system is given in units of GeV and Qthr in
units of keV. (The accuracy of this fit can be ascertained by
studying Table IX.) Our parametrization [Eq. (47)] enables an
easy extraction of D̄n for the wanted LSP mass and detector
threshold energy.

From Table V we notice that the coherent channel, repre-
sented by d4 through Eq. (47), is strong. The importance of this
channel is enhanced further by the fact that it is proportional
to A2, as seen from Eq. (3). From the table one sees also that
for 129Xe the coherent channel is relatively weaker than for the
other three mentioned nuclei.

TABLE VI. Computed annual averaged coefficients Ēn(mχ ),
in units of yr−1 kg−1, for inelastic LSP-nucleus scattering off the
discussed nuclei. The values of Ēn for any LSP mass mχ can be
linearly interpolated between the given values of mχ . The detector
threshold is assumed to be zero.

mχ (GeV)

50 75 100 150 200 300

127I
Ē1 0.191 0.565 0.862 1.148 1.219 1.156
Ē2 0.195 0.587 0.898 1.198 1.271 1.203
Ē3 0.205 0.620 0.951 1.269 1.345 1.270

129Xe
D̄1 1.94 3.58 4.41 4.68 4.36 3.56
−D̄2 1.95 3.60 4.42 4.70 4.37 3.57
D̄3 1.96 3.61 4.44 4.72 4.39 3.58

131Xe
D̄1 0.086 0.359 0.625 0.904 0.970 0.905
−D̄2 0.086 0.359 0.625 0.907 0.973 0.908
D̄3 0.086 0.359 0.627 0.909 0.977 0.912

133Cs
Ē1 0.032 0.151 0.283 0.472 0.562 0.599
Ē2 0.032 0.149 0.281 0.469 0.559 0.596
Ē3 0.032 0.148 0.280 0.467 0.558 0.595
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TABLE VII. Computed auxiliary annual modulation parameters mn(mχ ) for elastic LSP-nucleus scattering.
The mn for any LSP mass mχ can be linearly interpolated between the given values of mχ . The annual modulation
amplitudes are obtained from mn by the use of Eq. (48).

MLSP (GeV) γn δn ×
105

50 75 100 150 200 300

127I
m1 0.0012 −0.0054 −0.0089 −0.0124 −0.0143 −0.0163 0.00119 −0.51
m2 0.0022 −0.0042 −0.0076 −0.0110 −0.0129 −0.0150 0.00120 −0.54
m3 0.0037 −0.0024 −0.0056 −0.0090 −0.0109 −0.0130 0.00123 −0.59
m4 0.0023 −0.0067 −0.0120 −0.0176 −0.0204 −0.0231 0.00129 −1.03

129Xe
m1 −0.0001 −0.0080 −0.0122 −0.0160 −0.0176 −0.0189 0.00105 −0.35
m2 −0.0001 −0.0081 −0.0123 −0.0161 −0.0177 −0.0190 0.00105 −0.36
m3 −0.0001 −0.0081 −0.0124 −0.0162 −0.0178 −0.0192 0.00106 −0.37
m4 0.0020 −0.0070 −0.0124 −0.0179 −0.0207 −0.0234 0.00128 −1.01

131Xe
m1 0.0144 0.0140 0.0130 0.0100 0.0072 0.0035 0.00152 −1.21
m2 0.0143 0.0138 0.0129 0.0099 0.0071 0.0034 0.00152 −1.21
m3 0.0143 0.0137 0.0127 0.0098 0.0070 0.0034 0.00152 −1.20
m4 0.0016 −0.0074 −0.0128 −0.0183 −0.0210 −0.0237 0.00127 −1.00

133Cs
m1 0.0052 0.0021 0.0010 0.0000 −0.0004 −0.0007 0.00130 −0.57
m2 0.0041 0.0004 −0.0010 −0.0023 −0.0028 −0.0032 0.00126 −0.49
m3 0.0030 −0.0011 −0.0028 −0.0044 −0.0050 −0.0054 0.00123 −0.42
m4 0.0014 −0.0078 −0.0131 −0.0186 −0.0213 −0.0240 0.00126 −0.98

In Table VI we present the computed annual-averaged
coefficients Ēn(mχ ) of Eqs. (44) and (45) for inelastic LSP-
nucleus scattering off the discussed nuclei. As usual, we
have assumed that the detector threshold is zero. Comparing
Tables V and VI one notices that overall the Ēn coefficients
are much smaller than the dn = D̄n(Qthr = 0) coefficients of
elastic scattering. The ratio of dn and Ēn, for n = 1, 2, 3,
ranges from some 10 to some 200, being smaller for larger
LSP masses. These considerations, and the fact that the spin-
independent channel is missing from the inelastic scattering,
tell us that the inelastic channel is quite suppressed relative to
the elastic channel.

To access the annual modulation Mn(mχ,Qthr) of the Dn

coefficients we perform the following parametrization. Like
the annual average values, the coefficients Mn can be fitted as
functions of the detector threshold by

Mn(mχ,Qthr) = mn(mχ ) + (γn + δnµr )Qthr, (48)

where µr is the reduced mass in GeV and Qthr is inserted in
units of keV. (The accuracy of this fit can be ascertained by
studying Table IX.) The quantities mn(mχ ) have been tabulated
in Table VII for all the nuclei of interest in this work. The same
has been done for the quantities Mn(mχ,Qthr = 0) of Eq. (45)
in Table VIII. Here it is worth pointing out that for the target
nuclei of Table VII the modulation amplitude Mn of Eq. (48)
can become negative for heavy LSPs, leading to a negative
modulation (i.e., the oscillation maximum is then predicted to
be on December 2 instead of June 2).

To test the accuracy of the fits given by Eqs. (47) and (48)
we have chosen some values of the LSP mass mχ and threshold

TABLE VIII. Computed annual modulation factors
Mn(mχ, Qthr = 0) for inelastic LSP-nucleus scattering. The
Mn for any LSP mass mχ can be linearly interpolated between the
given values of mχ .

MLSP (GeV)

50 75 100 150 200 300

127I
M1 0.189 0.146 0.124 0.103 0.093 0.082
M2 0.189 0.146 0.124 0.103 0.092 0.081
M3 0.190 0.147 0.124 0.103 0.092 0.081

129Xe
M1 0.137 0.106 0.088 0.068 0.058 0.047
M2 0.137 0.106 0.088 0.068 0.058 0.047
M3 0.137 0.106 0.088 0.068 0.058 0.047

131Xe
M1 0.246 0.186 0.158 0.129 0.115 0.100
M2 0.246 0.186 0.158 0.129 0.115 0.100
M3 0.247 0.186 0.158 0.129 0.115 0.100

133Cs
M1 0.250 0.189 0.163 0.137 0.124 0.110
M2 0.250 0.189 0.163 0.137 0.124 0.110
M3 0.250 0.189 0.163 0.137 0.124 0.110
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TABLE IX. Comparison between the fits of Eqs. (47) and (48) and the corresponding calculated coefficients.

Coefficient D̄1 D̄4 M1 M4

mχ 100 GeV 300 GeV 100 GeV 300 GeV

Qthr (keV) fit calc. fit calc. fit calc. fit calc.

10.0 26.4 26.3 29.3 29.0 0.0002 −0.0002 −0.0190 −0.0184
20.0 18.8 18.9 19.3 18.5 0.0094 0.0086 −0.0149 −0.0139
30.0 13.4 13.7 12.7 11.6 0.0185 0.0172 −0.0108 −0.0093

energy Qthr to compare the fitted values and calculated values
of some D̄n and Mn coefficients. This comparison is performed
in Table IX. As can be seen the accuracy of the fit decreases
when going to higher values of the threshold energy. The value
Qthr = 30 keV begins already to be at the limits of a level of
reasonable accuracy. For M1 at Qthr = 10 keV the computed
value happens to be close to zero and negative whereas the
fit gives a small positive value. The relative difference is thus
large but the absolute difference is small. The same situation
is seen in all cases where the modulation amplitudes Mn go
through zero and change sign. For the application of the fitted
values, passing the zero point is no problem since both the fit
and the calculation give the same answer: a practically zero
modulation.

One can test the previously described formalism for elastic
and inelastic LSP-nucleus scattering by choosing a subset of
SUSY parametrizations [Eq. (46)] proposed as models A, B,
and C in Refs. [25,40]. There values were assigned to the
isoscalar (f 0

A) and isovector (f 1
A) axial-current parameters and

the isoscalar (f 0
S ) and isovector (f 1

S ) scalar-current parameters.
In Refs. [25,40] the authors discuss difficulties in assigning
values to these parameters and they base their choice of
parameter values on the numerical fits of the basic SUSY
parameters in Ref. [44]. In this way a representative sample of
three different solutions (S1, S2, and S3) was chosen.

According to our calculations the most favorable detection
rates for elastic scattering stem from the SUSY models where
the spin-independent coherent contribution is dominant. In
this case for many of the SUSY models listed here the
detection rates are more than a hundred events/yr/kg for all
the discussed nuclei. Such large detection rates have already
been excluded by the present WIMP detection experiments.
Combining the present experimental data [7,12,13] with our
computed nuclear response suggests that practically all of the
SUSY scenarios of [25,40] are ruled out. For the inelastic
channel the highest detection rates turn out to be of the

order of 10−3 events/yr/kg. This is still some two orders of
magnitude beyond the sensitivity of the DAMA/WIMP-129Xe
experiment [10].

VI. CONCLUSIONS

In this article we have discussed detection rates for elastic
and inelastic LSP-nucleus scattering on 127I, 129Xe, 131Xe,
and 133Cs. The corresponding nuclear-structure calculations
were done by using the nuclear shell model in a model space
involving the 0g7/2, 1d5/2, 2s1/2, 1d3/2, and 0h11/2 single-
particle orbitals and using realistic nucleon-nucleon forces
derived from the Bonn-CD G matrix. Both the elastic and
inelastic channels have been described within the same unified
microscopic nuclear scheme. The relevant experimental ob-
servables, including magnetic moments of the involved nuclear
states, as well as M1 transitions between them, are reproduced
quite well by fitted nuclear gyromagnetic factors.

We presented a useful parametrization of the elastic
detection rates in terms of the LSP mass and detector threshold
energy. The inelastic rates have been calculated by assuming
zero threshold. The obtained results are of interest, for
example, for the DAMA (127I and 129Xe), KIMS (127I and
133Cs), NAIAD and COUPP (127I), and ZEPLIN, XENON,
and XMASS (129Xe and 131Xe) experimental programs.
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