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Neutrinoless double-β decay in the microscopic interacting boson model
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We present a formalism for calculating nuclear matrix elements of double-β decay within the framework of
the microscopic interacting boson model. We calculate Fermi, Gamow-Teller, and tensor matrix elements in
the decay of Ge-Se-Mo-Te-Xe-Nd-Sm and compare our results with those of the shell-model (SM) and of the
quasiparticle random-phase approximation (QRPA). Our results are in agreement with QRPA. We discuss simple
features of the matrix elements and give a formula that allows one to estimate matrix elements in terms of the
number of valence proton and neutron pairs.

DOI: 10.1103/PhysRevC.79.044301 PACS number(s): 23.40.Hc, 21.60.Fw, 27.50.+e, 27.60.+j

I. INTRODUCTION

Recent experiments [1–3] appear to indicate that neutrinos
have a nonzero mass, mν �= 0. A direct measurement of the
average neutrino mass (if the neutrino is a Majorana particle)
can be obtained from the observation of the neutrinoless
double-β decay

A
ZXN →A

Z+2 YN−2 + 2e−. (1)

Apart from an unconfirmed experiment [4], this process has
not yet been observed, but several experiments are underway
[5,6] and others are in the planning stage. It is therefore of
importance to provide estimates of the expected lifetime for
the decay. The half-life of 0νββ decay can be written as

[
T

0νββ

1/2 (0+ → 0+)
]−1 = G0ν |M (0ν)|2

( 〈mν〉
me

)2

, (2)

where 〈mν〉 = ∑
k |Uνk|2mk is the average neutrino mass, G0ν

is a kinematic factor dependent on the charge, mass and
available energy, and M (0ν) is the nuclear matrix element.
A crucial ingredient in the evaluation of the lifetime is the
nuclear matrix element. This matrix element depends on
the form of the hadronic current, J

µ

L , which appears in the
weak Hamiltonian and on the structure of the initial and
final nuclei. Given a model for the origin of the neutrino
mass, one can write down the associated hadronic current.
On reduction to its nonrelativistic form, one can write a
transition operator V and evaluate its matrix elements between
initial and final states. This evaluation is in general rather
difficult, because, in the decay from an even-even nucleus,
N = even, Z = even, to another even-even nucleus one needs
to know the structure of the intermediate odd-odd nucleus.
However, for neutrinoless double-β decay the average neutrino
momentum is of the order of 100 MeV and one can therefore
use the closure approximation. (The closure approximation
may not be good for double-β decay with emission of two
neutrinos where the average momentum is small.) Using the
closure approximation, the calculation of the nuclear matrix
elements amounts to the calculation of a two-body matrix
element. Three types of matrix elements play a particularly
important role, Fermi (F), Gamow-Teller (GT), and tensor (T)
matrix elements.

Two methods have been used so far to evaluate the nuclear
matrix elements, the shell model (SM) in its original version [7]
and in very recent large scale versions [8], and the quasiparticle
random-phase approximation (QRPA) in its early form [9] and
in its more recent versions [10]. In this article, we propose
a third method, the microscopic interacting boson model
(IBM). Our purpose is threefold: (i) to provide an independent
calculation and investigate the sensitivity of the results to
assumptions made concerning the single-particle energies and
strengths of interactions; (ii) to make use of wave functions
of initial and final nuclei which are as much as possible
realistic, i.e., that describe accurately the known properties
of those nuclei; and (iii) to extract simple features, if any, of
the otherwise complex calculation.

The article is structured as follows. In Secs. II–IV, we derive
the formalism needed to evaluate the matrix elements of Fermi,
Gamow-Teller, and tensor interactions in the microscopic
interacting boson model. This proceeds by evaluating the
fermionic two-body matrix elements G(j1, j2, j

′
1, j

′
2; J ) and

thus writing the general second-quantized fermionic transition
operator (Sec. II). The matrix elements of this operator are
then evaluated in the generalized seniority scheme in Sec. III.
Finally, this operator is mapped into a bosonic second-
quantized transition operator (Sec. IV) and its matrix elements
are evaluated using realistic IBM-2 wave functions. In Sec. V
we show our results and compare with the results of the SM
and the QRPA. In Sec. VI we discuss some simple features of
the calculation and present a simple formula that allows one to
estimate the matrix elements in terms of the number of proton
and neutron valence pairs.

II. FERMIONIC TRANSITION OPERATORS

We are interested in the matrix elements of the F, GT, and
T operators. The fermionic transition operator for F, GT, and
T can be written compactly as

V (λ)
s1,s2

= 1

2

∑
n,n′

τ+
n τ+

n′
[
�(s1)

n × �
(s2)
n′
](λ) · V (rnn′)C(λ)(�nn′),

(3)
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where, for s = 0, �(0) = 1, and, for s = 1, �(1) = �σ . V (r) is
a generic radial form that depends on the model of double-β
decay and C(λ) = √

4π/(2λ + 1)Y (λ) (we use the notation of
de-Shalit and Talmi [11]). In this compact form, the Fermi
term has λ = 0, s1 = s2 = 0, the Gamow-Teller term has λ =
0, s1 = s2 = 1, with an additional factor of (−1)s1

√
2s1 + 1 =

−√
3, and the tensor term has λ = 2, s1 = s2 = 1, with an

additional factor of
√

2
3 .

Introducing creation and annihilation operators for single
particle states, c

†
nljm, the two-particle states can be written as

|(n1l1j1)(n2l2j2); JM〉 =
(
c
†
n1l1j1

× c
†
n2l2j2

)(J )
M

|0〉√
1 + (−1)J δn1n2δl1l2δj1j2

, (4)

and the second-quantized fermion operator as

V (λ)
s1,s2

= −1

4

∑
j1j2

∑
j ′

1j
′
2

∑
J

(−1)J
√

1 + (−1)J δj1j2

×
√

1 + (−1)J δj ′
1j

′
2
G(λ)

s1s2
(j1j2j

′
1j

′
2; J )

× (
π
†
j1

× π
†
j2

)(J ) · (ν̃j ′
1
× ν̃j ′

2

)(J )
, (5)

where Ĵ = √
2J + 1 and π

†
nljm(ν̃nljm) creates (destroys)

a proton (neutron) in the single-particle state |nljm〉.
G(λ)

s1s2
(j1j2j

′
1j

′
2; J ) is the two-body matrix element of V (λ)

s1s2

between two-fermion states

G(λ)
s1s2

(j1j2j
′
1j

′
2; J ) =

l1+l′1∑
k1=|l1−l′1|

l2+l′2∑
k2=|l2−l′2|

kmax∑
k=kmin

ik1−k2+λk̂2
1 k̂

2
2

×〈k10k20|λ0〉(−1)s2+k1

{
k1 s1 k

s2 k2 λ

}

× (−1)j2+j ′
1+J

{
j1 j2 J

j ′
2 j ′

1 k

}

× k̂ĵ1ĵ
′
1

⎧⎪⎨
⎪⎩

1
2 l1 j1
1
2 l′1 j ′

1

s1 k1 k

⎫⎪⎬
⎪⎭ k̂ĵ2ĵ

′
2

⎧⎪⎨
⎪⎩

1
2 l2 j2
1
2 l′2 j ′

2

s2 k2 k

⎫⎪⎬
⎪⎭

×
〈

1

2
‖�(s1)‖1

2

〉
(−1)−k1 l̂1〈l10k10|l′10〉

×
〈

1

2
‖�(s2)‖1

2

〉
(−1)−k2 l̂2

〈
l20k20 | l′20

〉
×R(k1,k2,λ)(n1, l1, n2, l2, n

′
1, l

′
1, n

′
2, l

′
2),

(6)

with 〈 1
2‖�(s)‖ 1

2 〉 = √
2(2s + 1), kmin = max(|j1 − j ′

1|, |j2 −
j ′

2|), and kmax = min(j1 + j ′
1, j2 + j ′

2). R(k1,k2,λ)(n1l1, n2, l2;
n′

1l
′
1, n′

2l
′
2) are the radial integrals and Appendix A describes

how to calculate them.

III. MATRIX ELEMENTS IN THE GENERALIZED
SENIORITY SCHEME

We consider matrix elements of the fermionic operators in
the collective SD subspace formed by pair states with JP = 0+

and JP = 2+ of identical nucleons. The pair operators that
create these states are written as

S† =
∑

j

αj

√
�j

2
(c†j × c

†
j )(0) (7)

D† =
∑
j � j ′

βjj ′
1√

1 + δjj ′
(c†j × c

†
j ′ )(2) (8)

with �j = j + 1
2 . Several methods have been used to deter-

mine the structure coefficients αj and βjj ′ . In this article we use
the method of Ref. [12] with structure coefficients obtained by
diagonalizing the surface delta interaction (SDI). Details are
given in Appendix B. The SM states in the SD subspace are
constructed as

|n, v, J 〉 = η−1
nvJ (S†)

n−v
2 |v, v, J 〉, (9)

where all labels other than seniority v and total angular
momentum J have been omitted. ηnvJ is a normalization
constant given in Appendix B. The states |v, v, J 〉 represent
states of maximum generalized seniority constructed with D

pairs operators. For example, the state |n = 2, v = 2, J = 2〉
is given by

|n = 2, v = 2, J = 2〉 = D†|0〉. (10)

These states are properly normalized as long as the structure
coefficients satisfy ∑

j � j ′
β2

jj ′ = 1. (11)

The construction for higher seniorities is more complicated
and is reported in Ref. [12].

Matrix elements of the fermion operator (5) can now be
calculated. This requires the calculation of the matrix elements
of the operators (c†j × c

†
j ′ )(L). We have used the commutator

method developed by Frank and Van Isacker [13] and the
work of Lipas et al. [14] to evaluate the matrix elements of
these operators. Our (novel) results are shown in Appendix C.
These general results are needed for the calculation of matrix
elements in the interacting boson model, discussed in the
following sections. In the “generalized seniority scheme”
(GS), in which the wave functions of ground state of nuclei
have v = 0, the double-β decay matrix elements depend only
on the structure coefficients, αj ś. The corresponding matrix
elements are denoted by GS in the table of results.

IV. MATRIX ELEMENTS IN THE INTERACTING
BOSON MODEL

In the microscopic IBM [15], the shell-model SD pair states
are mapped onto sd boson states with JP = 0+ and JP = 2+

S† 	−→ s† (12)

D† 	−→ d†. (13)

Fermionic operators are similarly mapped into bosonic op-
erators by the Otsuka, Arima, and lachello (OAI) method
[16]. Using this method one is assured that the matrix
elements between fermionic states in the collective subspace
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are identical to the matrix elements in the bosonic space. In
this article we first consider the simple mapping

(π †
j × π

†
j )(0) 	−→ Aπ (j )s†π (14)

(π †
j × π

†
j ′)

(2)
M 	−→ Bπ (j, j ′)d†

π,M (15)

for protons and similar expression for neutrons. Using
Eqs. (14) and (15) we obtain the bosonic image of the fermion
operator of Eq. (5)

V (λ)
s1s2

	−→ −1

2

∑
j1

∑
j ′

1

G(λ)
s1s2

(j1j1j
′
1j

′
1; 0)

×Aπ (j1)Aν(j ′
1)s†π · s̃ν

− 1

4

∑
j1j2

∑
j ′

1j
′
2

√
1 + δj1j2

√
1 + δj ′

1j
′
2

×G(λ)
s1s2

(j1j2j
′
1j

′
2; 2)Bπ (j1, j2)Bν(j ′

1, j
′
2)d†

π · d̃ν .

(16)

The coefficients Aρ(j1) and Bρ(j1, j2) (ρ = ν, π ) are given in
Appendix D. [Because in the IBM particles (p) are considered
in the first half of a major shell, and holes (h) in the second
half, the mapping must respect particle-hole conjugation, i.e.,
s̃ν , d̃ν must be replaced, in the second part of the shell, by
s
†
ν̄ , d

†
ν̄ , where a bar denotes the conjugate state.]

A realistic set of wave functions of even-even nuclei with
mass A >∼ 60 is provided by the proton-neutron IBM-2 [17].
The wave functions are generated by diagonalizing the IBM-2
Hamiltonian. The parameters of the complete set of nuclei in
this calculation are given in Appendix E. The associated wave
functions produce spectra and intensities of electromagnetic
transitions in good agreement with experiment. Using these
realistic wave functions and the operators of (16) we can
calculate the matrix elements of double-β decay, denoted by
IBM-2 in the tables of results.

The bosonization method, when carried to all orders,
produces results that are identical to the fermionic results.
To investigate the extent to which our calculations are reliable,
we have carried out the OAI expansion to next to leading order
(NLO)

(π †
j × π

†
j ′ )

(2)
M 	−→ Bπ (j, j ′)(d†

π )M + Cπ (j, j ′)s†π (s†π d̃π )(2)
M

+Dπ (j, j ′)s†π (d†
π d̃π )(2)

M . (17)

To this order, the bosonic operator becomes

V (λ)
s1s2

	−→ −1

2

∑
j1

∑
j ′

1

G(λ)
s1s2

(j1j1j
′
1j

′
1; 0)

×Aπ (j1)Aν(j ′
1)s†π · s̃ν

− 1

4

∑
j1j2

∑
j ′

1j
′
2

√
1 + δj1j2

√
1 + δj ′

1j
′
2

×G(λ)
s1s2

(j1j2j
′
1j

′
2; 2)

×{Bπ (j1, j2)Bν(j ′
1, j

′
2)d†

π · d̃ν

+Bπ (j1, j2)Cν(j ′
1, j

′
2)d†

π · s̃ν s̃νd
†
ν

+Cπ (j1, j2)Bν(j ′
1, j

′
2)s†πs†π d̃π · d̃ν

+Cπ (j1, j2)Cν(j ′
1, j

′
2)s†πs†π d̃π · s̃ν s̃νd

†
ν

+Bπ (j1, j2)Dν(j ′
1, j

′
2)d†

π · s̃ν(d†
ν d̃ν)(2)

+Dπ (j1, j2)Bν(j ′
1, j

′
2)s†π (d†

π d̃π )(2) · d̃ν

+Cπ (j1, j2)Dν(j ′
1, j

′
2)s†πs†π d̃π · s̃ν(d†

ν d̃ν)(2)

+Dπ (j1, j2)Cν(j ′
1, j

′
2)s†π (d†

π d̃π )(2) · s̃ν s̃νd
†
ν

+Dπ (j1, j2)Dν(j ′
1, j

′
2)s†π (d†

π d̃π )(2) · s̃ν(d†
ν d̃ν)(2)}.

(18)

with the (novel) coefficients Cρ(j1, j2) and Dρ(j1, j2) given
in Appendix D. (A boson expansion of the pair operators up
to the second term in Eq. (17) was carried out many years
ago [18] for the purpose of calculating 2ν double-β decay
matrix elements in the closure approximation.) Using Eq. (18)
and the realistic wave functions we can compute the matrix
elements denoted by IBM-2 NLO in the tables of results.

V. RESULTS

We divide the discussion of our results in two parts.
In the first part, we study how our results depend on the
approximations GS, IBM-2, and IBM-2 NLO. For this part
we use the formulation of matrix elements of neutrinoless
double-β decay of Tomoda et al. [9]. This formulation contains
both terms proportional to the neutrino mass squared and
terms proportional to other parameters 〈λ〉 and 〈η〉 of the
decay model and is thus “complete.” Our conclusion is that
the effect of NLO boson terms is small for all (proportional
and nonproportional to the neutrino mass squared) matrix
elements.

In the second part, having established the smallness of the
NLO terms for all matrix elements, we use IBM-2 to calculate
neutrinoless double-β decay matrix elements in the more
recent formulation of Šimkovic et al. [10]. This formulation
is similar to that of Tomoda for F and GT matrix elements
but with additional higher-order contributions, denoted by
HOC. In particular, it has an induced tensor term that differs
from Tomoda’s both in radial dependence and in magnitude.
Because this formulation is that used in very recent SM and
QRPA calculations, we will use it in all further discussions
and comparisons with other calculations.

A. Comparisons between GS, IBM-2, and IBM-2 NLO

To assess the role of approximations in the boson cal-
culation, we use the formulation of matrix elements of
neutrinoless double-β decay of Ref. [9]. In this formulation,
two matrix elements appear in front of the neutrino mass
squared (〈mν〉/me)2, the Fermi, M

(0ν)
F , and Gamow-Teller,

M
(0ν)
GT , matrix elements

M
(0ν)
GT = 〈H (r12)�σ1 · �σ2〉 (19)

χF = [
M

(0ν)
GT

]−1
(gV /gA)2〈H (r12)〉

= [
M

(0ν)
GT

]−1
(gV /gA)2M

(0ν)
F (20)

the total matrix element being

M (0ν) = (−χF + 1)M (0ν)
GT = − (gV /gA)2 M

(0ν)
F + M

(0ν)
GT , (21)
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with
M

(0ν)
F = 〈H (r12)〉 . (22)

In Tomoda’s formulation, the bracket 〈O12〉 is defined as

〈O12〉 ≡ 1

2
〈0+

F |
∑
n,n′

τ+
n τ+

n′ Onn′ |0+
I 〉, (23)

where |0+
I,F 〉 are the wave functions of the initial and final states

and the potential H (r12) is conveniently defined in momentum
space, see Appendix A,

v(p) = 2

π

1

p(p + Ã)
, (24)

where Ã (the closure energy) is assumed to be a smoothly
varying function of the mass number A given in Table 25 of
Ref. [9]. Two corrections are usually included in the calculation
of the matrix elements, the finite nucleon size (FNS) and the
short range correlations (SRC). The finite nucleon size is taken
into account in momentum space by replacing the coupling
constants gV , gA by the dipole forms

gV (p2) = gV

1(
1 + p2

M2
V

)2 (25)

gA(p2) = gA

1(
1 + p2

M2
A

)2 . (26)

The value of M2
V = 0.71 (GeV/c2)2 is well fixed by the

electromagnetic form factor of the proton, while the value of
MA = 1.09 GeV/c2 is estimated. The short-range correlations
are usually taken into account by multiplying the potential
H (r) by the Jastrow function squared, f (r)2, with

f (r) = 1 − e−ar2
(1 − br2), (27)

where a = 1.1 fm−2 and b = 0.68 fm−2. The results of our
calculation with the “experimental” set of parameters, Set I of
Appendix B, are shown in Table I columns GS, IBM-2, and
IBM-2 NLO. In this table, we also quote, for reference, the
SM results in a restricted basis by Haxton [7] (from Table 7
of Ref. [9]) and the QRPA by Tomoda (from Table 17 of
Ref. [9]) with gV = 1, gA = 1.25. There is an overall phase
ambiguity in the definition of the matrix elements that is
irrelevant when calculating the lifetime. We choose in this
article, for the sake of comparison to other calculations, the
phase convention of Tomoda [9]. Our calculations are in good
agreement with both the SM and QRPA when protons and
neutrons occupy the same major shell (Ge-Se-Te-Xe) but
only in fair agreement when protons and neutrons occupy
different major shells (Mo-Nd-Sm). For 136Xe we have only
done a generalized seniority calculation because this nucleus
is semimagic (N = 82) and is well described by GS. When
comparing our calculations GS, IBM-2, and IBM-2 NLO we
observe that there is a systematic reduction of the matrix
elements by about 20% when going from GS to IBM-2 while
the effect of NLO terms is very small. This is shown for 76Ge
in Fig. 1, where the various contributions with their signs are
plotted. This figure is reminiscent of Fig. 1 of Ref. [8]. We find
that the contribution of s bosons is dominant, the contribution
of d bosons is sizable and of opposite sign, whereas NLO

A = 76

AA BB BC CB CC BD DB CD DC DD

0

1

2

3

4

M
G

T0

FIG. 1. (Color online) Contributions to the Gamow-Teller matrix
elements of the 76Ge → 76Se decay in the boson expansion of
Eq. (18).

corrections are small and with random sign. This result applies
to all calculated nuclei.

In addition to terms proportional to (〈mν〉/me)2, Tomoda
considered also terms proportional to parameters 〈λ〉 and 〈η〉,
where λ and η depend on the decay model and are defined on
p. 75 of Ref. [9], nine terms in all: three Gamow-Teller (GT),
three Fermi (F), one tensor (T), one pseudoscalar (P), and one
recoil (R). We have calculated the first seven of those, the two
discussed previously, M

(0ν)
GT , χF , and the five additional terms,

χ̃GT, χ̃F , χ ′
GT, χ ′

F , χ
′
T ,

M
(0ν)
GT = 〈H (r12)�σ1 · �σ2〉 (28)

χF = [
M

(0ν)
GT

]−1
(gV /gA)2〈H (r12)〉 (29)

χ̃GT = [
M

(0ν)
GT

]−1〈H̃ (r12)�σ1 · �σ2〉 (30)

χ̃F = [
M

(0ν)
GT

]−1
(gV /gA)2〈H̃ (r12)〉 (31)

χ ′
GT = [

M
(0ν)
GT

]−1〈−r12H
′(r12)�σ1 · �σ2〉 (32)

χ ′
F = [

M
(0ν)
GT

]−1
(gV /gA)2〈−r12H

′(r12)〉 (33)

χ ′
T = [

M
(0ν)
GT

]−1〈− r12H
′(r12)

[
(�σ1 · r̂12)(�σ2 · r̂12)

− 1
3 �σ1 · �σ2

]〉
, (34)

expressed as ratios to M
(0ν)
GT . Partial results are given in Table II

where IBM-2 calculations are compared with those of Haxton
and Tomoda, taken from the same sources as those of Table I.
We omitted χ̃F,GT because they are related to χ ′

F,GT and χF by
χ̃GT = 2 − χ ′

GT and χ̃F = 2χ ′
F − χF . Also here, as in Table I,

all calculations are in good (Ge-Se-Te-Xe) or fair (Mo-Nd-Sm)
agreement. NLO corrections, not shown in Table II, also appear
to be small. The main result of this subsection is therefore that
NLO corrections appear to be small for all matrix elements
and they will be henceforth neglected.

B. Neutrinoless double-β decay matrix elements in IBM-2

Very recently, another formulation of nuclear matrix ele-
ments in neutrinoless double-β decay has been put forward
recently by Šimkovic et al. [10]. We use this formulation from
here onward to compare IBM-2 results with recent results
from the SM and QRPA. This formulation agrees with that
of Tomoda for F and GT matrix elements, but it adds other
contributions, denoted by HOC. The transition operator is now
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TABLE I. Dependence of neutrinoless double-β decay nuclear matrix elements on approximations GS,
IBM-2, IBM-2 NLO in the formulation of Ref. [9]. The calculations of SM [7] and QRPA [9] are shown for
comparison. All matrix elements in fm−1.

SM QRPA GS IBM-2 IBM-2 NLO

M
(0ν)
GT (fm−1) 76Ge → 76Se 0.411 0.330 0.553 0.446 0.450

82Se → 82Kr 0.331 0.293 0.416 0.346 0.348
100Mo → 100Ru 0.316 0.392 0.338 0.336
128Te → 128Xe 0.412 0.246 0.435 0.318 0.319
130Te → 130Xe 0.413 0.212 0.382 0.285 0.286
136Xe → 136Ba 0.117 0.293
150Nd → 150Sm 0.312 0.220 0.183 0.173
154Sm → 154Gd 0.291 0.197 0.176

M
(0ν)
F (fm−1) 76Ge → 76Se −0.129 −0.150 −0.318 −0.249 −0.251

82Se → 82Kr −0.092 −0.131 −0.264 −0.211 −0.212
100Mo → 100Ru −0.165 −0.034 −0.029 −0.026
128Te → 128Xe −0.145 −0.114 −0.219 −0.157 −0.158
130Te → 130Xe −0.145 −0.099 −0.191 −0.139 −0.140
136Xe → 136Ba −0.058 −0.140
150Nd → 150Sm −0.154 −0.026 −0.022 −0.020
154Sm → 154Gd −0.031 −0.020 −0.017

M (0ν) (fm−1) 76Ge → 76Se 0.494 0.426 0.756 0.606 0.610
82Se → 82Kr 0.390 0.377 0.585 0.481 0.484

100Mo → 100Ru 0.422 0.414 0.357 0.353
128Te → 128Xe 0.505 0.319 0.575 0.418 0.420
130Te → 130Xe 0.506 0.275 0.504 0.374 0.375
136Xe → 136Ba 0.154 0.383
150Nd → 150Sm 0.411 0.237 0.197 0.186
154Sm → 154Gd 0.311 0.210 0.187

TABLE II. IBM-2 matrix elements of terms nonproportional to the neutrino mass-squared operator in the formulation of Ref. [9]. The
calculations of SM [7] and QRPA [9] are also shown. All matrix elements in fm−1.

SM QRPA IBM-2 SM QRPA IBM-2

M
(0ν)
GT (fm−1) 76Ge → 76Se 0.411 0.330 0.446 130Te → 130Xe 0.413 0.212 0.285

82Se → 82Kr 0.331 0.293 0.346 136Xe → 136Ba 0.117
100Mo → 100Ru 0.316 0.338 150Nd → 150Sm 0.312 0.183
128Te → 128Xe 0.412 0.246 0.318 154Sm → 154Gd 0.197

χF
76Ge → 76Se −0.200 −0.290 −0.357 130Te → 130Xe −0.225 −0.299 −0.313
82Se → 82Kr −0.177 −0.286 −0.389 136Xe → 136Ba −0.317

100Mo → 100Ru −0.334 −0.056 150Nd → 150Sm −0.316 −0.076
128Te → 128Xe −0.225 −0.296 −0.316 154Sm → 154Gd −0.064

χ ′
GT

76Ge → 76Se 1.141 1.049 1.180 130Te → 130Xe 1.179 1.052 1.226
82Se → 82Kr 1.142 1.048 1.189 136Xe → 136Ba 1.026

100Mo → 100Ru 1.032 1.177 150Nd → 150Sm 1.057 1.184
128Te → 128Xe 1.175 1.049 1.218 154Sm → 154Gd 1.200

χ ′
F

76Ge → 76Se −0.231 −0.318 −0.426 130Te → 130Xe −0.271 −0.331 −0.388
82Se → 82Kr −0.204 −0.314 −0.469 136Xe → 136Ba −0.349

100Mo → 100Ru −0.363 −0.058 150Nd → 150Sm −0.352 −0.082
128Te → 128Xe −0.272 −0.326 −0.389 154Sm → 154Gd −0.069

χ ′
T

76Ge → 76Se −0.013 −0.230 −0.134 130Te → 130Xe −0.025 −0.231 −0.101
82Se → 82Kr −0.021 −0.248 −0.172 136Xe → 136Ba −0.221

100Mo → 100Ru −0.470 0.130 150Nd → 150Sm −0.333 0.110
128Te → 128Xe −0.030 −0.226 −0.103 154Sm → 154Gd 0.116
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TABLE III. Evolution of the different HOC in the 76Ge → 76Se neutrinoless
matrix elements (in fm−1) calculated in IBM-2 as we add the FNS and the SRC
corrections.

Fermi matrix elements [M (0ν)
F ]

AA + V V AP PP MM Sum

Bare −0.2845 0.0000 0.0000 0.0000 −0.2845
+FNS −0.2640 0.0000 0.0000 0.0000 −0.2640
+SRC −0.2557 0.0000 0.0000 0.0000 −0.2557
+FNS+SRC −0.2487 0.0000 0.0000 0.0000 −0.2487

Gamow-Teller matrix elements [M (0ν)
GT ]

AA + V V AP PP MM Sum

Bare 0.5418 −0.1164 0.0346 0.0362 0.4962
+FNS 0.5032 −0.0959 0.0262 0.0221 0.4557
+SRC 0.4548 −0.0734 0.0166 −0.0008 0.3973
+FNS+SRC 0.4464 −0.0714 0.0168 0.0111 0.4029

Tensor matrix elements [M (0ν)
T ]

AA + V V AP PP MM Sum

Bare 0.0000 −0.0367 0.0120 −0.0061 −0.0308
+FNS 0.0000 −0.0296 0.0090 −0.0038 −0.0243
+SRC 0.0000 −0.0367 0.0119 −0.0053 −0.0300
+FNS+SRC 0.0000 −0.0299 0.0092 −0.0038 −0.0246

M (0ν) = −( gV

gA
)2M

(0ν)
F + M

(0ν)
GT + M

(0ν)
T

AA + V V AP PP MM Sum

Bare 0.7239 −0.1531 0.0466 0.0301 0.6475
+FNS 0.6722 −0.1255 0.0353 0.0184 0.6004
+SRC 0.6185 −0.1101 0.0286 −0.0061 0.5309
+FNS+SRC 0.6056 −0.1014 0.0260 0.0073 0.5376

written in momentum space as

H (p) = −hF (p) + hGT(p)�σn · �σn′ + hT (p)Sp

nn′ (35)

with

hF (p) = hF
V V (p), (36)

hGT(p) = hGT
AA(p) + hGT

AP (p) + hGT
PP (p) + hGT

MM (p), (37)

hT (p) = hT
AP (p) + hT

PP (p) + hT
MM (p). (38)

Compared with Tomoda’s formulation, the tensor operator is
defined with an extra factor of 3

S
p

nn′ = 3[(�σn · p̂)(�σn′ · p̂)] − �σn · �σn′ (39)

and the matrix elements are defined without the factor 1
2 in

front. The form of the different terms in the potentials are
given explicitly in Appendix A. Because our formalism is
general enough, we can evaluate the matrix elements also in
this formulation and study the effects of the new contributions
hAP , hPP , hMM , as done recently by Menéndez et al. [19] and
by Šimkovic et al. [20]. This study is shown in Table III for
the decay 76Ge → 76Se. The overall calculations are shown in
Table IV.

Our results, expressed in units of fm−1 in the previous
tables, are multiplied in Table IV by 2R, where R = 1.2A1/3 is
the nuclear radius in fm, to compare them with the calculations

of Refs. [19,20]. Our results are in agreement with the QRPA
results but disagree with the SM results by a factor of 2. This
is shown in Fig. 2. The agreement with QRPA, especially
in the behavior of the matrix elements with mass number
A, is somewhat surprising because the two methods (QRPA
and IBM-2) are very different. One of the major sources of

A 76 82 100 128 130 136 150 1540

1

2

3

4

5

6

SM

QRPA

IBM 2

M
0

FIG. 2. (Color online) Neutrinoless double-β decay matrix ele-
ments in the formulation of Šimkovic et al. [10] for IBM-2, Set I (this
work), QRPA with gA = 1.25 and Jastrow SRC [20], and SM [8].
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TABLE IV. Neutrinoless nuclear matrix elements to ground state including HOC calculated
in IBM-2, SM [8], and QRPA [20] (last three columns). Previous three columns show the break
down in F, GT and T contribution to IBM 2. All matrix elements in dimensionless units.

IBM-2 IBM-2 QRPA SM
M

(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

76Ge → 76Se −2.529 4.096 −0.250 5.465 4.680 2.220
82Se → 82Kr −2.197 3.260 −0.254 4.412 4.170 2.110
100Mo → 100Ru −0.327 3.318 0.204 3.732 3.530
128Te → 128Xe −1.897 3.463 −0.161 4.517 3.770 2.260
130Te → 130Xe −1.693 3.119 −0.144 4.059 3.380 2.040
136Xe → 136Ba 2.220 1.700
150Nd → 150Sm −0.279 2.034 0.108 2.321
154Sm → 154Gd −0.255 2.226 0.118 2.507

disagreement with the SM is the magnitude of the Fermi
matrix elements, which is much smaller in the SM than in
our calculation.

We can, of course, also calculate matrix elements to any
excited 0+ state and we give for completeness in Table V the
matrix elements to the first excited 0+ states in the daughter
nuclei. Although these matrix elements in many cases are
comparable to those to the ground state, in practice decay to
the excited states is reduced by the phase-space factor G0ν of
Eq. (1).

C. Sensitivity of IBM-2 results to parameter changes

We have investigated the sensitivity of our results to
parameter changes. We begin with the study of the sensivity to
the single-particle energies. We show in Table VI a comparison
between the results using Set I, with energies extracted from
experiment and thus called experimental, and Set II obtained
from a calculation in a Woods-Saxon well and thus called
theoretical. Both sets of single-particle energies are given
in Appendix B. We observe a 15% decrease of the matrix
elements in Ge-Se-Te and a 15% increase in Mo-Nd-Sm when
going from Set I to Set II. This is due to the interplay of
two effects: (i) in Set II the high-j orbitals are at an higher
excitation energy than in Set I and (ii) while in Ge-Se-Te
protons and neutrons are in the same major shell, in Mo-Nd-Sm
they are in different shells. The decrease-increase is due to the
magnitude and phase of the contribution of high-j “intruder”
orbitals relative to “normal” orbitals. We note that the results

TABLE V. Neutrinoless matrix elements to first excited 0+

state including HOC calculated in IBM-2. All matrix elements in
dimensionless units.

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

76Ge → 76Se −1.212 1.805 −0.102 2.479
82Se → 82Kr −0.688 0.860 −0.053 1.247
100Mo → 100Ru −0.034 0.380 0.017 0.419
128Te → 128Xe −1.402 2.444 −0.099 3.243
130Te → 130Xe −1.321 2.332 −0.088 3.090
150Nd → 150Sm −0.046 0.349 0.016 0.395
154Sm → 154Gd −0.009 0.010 0.006 0.021

with Set II are in perfect agreement with QRPA results,
gA = 1.25, Jastrow correlations, for Ge-Se-Te, whereas for
Mo the QRPA result is more in agreement with our Set I.
The importance of energies and occupancies of single-particle
states in double-β decay has been stressed recently by Schiffer
et al. [21].

Also, in a recent article [22], it has been shown that in the
QRPA calculation of 76Ge decay, the use of single-particle
energies that reproduce measured occupation probabilities
reduce the double-β decay matrix element from its value
with “theoretical” single-particle energies, in contrast with
our result. The “theoretical” single-particle energies used in
Ref. [22], called WS, are identical to our Set II. The calculated
values from Table VI are IBM-2 (II), 4.636, and QRPA, 4.680,
in surprising agreement. Our “experimental” Set I differs
from the “theoretical” Set II by a lowering of the high-spin
orbital 1g9/2 (see Table XI) in agreement with the observed
occupation probabilities quoted in Ref. [22]. The different
behavior between IBM-2 and QRPA in 76Ge, when going from
“theoretical” to “experimental,” is probably due to a change in
parameters other than single-particle energies in QRPA.

We have also investigated the sensitivity to other parameters
in the calculation of 76Ge decay. The sensitivity of individual
matrix elements MF ,MGT, and MT to changes in the strength
A1 of the SDI that generates the correlated pairs is shown
in the top part of Table VII. The “standard” value of A1 is
25/A with a reasonable range of variation of ±10% (for 76Ge,

TABLE VI. Comparison between matrix elements M (0ν) calcu-
lated with Set I and Set II of single-particle energies in IBM-2.
QRPA [20] and SM [8] are also shown. All matrix elements in
dimensionless units.

IBM-2 (I) IBM-2 (II) QRPA SM

76Ge → 76Se 5.465 4.636 4.680 2.220
82Se → 82Kr 4.412 3.805 4.170 2.110
100Mo → 100Ru 3.732 4.217 3.530
128Te → 128Xe 4.517 3.845 3.770 2.260
130Te → 130Xe 4.059 3.372 3.380 2.040
150Nd → 150Sm 2.321 2.888
154Sm → 154Gd 2.507 3.094
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TABLE VII. a. Sensitivity of the matrix elements (in fm−1) of
the 76Ge decay to changes in the surface delta interaction strength
A1 (in MeV).

A1 M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

0.30 −0.241 0.394 −0.024 0.524
0.35 −0.262 0.431 −0.025 0.574
0.40 −0.279 0.460 −0.027 0.612

b. Sensitivity of the matrix elements (in fm−1) of the 76Ge decay to
changes in the oscillator parameter ν0 (in fm−2).

ν0 M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

0.8 −0.224 0.369 −0.021 0.491
1.0 −0.249 0.404 −0.025 0.538
1.2 −0.271 0.432 −0.028 0.577

c. Sensitivity of the matrix elements (in fm−1) of the 76Ge decay to
changes in the closure energy Ã (in MeV).

M
(0ν)
F M

(0ν)
GT M

(0ν)
T M (0ν)

5 −0.275 0.445 −0.025 0.596
10 −0.246 0.398 −0.024 0.531
15 −0.224 0.364 −0.024 0.483

25/A = 0.33). The sensitivity within this range appears to be
small. We expect to have the same minor sensitivity also to
changes in the interaction. In fact, if the interaction is chosen
in such a way as to reproduce the 0+ − 2+ energy difference,
as it should in any realistic calculation, we expect very small
differences, if any at all.

The sensitivity to the parameter ν0 that appears in the
oscillator size as ν = ν0A

−1/3 is shown in the central part
of Table VII. The value we have used is ν0 = 0.994 fm−2. A
reasonable range of variation is ±5%. Within this range the
sensitivity is small [larger ν, larger M (0ν)].

Finally, in the bottom part of Table VII, we show the
sensitivity to the closure energy, Ã. We find, in accordance
with other calculations, that this sensitivity is small and thus
the closure approximation is good.

The main source of uncertainty in the calculation is the
Gamow-Teller strength gA. It is very well known that, in
single-β decay, this strength is quenched to 70% of its free
value gA = 1.25. Studies of double-β decay with the emission
of two neutrinos also indicate a quenching of similar amount.
(We have done similar studies and we will report them in
a subsequent article). Quenching is extremely important for
double-β decay because gA appears to the fourth power, g4

A, in
the decay rate. The origin of the quenching is not completely
known. If it occurs also for neutrinoless double-β decay, it
would considerably reduce the values given above by as much
as a factor of 4.

VI. SIMPLE FEATURES OF THE CALCULATION

A. Mass dependence

To study the mass dependence of M (0ν) we plot our results
in Fig. 3 as a function of mass number A. By fitting these

80 100 120 140 1600

1

2

3

4

5

6

Mass Number

89A 2 3

IBM 2

M
0

FIG. 3. (Color online) Overall A dependence of the matrix
elements M (0ν) in IBM-2, Set I, fitted with the empirical formula
of Eq. (40).

results with a dependence M (0ν) = M0A
−2/3 we find

M (0ν) � 89A−2/3. (40)

Converting to fm−1 by dividing by 2R, we find

M (0ν)(fm−1) � 37/A. (41)

The same dependence appears in the QRPA results but not in
the SM results. The dimensionless matrix elements in the SM
appear to be independent of A and always ∼2, a surprising
result.

B. Shell effects

To study shell effects, we plot in Fig. 4 our results as a
function of neutron number. Shell effects can be simply studied
within the framework of the generalized seniority scheme. In
Fig. 5 we plot a calculation of neutrinoless double-β decay
matrix elements for all Te isotopes. (Of course, the Qββ value
is positive only for 128Te and 130Te.) The behavior of Fig. 5
can be simply understood by considering the first term in
the boson mapping AπAνs

†
π s̃ν . This is simply the operator

40 60 80 100 1200
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Neutron number
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0

FIG. 4. (Color online) Dependence of the matrix elements in
IBM-2, Set I, on neutron number in the shells 28–50, 50–82 and
82–126.
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FIG. 5. (Color online) Dependence of the calculated matrix
elements on the number of valence neutron pairs in the GS scheme.
(Top panel) M

(0ν)
F , M

(0ν)
GT , and M

(0ν)
T . (Bottom panel) The total matrix

element M (0ν).

that annihilates a correlated pair of neutrons and creates a
correlated pair of protons. This operator can be written, to a
good approximation, as [23]

P
(0)
+πP

(0)
−ν = απανs

†
π (�π − Nπ )1/2 (�ν − Nν)1/2 s̃ν , (42)

where �π and �ν are the pair degeneracies of the major shells
and Nπ and Nν are the boson numbers (numbers of pairs). The
matrix elements of the operator in Eq. (42) are

〈Nπ + 1, Nν − 1
∣∣P (0)

+πP
(0)
−ν

∣∣Nπ,Nν〉
= απαν

√
(Nπ + 1)(�π − Nπ )(�ν − Nν + 1)Nν. (43)

The coefficients απ, αν are characteristic quantities of each
major shell. The behavior (43) is shown in Fig. 6. (This
is slightly different from the realistic calculation of Fig. 5
obtained with single-particle levels for protons slightly differ-
ent than for neutron.) Equation (43) provides a simple estimate
of M (0ν). As an example of application of Eq. (43), consider the
ratio 128

52 Te76/
130
52 Te78. For Te, protons and neutrons are in the

50–82 shell, �π = �ν = 16 and Nπ = 1 and Nν = 13(128Te),
Nν = 14 (130Te). From (43) one obtains

M (0ν)(128Te)

M (0ν)(130Te)
= 1.11. (44)

The result of our calculation (IBM-2 in Table IV) gives
M (0ν)(128Te)/M (0ν)(130Te) = 4.517

4.059 = 1.11. This calculation
includes FSC and SRC effects. Formula (43), derived in GS
and spherical nuclei, appears also to be valid for the full
calculation (IBM-2) and weakly deformed nuclei. The analogy
between neutrinoless double-β decay and 2n and 2p transfer
suggests that the physical decay occurs in a correlated pair
and is thus enhanced by pairing correlations. It also allows a
model-independent prediction for ratios of matrix elements,
by resorting to experimental data for 2n (and 2p) transfer
reactions

A
ZXN (p, t)AZXN−2. (45)

The intensities of these reactions are proportional to the square
of the matrix elements of the operator P

(0)
−ν and thus, for fixed

proton number, to the square of the matrix elements M (0ν). As
reported in Ref. [23], the experimental two-neutron transfer
reactions in Te appear to be well described by Eq. (43).

The relation described above is also well satisfied by
QRPA. For example, from Table IV, row QRPA, we have
M (0ν)(128Te)/M (0ν)(130Te) = 3.770

3.338 = 1.13.
We suggest that the relation

M (0ν) � απαν

√
Nπ + 1

√
Nν

√
�π − Nπ

√
�ν − Nν + 1

(46)

be used to estimate M (0ν) for spherical and weakly deformed
nuclei with A >∼ 60. By fitting our calculation in 76Ge with (43)
we find απαν = 0.186 for protons and neutrons in the 28–
50 shell and by fitting in 128Te we find απαν = 0.114 for
protons and neutrons in the 50–82 shell. These values are used
in Fig. 6, where also the two points 128Te and 130Te are shown.

As mentioned above, this estimate applies to spherical
and weakly deformed nuclei. For strongly deformed nuclei,
it should be modified as discussed in Ref. [23].

C. Effects of deformation

The effects of deformation can be easily seen within the
microscopic IBM framework. In spherical nuclei, the ground
state is composed of S pairs (s bosons) and is well described
by generalized seniority. As the deformation increases, the
number of d-bosons in the ground state increases, reaching
a maximum of (2/3)(Nπ + Nν) in SU(3) nuclei. The effects
of the deformation are the differences between the rows GS
and IBM-2 in Table I. For the nuclei described in this article,
the effect is a reduction by about 20%. The advantage of the
method discussed in this article is that one can do calculations
in any nucleus with A >∼ 70. For semimagic nuclei, one can
use GS, whereas for all others one can use IBM-2. To study
further the effects of strong defomation, we are planning to
calculate the matrix elements in the decay of 160Gd, 232Th, and
238U, for which we need first to obtain realistic wave functions
that describe accurately all observed properties. The results of
the calculation will be presented in a forthcoming publication.
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FIG. 6. Behavior of the matrix elements
M (0ν) for protons and neutrons in the shell 50–82
using Eq. (46) with απαν = 0.114. The points
correspond to the IBM-2 results of the 128,130Te
decays.

VII. CONCLUSIONS

In this article we have presented a formalism for calculating
matrix elements of double-β decay within the framework of
the microscopic interacting boson model and applied it to the
decays of 76Ge, 82Se, 100Mo, 128Te, 130Te, 136Xe, 150Nd, and
154Sm. This calculation provides an alternative to the SM and
the QRPA. The results of our calculations are in agreement
with QRPA both for the Tomoda formulation and for the
Šimkovic formulation (gA = 1.25, Jastrow SRC). They are in
disagreement with recent large scale shell-model calculations
that are a factor of two smaller and show no A dependence. The
origin of this disagreement is not clear. In IBM-2, we include
both the effects of high seniority states up to a maximum of
2(Nπ + Nν), in 128Te, for example, up to v = 8, and the effects
of deformation up to quadrupole deformation (d bosons). The
only missing part is the effect of high-J (hexadecapole, etc.)
pairs. However, in the 1980s these were estimated to be small
in weakly deformed nuclei, reaching a maximum of about
10% in strongly deformed nuclei. Because the calculations are
very complex and each introduces approximations, we cannot
exclude that there are errors both in the formulation and in the
calculation, especially because there are several formulations
and several calculations with different parameter assumptions.
It would be of great importance, as emphasized by the late John
Bahcall [24], to bring all methods SM, QRPA (and now IBM-2)
to results that differ only by the sensitivity to parameters,
i.e., of the order of 20%. The agreement between IBM-2 and
QRPA, both in absolute value and in their A dependence,
is somewhat surprising because these two methods start
from rather different assumptions. In IBM-2, one starts from
correlated S and D pairs of identical nucleons and includes the
effects of the deformation through the bosonic neutron-proton
quadrupole interaction. In QRPA, one starts from S pairs in
the BCS approximation and includes other effects through
quasiparticle interactions. It appears that for spherical and
weakly deformed nuclei both methods produce the same result.
To understand further how far the agreement extends, it would

be interesting to compare QRPA with our results in 150Nd
(a weakly deformed nucleus) and 154Sm. Although IBM-2
calculations can easily proceed beyond the spherical-deformed
transition region into the strongly deformed region [17], QRPA
must address the problem of its instabilities.

In addition to its ability to attack strongly deformed
nuclei, another important point of the IBM-2 calculation is
that it makes use of realistic wave functions, that is, wave
functions that describe well the experimental data on spectra,
electromagnetic transition, and two-nucleon transfer reaction
rates. Perhaps to further understand the differences between
various calculations, it would be useful to see how well
the SM and QRPA wave functions describe available data.
The disagreement between IBM-2 and SM is particularly
troublesome, because IBM-2 is a truncation of the shell-model
space to the S and D pair space and, in the limit of spherical
nuclei, IBM-2 and SM should produce the same results.

From the IBM-2 point of view we are planning to extend our
calculation to more nuclei, in particular to nuclei in the strongly
deformed region, 160Gd, 232Th, and 238U. The extension to
other isotopes of Sm, Nd, Xe, Mo, Se as well as to Ru and
Cd is straightforward because realistic wave function were
obtained in the 1980s [17] and are readable available.
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APPENDIX A: EVALUATION OF THE RADIAL INTEGRALS

The two-body matrix elements of V (λ)
s1s2

between two-
fermion states contain the radial integrals R(k1,k2,λ)(n1, l1, n2,

l2; n′
1, l

′
1, n

′
2, l

′
2). Since the potentials for neutrinoless double-β

decay are best given in momentum space, we compute the
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TABLE VIII. Neutrino potentials V (r) in configuration and momentum space for the different types of
ββ transitions. Ã = 〈EN 〉 − (EI + EF )/2 is the closure energy.

Transition V Quantum no. V (r) vλ(p)

λ s1 = s2

2νββ Fermi V
(2ν)
F 0 0 1 δ(p)

p2

2νββ Gamow-Teller V
(2ν)

GT 0 1

0νββ Fermi V
(0ν)
F 0 0 H (r) 2

π

1
p(p+Ã)

0νββ Gamow-Teller V
(0ν)

GT 0 1

0νββ Fermi V
′(0ν)
F 0 0 −rH ′(r) 2

π

p+2Ã

p(p+Ã)2

0νββ Gamow-Teller V
′(0ν)

GT 0 1

0νββ Fermi Ṽ
(0ν)
F 0 0 H̃ (r) = 2H (r) + rH ′(r) 2

π

1
(p+Ã)2

0νββ Gamow-Teller Ṽ
(0ν)

GT 0 1

0νββ Tensor V
(0ν)
T 2 1 −rH ′(r) 2

π

2p+Ã

p(p+Ã)2

radial integrals in this space

R(k1,k2,λ)(n1, l1, n2, l2, n
′
1, l

′
1, n

′
2, l

′
2)

=
∫ ∞

0
vλ(p)p2dp

∫ ∞

0
Rn1l1 (r1)Rn′

1l
′
1
(r1)jk1 (pr1)r2

1 dr1

×
∫ ∞

0
Rn2l2 (r2)Rn′

2l
′
2
(r2)jk2 (pr2)r2

2 dr2, (A1)

where Rnl(r) is the radial part of the wave function associated
with a single-particle state nl and vλ(p) is the Fourier-Bessel
transform of the potential

vλ(p) = 2

π

∫ ∞

0
V (r)jλ(pr)r2dr. (A2)

The radial matrix elements can then be evaluated in closed
form with harmonic oscillator single particle wave functions
by using the Horie method [25] and are given by

R(k1,k2,λ)(n1, l1, n2, l2, n
′
1, l

′
1, n

′
2, l

′
2)

= [
Mn1l1Mn′

1l
′
1
Mn2l2Mn′

2l
′
2

]− 1
2

×
n1+n′

1∑
s1=0

n2+n′
2∑

s2=0

f (k1k2λ)(l1 + l′1 + 2s1, l2 + l′2 + 2s2)

× al1+l′1+2s1 (n1l1; n′
1l

′
1)al2+l′2+2s2 (n2l2; n′

2l
′
2), (A3)

where Mnl = 2nn!(2n + 2l + 1)!! and

al+l′+2s(nl; n′l′) = (−1)s
n∑

µ=0

(
n

µ

)(
n′

s − µ

)

× (2n + 2l + 1)!!

(2µ + 2l + 1)!!

(2n′ + 2l′ + 1)!!

(2(s − µ) + 2l′ + 1)!!
,

(A4)

f (k1k2λ)(m1,m2) =
m1+m2

2∑
m= k1+k2

2

a2m

(
m1 − k1

2
k1;

m2 − k2

2
k2

)

× J (λ)
m (ν), (A5)

with

J (λ)
m (ν) = (2ν)−m

∫ ∞

0
vλ(p)e− p2

2ν p2m+2dp. (A6)

Here ν = Mω/h̄ is the harmonic oscillator parameter with M

the nucleon mass. The integrals J (λ)
m (ν) are the Horie intergrals

related to the Talmi integrals. In those cases in which the
potential is given in configuration space, they can be expressed
as

J (λ)
m (ν) =

2m−λ
2∑

µ=0

(−1)µ
(

2m−λ
2
µ

)
(2m + λ + 1)!!

2m (2λ + 2µ + 1)!!

×
√

2

π
ν

λ+3
2 +µ

∫ ∞

0
V (r)e− νr2

2 rλ+2µ+2dr. (A7)

In Table VIII we show the neutrino potentials in Tomoda’s
formulation [9] of ββ decay. In this table Ã = 〈EN 〉 − (EI +
EF )/2 is the closure energy, where 〈EN 〉 is the averaged
energy of the intermediate nucleus and EI,F are the energies
of the initial and final states. If Ã = 0, the potential H (r) that
appears in 0ν Fermi and Gamow-Teller transitions becomes
the Coulomb potential 1/r with Fourier-Bessel transform 2

π
1
p2 .

Table IX shows the neutrino potentials corresponding to the
HOC terms in the Šimkovic formulation [10]. These potentials
replace v0(p) for Fermi and Gamow-Teller transitions and
v2(p) for tensor transitions in the radial integrals.

The radial integrals depend on the values of the oscillator
parameter ν and the closure energy Ã. In this article we
take ν = ν0A

−1/3, where A is the mass number and ν0 =
0.994 fm−2. The values of Ã are taken from Tomoda and
are listed in Table X.

APPENDIX B: PAIR STRUCTURE CONSTANTS

In the definition of the pair operators Eqs. (7) and (8) there
appear the pair structure constants αj and βjj ′ . In the 1980s,
several theories were put forward to evaluate the structure
constants [16]. In this article we use the simple prescription of
Ref. [12] that is to obtain the coefficients by diagonalizing the
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TABLE IX. Neutrino potentials corresponding to the
HOC terms in the Šimkovic formulation adapted to our
approach. The factor 3 for the tensor contributions is
introduced to use them according to our definition of the
tensor operator Snn′ . mp and mπ are the proton and pion
mass and κβ = 3.70 is the isovector anomalous magnetic
moment of the nucleon.

HOC term vλ(p)

hF
V V

2
π

1
p(p+Ã)

g2
V

(1+p2/M2
V

)4

hGT
AA

2
π

1
p(p+Ã)

1
(1+p2/M2

A
)4

hGT
AP

2
π

1
p(p+Ã)

[− 2
3

1
(1+p2/M2

A
)4

p2

p2+m2
π

(1 − m2
π

M2
A

)]

hGT
PP

2
π

1
p(p+Ã)

[ 1√
3

1
(1+p2/M2

A
)2

p2

p2+m2
π

(1 − m2
π

M2
A

)]2

hGT
MM

2
π

1
p(p+Ã)

[ 2
3

g2
V

g2
A

1
(1+p2/M2

V
)4

κ2
βp2

4m2
p

]

hT
AP −3hGT

AP

hT
PP −3hGT

PP

hT
MM

3
2 hGT

MM

SDI whose two-body matrix elements are given by

〈jajb|V |jcjd〉JT

= (−1)na+nb+nc+nd AT

×
√

(2ja + 1)(2jb + 1)(2jc + 1)(2jd + 1)

4(2J + 1)2(1 + δab)(1 + δcd )

×
{

(−1)jb+lb+jd+ld

〈
jb − 1

2
ja

1

2

∣∣∣∣ J0

〉

×
〈
jd − 1

2
jc

1

2

∣∣∣∣ J0

〉
[1 − (−1)la+lb+J+T ]

−
〈
jb

1

2
ja

1

2

∣∣∣∣ J1

〉 〈
jd

1

2
jc

1

2

∣∣∣∣ J1

〉
[1 − (−1)T ]

}
, (B1)

with AT (T = 1, isovector; T = 0, isoscalar) the strength
parameter, and by taking the lowest 0+ and 2+ states of
identical nucleons as the collective S and D states. (For
generating the coefficients αj , βjj ′ in IBM-2 we need only the
strength A1.) The inputs in this calculation are the energies
of the single particle orbitals and the strength parameters.
To test the sensitivity of the calculation to the choice of
the single-particle energies we have used two sets of single-
particle energies: an “experimental” (Set I), obtained from the

TABLE X. Closure energies Ã used
in this work. From Ref. [9].

Ã (MeV)

76Ge → 76Se 9.41
82Se → 82Kr 10.08
100Mo → 100Ru 11.2
128Te → 128Xe 12.54
130Te → 130Xe 13.28
136Xe → 136Ba 13.1
150Nd → 150Sm 13.7
154Sm → 154Gd 13.9

TABLE XI. SDI strength values A1 and single-particle and hole
energies (in MeV) in the N, Z = 28–50 shell. The energies are taken
from the spectra of 57Cu for proton particles, from isotones N = 50
for proton holes, from the spectra of 57Ni for neutron holes (Set I),
and from Fig. 2-30 in Ref. [26] for neutron holes (Set II).

Orbital Protons Protons Neutrons (I) Neutrons (II)
(particles) (holes) (holes) (holes)

A1 = 0.366 A1 = 0.264 A1 = 0.280 A1 = 0.302

2p1/2 1.106 0.931 1.896 2.620
2p3/2 0.000 2.198 3.009 4.470
1f5/2 1.028 2.684 2.240 3.700
1g9/2 3.009 0.000 0.000 0.000

observed one-particle states; and a “theoretical” (Set II) as
given in Ref. [26]. The corresponding single-particle energies
are tabulated in Tables XI–XIII. A complication arises because
the nuclei we calculate are in a wide range of mass numbers and
cover several major shells. Also, in some cases, the protons are
particles and the neutron are holes and vice-versa. The tables
contain therefore both particle and hole energies as in Ref. [12].
The strength of the surface delta interaction is chosen to fit the
2+ − 0+ energy difference in nuclei with either two protons
(proton holes) or two neutrons (neutron holes) and is given in
the same Tables XI–XIII.

From the single-particle energies and values of A1, we
obtain the structure coefficients given in Tables XIV–XVI.
The overall sign in these coefficients is not important, because
it will disappear when the the matrix elements are squared.
However, the relative sign is of importance, and we use the
approximate relation [12]

βjj ′ = αj + αj ′√
5�(1 + δjj ′)

〈j‖r2Y2‖j ′〉 (B2)

to determine the sign of β relative to α. From Eq. (B2) we see
that the relative sign of α versus β changes when going from
particles to holes, because

〈j−1‖r2Y2‖j ′−1〉 = −〈j‖r2Y2‖j ′〉. (B3)

TABLE XII. SDI strength values A1 and single-particle and
hole energies (in MeV) in the N, Z = 50–82 shell. The energies
are taken from the spectra of 133Sb for protons, from the spectra
of 91Zr for neutron particles (Set I), from the spectra of 131Sn for
neutron holes (Set I), and from Fig. 2-30 in Ref. [26] for neutron
particles and holes (Set II).

Orbital Protons Neutrons Neutrons Neutrons Neutrons
(particles) (I) (II) (I) (II)

(particles) (particles) (holes) (holes)

A1 =
0.221

A1 =
0.269

A1 =
0.284

A1 =
0.163

A1 =
0.179

3s1/2 2.990 1.205 1.850 0.332 1.079
2d3/2 2.690 2.042 2.543 0.000 0.848
2d5/2 0.960 0.000 0.000 1.655 3.006
1g7/2 0.000 2.200 1.387 2.434 2.775
1h11/2 2.760 2.170 3.776 0.070 0.000
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TABLE XIII. SDI strength values A1 and single-
particle energies (in MeV) in the N = 82–126 shell. The
energies are taken from Ref. [12] for Set I and Fig. 2-30
in Ref. [26] for Set II.

Orbital Neutrons (I) Neutrons (II)
(particles) (particles)

A1 = 0.147 A1 = 0.132

3p1/2 2.250 2.927
3p3/2 1.500 1.927
2f5/2 2.600 2.927
2f7/2 0.000 0.000
1h9/2 2.450 1.002
1i13/2 2.800 2.927.

APPENDIX C: GENERALIZED SENIORITY
MATRIX ELEMENTS

In this appendix, we quote some matrix elements between
SM states belonging to the SD subspace. These matrix
elements are needed to calculate matrix elements of the
double-β decay transition operator in the generalized seniority
scheme. A general method for calculating exactly matrix
elements in the generalized seniority scheme is the commutator
method introduced by Frank and van Isacker [13] and by Lipas
et al. [14]. We have used this method to evaluate the matrix
elements of the pair operators (c̃j × c̃j )(0) and (c̃j × c̃j ′ )(2)

between states in the SD subspace. Labeling the states as
|n, v, J 〉, we obtain the following matrix elements

〈n, 0, 0‖(c̃j × c̃j )(0)‖n + 2, 0, 0〉

= −
(

n
2 + 1

)(
n
2 !
)2

ηn,0,0ηn+2,0,0
ĵαj

n/2∑
s=0

(−1)s
(

αs
jηn−2s,0,0

( n
2 − s)!

)2

, (C1)

〈n, 0, 0‖(c̃j × c̃j ′ )(2)‖n + 2, 2, 2〉
= −

√
5(1 + δjj ′ )

η2
n+2,2,2(jj ′)

ηn,0,0ηn+2,2,2
βjj ′ , (C2)

〈n, 2, 2‖(c̃j × c̃j ′ )(2)‖n + 2, 0, 0〉
=
(n

2

) (n

2
+ 1

)
αjαj ′ (−1)j−j ′

TABLE XIV. Pair structure coefficients αj and βjj ′ in the
N, Z = 28–50 shell.

Protons Protons Neutrons (I) Neutrons (II)
(particles) (holes) (holes) (holes)

α1/2 −0.850 0.689 0.468 0.382
α3/2 −1.867 0.408 0.336 0.251
α5/2 −0.884 0.352 0.418 0.293
α9/2 0.439 −1.401 −1.416 −1.447
β1/2 3/2 −0.322 −0.092 −0.063 −0.046
β3/2 3/2 −0.866 −0.048 −0.037 −0.026
β1/2 5/2 −0.234 −0.099 −0.091 −0.062
β3/2 5/2 0.222 0.040 0.039 0.026
β5/2 5/2 −0.182 −0.052 −0.064 −0.041
β9/2 9/2 0.093 0.988 0.990 0.996

TABLE XV. Pair structure coefficients αj and βjj ′ in the
N, Z = 50–82 shell.

Protons Neutrons Neutrons Neutrons Neutrons
(particles) (I) (II) (I) (II)

(particles) (particles) (holes) (holes)

α1/2 0.382 0.852 0.667 −0.999 −0.644
α3/2 0.414 0.614 0.535 −1.395 −0.734
α5/2 0.817 1.921 1.957 −0.469 −0.318
α7/2 1.769 0.584 0.799 −0.357 −0.338
α11/2 −0.406 −0.589 −0.395 1.287 1.514
β1/2 3/2 −0.054 −0.118 −0.090 −0.402 −0.118
β3/2 3/2 0.040 0.068 0.056 0.492 0.093
β1/2 5/2 0.092 0.324 0.234 0.159 0.075
β3/2 5/2 0.053 0.115 0.096 0.098 0.042
β5/2 5/2 0.131 0.899 0.925 0.078 0.040
β3/2 7/2 0.170 0.149 0.160 0.176 0.109
β5/2 7/2 −0.131 −0.088 −0.128 −0.037 −0.024
β7/2 7/2 0.957 0.098 0.148 0.065 0.050
β11/2 11/2 −0.075 −0.124 −0.074 −0.721 −0.976

×
√

5(1 + δjj ′ )
η2

n,2,2(j ′j )

ηn+2,0,0ηn,2,2
βj ′j , (C3)

〈n, 2, 2‖(c̃j × c̃j ′ )(L)‖n + 2, 2, 2〉
= (−1)L

(n

2

) (n

2
− 1

)
αjαj ′

ηn−2,2,2

ηn+2,2,2

〈n − 2 2 2‖(c̃j × c̃j ′ )(L)‖n 2 2〉
−
(n

2

) ηn,2,2

ηn+2,2,2
(αj + (−1)Lαj ′)

〈n 2 2‖(c†j × c̃j ′ )(L)‖n 2 2〉
−
(n

2

) ηn,2,2

ηn+2,2,2
ĵαj δjj ′δL0

√
5, (C4)

TABLE XVI. Pair structure coefficients αj

and βjj ′ in the N = 82–126 shell.

Neutrons (I) Neutrons (II)
(particles) (particles)

α1/2 −0.418 −0.315
α3/2 −0.572 −0.445
α5/2 −0.371 −0.315
α7/2 −2.188 −2.119
α9/2 −0.390 −0.716
α13/2 0.349 0.315
β1/2 3/2 −0.057 −0.039
β3/2 3/2 −0.050 −0.035
β1/2 5/2 −0.055 −0.040
β3/2 5/2 0.034 0.026
β5/2 5/2 −0.039 −0.030
β3/2 7/2 −0.209 −0.148
β5/2 7/2 −0.043 −0.034
β7/2 7/2 −0.964 −0.971
β5/2 9/2 −0.082 −0.091
β7/2 9/2 0.039 0.076
β9/2 9/2 −0.055 −0.110
β13/2 13/2 0.058 0.048
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TABLE XVII. Coefficients Aρ(j ), Bρ(j, j ′), Cρ(j, j ′), and Dρ(j, j ′) for N � 0, where N is the number of pairs
(bosons in the IBM) of protons (ρ = π ) or neutrons (ρ = ν). The letters p and h indicate particle or hole character.

π ν Restrictions Aρ(j )

p h N � 0
〈SN+1‖(c†

j
×c

†
j

)(0)‖SN 〉
〈sN+1‖s†‖sN 〉 = −〈2N 0 0‖(c̃j ×c̃j )(0)‖2N+2 0 0〉√

N+1

h p N � 1
〈SN−1‖(c̃j ×c̃j )(0)‖SN 〉

〈sN−1‖s̃‖sN 〉 = 〈2N−2 0 0‖(c̃j ×c̃j )(0)‖2N 0 0〉√
N

π ν Restrictions Bρ(j, j ′)

p h N � 0
〈DSN ‖(c†

j
×c

†
j ′ )(2)‖SN 〉

〈dsN ‖d†‖sN 〉 = (−1)j+j ′ 〈2N 0 0‖(c̃j ′ ×c̃j )(2)‖2N+2 2 2〉√
5

h p N � 1
〈SN−1‖(c̃j ×c̃j ′ )(2)‖DSN−1〉

〈sN−1‖d̃‖dsN−1〉 = 〈2N−2 0 0‖(c̃j ×c̃j ′ )(2)‖2N 2 2〉√
5

π ν Restrictions Cρ(j, j ′)

p h N � 1
〈SN+1‖(c†

j
×c

†
j ′ )(2)‖DSN−1〉

〈sN+1‖s†s† d̃‖dsN−1〉 =
(−1)j+j ′ 〈2N 2 2‖(c̃j ′ ×c̃j )(2)‖2N+2 0 0〉√

5N(N+1)

h p N � 2
〈DSN−2‖(c̃j ×c̃j ′ )(2)‖SN 〉

〈dsN−2‖s̃ s̃d†‖sN 〉 = 〈2N−2 2 2‖(c̃j ×c̃j ′ )(2)‖2N 0 0〉√
5N(N−1)

π ν Restrictions Dρ(j, j ′)

p h N � 1
〈DSN ‖(c†

j
×c

†
j ′ )(2)‖DSN−1〉

〈dsN ‖s†(d† d̃)(2)‖dsN−1〉 = (−1)j+j ′ 〈2N 2 2‖(c̃j ′ ×c̃j )(2)‖2N+2 2 2〉√
5N

h p N � 2
〈DSN−2‖(c̃j ×c̃j ′ )(2)‖DSN−1〉

〈dsN−2‖s̃(d† d̃)(2)‖dsN−1〉 = 〈2N−2 2 2‖(c̃j ×c̃j ′ )(2)‖2N 2 2〉√
5(N−1)

where

η2
n,0,0

=
(n

2
!
)2 ∑

m1 ...mk∑
i mi=n/2

{
k∏

i=1

α
2mi

ji

(
�ji

mi

)}
, (C5)

η2
n,2,2

=
∑
j � j ′

β2
jj ′η

2
n,2,2(jj ′), (C6)

η2
n,2,2(jj ′)

=
n
2 −1∑
p=0

[(
n
2 − 1

)
!

p!

]2

(−1)
n
2 −1−pη2

2p,0,0

×
n
2 −1−p∑
q=0

α
n−2−2p−2q

j α
2q

j ′ (C7)

〈n, 2, 2‖(c†j × c̃j ′ )(L)‖n, 2, 2〉

= −5L̂
∑

i

βijβj ′i
√

(1 + δij )(1 + δij ′)

{
j L j ′

2 i 2

}

×αjαj ′
(

n
2 − 1

)2
η2

n−2,2,2(ij ) − (−1)Lη2
n,2,2(ij )

η2
n,2,2

− η2
n−2,2,2

η2
n,2,2

(n

2
− 1

)2
α2

j ′[
√

5ĵ δjj ′δL0

+〈n − 2 2 2‖(c†j × c̃j ′ )(L)‖n − 2 2 2〉]. (C8)

The recurrence relations (C4) and (C8) are of the form

f (n) = anf (n − 2) + bn, (C9)

which can be solved to give the general expression

f (n) =
n
2∑

p=1

⎛
⎝ n

2∏
k=p+1

a2k

⎞
⎠ b2p, (C10)

because in both cases f (0) = 0 and f (2) = b2.
We have checked these expressions for the case of a single-j

shell, in which αj = βjj = 1, and

η2
n,0,0 =

[(n

2

)
!
]2
(

�j

n/2

)
, (C11)

η2
n,2,2 = η2

n 2 2(jj ) =
[(n

2
− 1

)
!
]2
(

�j − 2

n/2 − 1

)
, (C12)

and obtained

〈n, 0, 0‖(c̃j × c̃j )(0)‖n + 2, 0, 0〉

= −
√

(n + 2)(2�j − n)

2�j

, (C13)

〈n, 0, 0‖(c̃j × c̃j )(2)‖n + 2, 2, 2〉

= −
√

5(2�j − n − 2)(2�j − n)

2�j (�j − 1)
, (C14)
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TABLE XVIII. Hamiltonian parameters employed in the IBM-2 calculations of the initial and final wave functions along with their
references.

Nucleus Ref. εdν
εdπ

κ χν χπ ξ1 ξ2 ξ3 c(0)
ν c(2)

ν c(4)
ν c(0)

π c(2)
π

76Ge [27] 1.20 1.20 −0.21 1.000 −1.200 −0.05 0.10 −0.05
76Se [28] 0.96 0.96 −0.16 0.500 −0.900 −0.10
82Se [28] 1.00 1.00 −0.28 1.140 −0.900 −0.10
82Kr [29] 1.15 1.15 −0.19 0.925 −1.127 −0.10 −0.10
100Mo [30] 0.55 1.00 −0.06 −1.200 0.400 −0.10 0.10 −0.10 −0.6 0.20 0.100
100Ru [31] 0.89 0.89 −0.18 −1.000 0.400 0.6 0.09 −0.125
128Te [32] 0.93 0.93 −0.17 0.500 −1.200 −0.18 0.24 −0.18 0.3 0.22
128Xe [32] 0.70 0.70 −0.17 0.330 −0.800 −0.18 0.24 −0.18 0.3
130Te [32] 1.05 1.05 −0.20 0.900 −1.200 −0.18 0.24 −0.18 0.3 0.22
130Xe [32] 0.76 0.76 −0.19 0.500 −0.800 −0.18 0.24 −0.18 0.3 0.22
150Nd [33] 0.47 0.47 −0.07 −1.000 −1.200 −0.12 0.24 0.90 0.4 0.20
150Sm [33] 0.70 0.70 −0.08 −0.800 −1.300 −0.12 0.24 0.90 0.05
154Sm [33] 0.43 0.43 −0.081 −1.100 −1.300 −0.12 0.24 0.90 0.05
154Gd [33] 0.55 0.55 −0.080 −1.000 −1.000 −0.12 0.24 0.90 −0.2 −0.1

〈n, 2, 2‖(c̃j × c̃j )(2)‖n + 2, 0, 0〉

=
√

5n(n + 2)

2�j (�j − 1)
, (C15)

〈n, 2, 2‖(c̃j × c̃j )(2)‖n + 2, 2, 2〉

= − 10(�j + 2)√
7j (j + 1)

√
n(2�j − n − 2)

�j (�j − 1)(�j + 1)
, (C16)

〈n, 2, 2‖(c†j × c̃j )(2)‖n, 2, 2〉

= 10√
7j (j + 1)

(�j − n)(�j + 2)√
�j (�j − 1)(�j + 1)

, (C17)

which coincide with the expressions which can be deduced
from [16].

APPENDIX D: COEFFICIENTS OF THE BOSON MAPPING

We give in Table XVII the coefficients Aρ(j ), Bρ(j, j ′),
Cρ(j, j ′),Dρ(j, j ′) of the boson mapping (ρ = π, ν) in terms

of the generalized seniority matrix elements of the type

〈n, v, J‖(c̃j × c̃j ′ )(I )‖n + 2, v′, J ′〉, (D1)

where n is the total number of identical nucleons, v and v′
are the generalized seniorities, and J and J ′ the total angular
momenta of the final and initial states, respectively. N in this
table is the number of pairs (bosons) in the IBM.

APPENDIX E: PARAMETERS OF THE IBM-2
HAMILTONIAN

To obtain matrix elements of the transition operators in
double β decay we use realistic IBM-2 wave functions taken
from the literature that have been shown to provide an accurate
description of many properties (energies, electromagnetic
transition rates, quadrupole and magnetic moments, etc.) of
the final and initial nuclei. A detailed description of the IBM-2
Hamiltonian is given in Refs. [17,34]. The values of the
Hamiltonian parameters, as well as the references from which
they were taken, are given in Table XVIII.
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