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Exact three-dimensional wave function and the on-shell t matrix for the sharply cut-off
Coulomb potential: Failure of the standard renormalization factor
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The three-dimensional wave function for a sharply cut-off Coulomb potential is analytically derived. The
asymptotic form of the related scattering amplitude reveals a failure of the standard renormalization factor which
is believed to be generally valid for any type of screening.
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I. INTRODUCTION

The long range behavior of the Coulomb force causes
technical problems in the scattering for more than two
particles. For instance the three-body Faddeev kernel develops
singularities, which deny a direct numerical approach. A way
out has been searched for in the past by starting with a screened
Coulomb potential, which for instance in the context of the
three-body problem leads to a screened two-body Coulomb
t-matrix. In the limit of an infinite screening radius it is claimed
in the literature [1–3] that the on-shell two-body t-matrix
approaches the physical one except for an infinitely oscillating
phase factor, known analytically. Thus removing that factor,
called renormalization, the physical result can be obtained.

As a basis for that approach the works by Gorshkov [4,5],
Ford [6,7], and Taylor [1,2] are most often quoted. Gorshkov
[4,5] regards potential scattering on a Yukawa potential in the
limit of the screening radius going to infinity. He works directly
in three dimensions avoiding a partial wave decomposition. He
sums up the perturbation series to infinite order. As a result
he finds the limit for the wave function of a Yukawa potential
for an infinite screening radius. That limit function equals the
standard Coulomb wave function multiplied by an infinitely
oscillating phase factor. Contrary to what is quoted in Chen [8]
he has not achieved the wave function for a Yukawa potential
at an arbitrary screening radius but only its limiting form.

The work by Ford [6,7] relies on a partial wave decompo-
sition. This leads to a very difficult technical task to handle
the situation when the orbital angular momentum l is about
pR, where p is the asymptotic wave number and R the
screening radius. This task is left unsolved and the infinite
sum in l is carried out without controlling the l-dependence
of certain correction terms depending on R. In other words
the correction terms for a given l are assumed to remain valid
also for three-dimensional objects. This leaves at least doubts
about the rigorousness of that approach. The same is true for
the investigations of Taylor [1,2], where again a partial wave
decomposition is the basis and the infinite sum over l is carried
through without control of its validity for the correction terms.

In such a situation we felt that a rigorous analytical approach
for a sharply cut-off Coulomb potential carried through
directly in three dimensions is in order. This paper delivers
an analytical solution for an arbitrary cut-off radius. Further
we also provide an exact expression for the corresponding

scattering amplitude (equivalent to the on-shell t-matrix). The
paper is organized as follows. In Sec. II the wave function is
derived. In Sec. III the scattering amplitude and its limit for
vanishing screening is given. These purely analytical results
are confirmed by numerical studies presented in Sec. IV. In
the Appendix we regard the much simpler case for s-wave
scattering. We summarize in Sec. V.

II. THE WAVE FUNCTION FOR A SHARPLY CUT-OFF
COULOMB POTENTIAL

Let us regard two equally charged particles with mass m.
Then the two-body Schrödinger equation reads(

−∇2 − p2 + me2

r

)
�(+)(�r) = 0. (1)

It is well known that in parabolic coordinates

u = r − z, (2)

v = r + z, (3)

φ = tan−1 y

x
, (4)

the partial differential equation factorizes and yields the
solution

�(+)(�r) = const ei �p·�r
1F1(−iη, 1, i(pr − �p · �r)) (5)

with Somerfeld parameter η = me2

2p
.

Now we switch to a sharply screened Coulomb potential

V (r) = �(R − r)
e2

r
(6)

and rewrite Eq. (1) into the form of the Lippmann-Schwinger
equation

�
(+)
R (�r) = 1

(2π )3/2 ei �p·�r − m

4π

∫
d3r ′ e

ip|�r−�r ′ |

|�r − �r ′|

×�(R − r ′)
e2

r ′ �
(+)
R (�r ′). (7)

This defines uniquely the wave function �
(+)
R (�r) for a given

cut-off radius R. Acting on Eq. (7) with (−∇2 − p2) and using
the well-known property of the free Greens function in the
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integral kernel one obtains the Schrödinger equation

(−∇2 − p2)�(+)
R (�r) = −m�(R − r)

e2

r
�

(+)
R (�r). (8)

Thus for r < R one has to have

�
(+)
R (�r) = Aei �p·�r

1F1(−iη, 1, i(pr − �p · �r)) (9)

with some to be determined constant A. The idea is, there-
fore, to insert that knowledge into the Lippmann-Schwinger
equation (7) leading to

�
(+)
R (�r) = 1

(2π )3/2 ei �p·�r − m

4π

∫
d3r ′ e

ip|�r−�r ′|

|�r − �r ′|

×�(R − r ′)
e2

r ′ Aei �p·�r ′
1F1(−iη, 1, i(pr ′ − �p · �r ′)).

(10)

If we choose r < R then also the left hand side is known and
one obtains the following identity:

Aei �p·�r
1F1(−iη, 1, i(pr − �p · �r))

= 1

(2π )3/2 ei �p·�r − m

4π

∫
d3r ′ e

ip|�r−�r ′ |

|�r − �r ′|

×�(R − r ′)
e2

r ′ Aei �p·�r ′
1F1(−iη, 1, i(pr ′ − �p · �r ′)). (11)

This provides the factor A. If A is known one can determine
the scattering amplitude fR defined for r → ∞ by

�
(+)
R (�r) → 1

(2π )3/2 ei �p·�r + eipr

r
A

(
− m

4π

) ∫
d3r ′e−ipr̂·�r ′

×�(R − r ′)
e2

r ′ e
i �p·�r ′

1F1(−iη, 1, i(pr ′ − �p · �r ′))

≡ 1

(2π )3/2 ei �p·�r + eipr

r
fR. (12)

It is not difficult using properties of the confluent hyperge-
ometric function to show that the corresponding LS equation,
for instance for an s-wave, is identically fulfilled as it should
be. Doing that one can read off the corresponding analytical
expression for A. That calculation is deferred to the Appendix.

The three-dimensional case is much harder. Let us choose
p̂ = ẑ and work with the parabolic coordinates. Then Eq. (11)
turns into

Aei
p

2 (v−u)
1F1(−iη, 1, ipu)

= 1

(2π )3/2 ei
p

2 (v−u) + A
e2

2

∫ 2R

0
du′e−i

p

2 u′
1F1(−iη, 1, ipu′)

×
∫ 2R−u′

0
dv′ei

p

2 v′ (− m

4π

) ∫ 2π

0
dφ′ e

ip|�r−�r ′ |

|�r − �r ′| . (13)

Since we want to determine just one factor A one value of u

and v is sufficient and we choose the simplest case u = v = 0.
Then the φ′ integration is trivial and one obtains

A = 1

(2π )3/2 − A
e2m

2

∫ 2R

0
du′

1F1(−iη, 1, ipu′)

×
∫ 2R−u′

0
dv′eipv′ 1

u′ + v′ , (14)

where we used 1F1(−iη, 1, 0) = 1. Substituting u′ =
2Rx, v′ = 2Ry and defining A ≡ Ã 1

(2π)3/2 one obtains

Ã = 1 − ÃηT

∫ 1

0
dx1F1(−iη, 1, iT x)

∫ 1−x

0
dyeiTy 1

x + y

(15)

with T ≡ 2pR.
Introducing z ≡ iT let us define

F̃ (z) = 1 + ηz

i

∫ 1

0
dx1F1(−iη, 1, zx)

∫ 1−x

0
dyezy 1

x + y
.

(16)

Substituting zx = τ, zy = τ ′ we get

F̃ (z) = 1 − iη

∫ z

0
dτ 1F1(−iη, 1, τ )

∫ z−τ

0
dτ ′eτ ′ 1

τ + τ ′ .

(17)

Then it follows that

dF̃ (z)

dz
= − iη

z
ez

∫ z

0
dτ 1F1(−iη, 1, τ )e−τ , (18)

d2F̃ (z)

dz2
= iη

z2
ez

∫ z

0
dτ 1F1(−iη, 1, τ )e−τ

− iη

z
ez

∫ z

0
dτ 1F1(−iη, 1, τ )e−τ

− iη

z
ez

∫ z

0
dτ 1F1(−iη, 1, τ )e−z

= −1

z

dF̃ (z)

dz
+ dF̃ (z)

dz
− iη

z
1F1(−iη, 1, z).

(19)

Consequently

z
d2F̃ (z)

dz2
+ (1 − z)

dF̃ (z)

dz
= −iη1F1(−iη, 1, z). (20)

We add iηF̃ (z) on both sides

z
d2F̃ (z)

dz2
+ (1 − z)

dF̃ (z)

dz
+ iηF̃ (z)

= iη(F̃ (z) − 1F1(−iη, 1, z)). (21)

The left side put to zero is the defining differential equation
for 1F1(−iη, 1, z). Thus Eq. (21) is fulfilled for

F̃ (z) = 1F1(−iη, 1, z) (22)

which also fixes the normalization.
A rather lengthy sequence of analytical steps (not given)

using an integral representation, recurrence relations, and
further properties of the confluent hypergeometric function
yields the same result.

Thus we obtain based on Eq. (15)

Ã = 1 − Ã(1F1(−iη, 1, iT ) − 1). (23)

The cancellation of Ã on the left against Ã on the right is a
verification that the LS equation (14) at r = 0 is fulfilled, as it
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should and we end up with the exact relation

Ã = 1

1F1(−iη, 1, iT )
. (24)

This is valid for any T = 2pR and therefore

�
(+)
R (�r) = 1

(2π )3/2

1

1F1(−iη, 1, iT )

× ei �p·�r
1F1(−iη, 1, i(pr − �p · �r)) (25)

is exactly fulfilled for r <R, inside the range of the potential.
To the best of our knowledge this is the first time that this has
been achieved.

At the same time it provides, due to Eq. (12), the exact
expression for the scattering amplitude fR or the on-shell t-
matrix element for a sharply cut-off Coulomb potential. This
will be dealt with in the next section.

III. THE SCATTERING AMPLITUDE

The starting point due to Eq. (12) with f̃R = 1
(2π)3/2 fR is

f̃R = Ã
(
− m

4π

) ∫ R

d3r ′e−ipr̂·�r ′ e2

r ′ e
i �p·�r ′

×F (−iη, 1, (pr ′ − �p · �r ′)). (26)

We use the general integral representation of F (α, β, z)

1F1(α, β, z) = C(α, β)
∫

	

dtezt tα−1(1 − t)β−α−1, (27)

where the path 	 encircles the logarithmic cut between t = 0
and t = 1 in the positive sense and the prefactor is

C(α, β) = 	(β)

	(α)	(β − α)

1

1 − e2πi(β−α)
. (28)

Inserting Eq. (27) into Eq. (26) yields

f̃R = Ã

(
−me2

4π

)
C(−iη, 1)

∫
	

dt

(
1 − t

t

)iη 1

t

×
∫ R

d3r ′e−ipr̂·�r ′ 1

r ′ e
i �p·�r ′

ei(pr ′− �p·�r ′)t . (29)

The �r ′ integral is straightforward and one obtains

f̃R = Ã

(
− me2

2p2α

)
C(−iη, 1)

∫
	

dt

(
1 − t

t

)iη 1

t(1 − t)(
1 + eiR̃t

(
it

sin R̃
√

t2 + 2(1 − t)α√
t2 + 2(1 − t)α

− cos R̃
√

t2 + 2(1 − t)α

))
, (30)

where α contains the dependence on the scattering angle θ

α = 1 − p̂ · r̂ = 2 sin2 θ

2
, (31)

0 1 Re(t)

Im(t)

ε ε

FIG. 1. The path of integration 	 in Eq. (33).

C(−iη, 1) = −i
2π

eπη , and R̃ ≡ pR. The “1” in the bracket does
not contribute since∫

	

dt

(
1 − t

t

)iη 1

t(1 − t)
= 0. (32)

Thus we obtain the intermediate result

f̃R = −Ã
η

αp
C(−iη, 1)

[
i

∫
	

dt

(
1 − t

t

)iη 1

1 − t
eiR̃t

× sin R̃
√

t2 + 2(1 − t)α√
t2 + 2(1 − t)α

−
∫

	

dt

(
1 − t

t

)iη

× 1

t(1 − t)
eiR̃t cos R̃

√
t2 + 2(1 − t)α

]
. (33)

In the following we choose the path of integration 	 as
depicted in Fig. 1 with small circles around t = 1 and t = 0
of vanishingly small radius ε and two straight integration lines
between t = ε and t = 1 − ε above and below the logarithmic
cut. The phases are arg(t) = 0 and arg(1 − t) = π for t =
1 + ε. The rest follows by continuity: arg(1 − t) = 2π along
the upper rim of the cut, arg(t) = 2π along the lower rim, and
arg(1 − t) = 3π back again at t = 1 + ε. The phase of 1−t

t

does not change after a full sweep of 	, of course.
In this manner the integrals in Eq. (33) can be split into four

pieces. Let us define

B ≡
∫

	

dt

(
1 − t

t

)iη 1

1 − t
eiR̃t

(
i
sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

− cos R̃
√

t2 + 2(1 − t)α

t

)
. (34)

Then

B =
∫

zero
+

∫ 1−ε

ε

+
∫

one
+

∫ ε

1−ε

. (35)

It simply follows that

∫ ε

1−ε

dt +
∫ 1−ε

ε

dt = (1 − e−2πη)
∫ 1−ε

ε

dt

(
1 − t

t

)iη

× 1

1 − t
eiR̃t

(
i
sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

− cos R̃
√

t2 + 2(1 − t)α

t

)
. (36)

044003-3
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In order to remove the pole singularities at t = 0 and t = 1
we split the integration interval into two parts

∫ 1−ε

ε

dt =
∫ 1/2

ε

dt +
∫ 1−ε

1/2
dt. (37)

Of course the value 1/2 could be replaced by any number a

between t = ε and t = 1 − ε without changing the result.
Thus

∫ 1−ε

ε

dt

= i

∫ 1/2

ε

dt(1 − t)iη−1t−iηeiR̃t sin R̃
√

t2 + 2(1 − t)α√
t2 + 2(1 − t)α

+ i

∫ 1−ε

1/2
dt(1 − t)iη−1t−iηeiR̃t sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

−
∫ 1/2

ε

dtt−iη−1(1 − t)iη−1eiR̃t cos R̃
√

t2 + 2(1 − t)α

−
∫ 1−ε

1/2
dt(1 − t)iη−1t−iη−1eiR̃t cos R̃

√
t2 + 2(1 − t)α.

(38)

Now we perform partial integrations such that ε → 0 can
be taken:

∫ 1−ε

ε

dt

= i

∫ 1/2

0
dt(1 − t)iη−1t−iηeiR̃t sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

+ i

[
−1

iη
(1 − t)iηt−iηeiR̃t sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

∣∣∣∣∣
1−ε

1/2

+ 1

iη

∫ 1−ε

1/2
dt(1 − t)iη

× d

dt

(
t−iηeiR̃t sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

)]

−
[

1

−iη
t−iη(1 − t)iη−1eiR̃t cos R̃

√
t2 + 2(1 − t)α|1/2

ε

+ 1

iη

∫ 1/2

0
dtt−iη d

dt
((1 − t)iη−1eiR̃t

× cos R̃
√

t2 + 2(1 − t)α)

]
−

[
1

−iη
(1 − t)iηt−iη−1eiR̃t

× cos R̃
√

t2 + 2(1 − t)α|1−ε
1/2

+ 1

iη

∫ 1

1/2
dt(1 − t)iη

d

dt
(t−iη−1eiR̃t

× cos R̃
√

t2 + 2(1 − t)α)

]
. (39)

After some lengthy algebra one obtains

∫ 1−ε

ε

dt = 1

iη
εiη − 1

iη
ε−iη cos R̃

√
2α

+ 1

η
ei R̃

2
sin R̃

√
1/4 + α√

1/4 + α

+ i

∫ 1/2

0
dt(1 − t)iη−1t−iηeiR̃t sin R̃γ

γ

+ iη − 1

iη

∫ 1/2

0
dtt−iη(1 − t)iη−2eiR̃t cos R̃γ

− 1

η

∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t sin R̃γ

γ 3
(t − α) − i

×
∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t sin R̃γ

γ

+ iη + 1

iη

∫ 1

1/2
dt(1 − t)iηt−iη−2eiR̃t cos R̃γ

+ R̃

η

[
−

∫ 1/2

0
dtt−iη(1 − t)iη−1eiR̃t cos R̃γ

+ 1

i

∫ 1/2

0
dtt−iη(1 − t)iη−1eiR̃t sin R̃γ

t − α

γ

+ i

∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t sin R̃γ

γ

+
∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t cos R̃γ

γ

t − α

γ

−
∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t cos R̃γ

+ 1

i

∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t sin R̃γ

t − α

γ

]
(40)

with γ =
√

t2 + 2(1 − t)α.
It is straightforward to evaluate the two integrals around

t = 0 and t = 1:

∫
zero

dt

(
1 − t

t

)iη 1

1 − t
eiR̃t

(
i
sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

− cos R̃
√

t2 + 2(1 − t)α

t

)

= −i cos R̃
√

2αε−iη 1

η
(1 − e−2πη), (41)
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∫
one

dt

(
1 − t

t

)iη 1

1 − t
eiR̃t

(
i
sin R̃

√
t2 + 2(1 − t)α√

t2 + 2(1 − t)α

− cos R̃
√

t2 + 2(1 − t)α

t

)

= i

η
εiη(1 − e−2πη). (42)

The ε-dependent terms cancel in Eq. (40) [multiplied by (1 −
e−2πη)], Eqs. (41) and (42) as they should and one obtains the
finite result

B = (1 − e−2πη)

[
1

η
ei R̃

2
sin R̃

√
1/4 + α√

1/4 + α

+ i

∫ 1/2

0
dt(1 − t)iη−1t−iηeiR̃t sin R̃γ

γ

+ iη − 1

iη

∫ 1/2

0
dtt−iη(1 − t)iη−2eiR̃t cos R̃γ

− 1

η

∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t sin R̃γ

γ 3
(t − α)

− i

∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t sin R̃γ

γ

+ iη + 1

iη

∫ 1

1/2
dt(1 − t)iηt−iη−2eiR̃t cos R̃γ

+ R̃

η

[
−

∫ 1/2

0
dtt−iη(1 − t)iη−1eiR̃t cos R̃γ

+ 1

i

∫ 1/2

0
dtt−iη(1 − t)iη−1eiR̃t sin R̃γ

t − α

γ

+ i

∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t sin R̃γ

γ

+
∫ 1

1/2
dt(1 − t)iηt−iηeiR̃t cos R̃γ

γ

t − α

γ

−
∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t cos R̃γ

+ 1

i

∫ 1

1/2
dt(1 − t)iηt−iη−1eiR̃t sin R̃γ

t − α

γ

]]
.

(43)

This together with Eqs. (33)–(36) is an exact expression for
the scattering amplitude for an arbitrary cut-off radius R.

But of course we are interested only in its asymptotic limit
R → ∞.

It is advisable to introduce e± = eiR̃(t±γ ) and to rearrange
Eq. (43). We regard first the pieces explicitly proportional to
R̃ in Eq. (43):

R̃

2η

[
−

∫ 1/2

0
dt

(
1 − t

t

)iη 1

1 − t
(e+ + e−)

−
∫ 1/2

0
dt

(
1 − t

t

)iη 1

1 − t
(e+ − e−)

t − α

γ

+
∫ 1

1/2
dt

(
1 − t

t

)iη
e+ − e−

γ

+
∫ 1

1/2
dt

(
1 − t

t

)iη
e+ + e−

γ

t − α

γ

−
∫ 1

1/2
dt

(
1 − t

t

)iη 1

t
(e+ + e−)

−
∫ 1

1/2
dt

(
1 − t

t

)iη 1

t
(e+ − e−)

t − α

γ

]
. (44)

Leading terms will arise from the boundaries of integration
t = 0, t = 1/2, and t = 1, where the t = 1/2 contributions
have to cancel in the total expression. We use the standard
method of steepest descent [9] and expand around boundaries
of integration. For example at t = 0

e± = e±iR̃
√

2αeiR̃t(1∓
√

α
2 )(1 + O(t)) (45)

and corresponding expressions for the remaining parts of the
integrand. One obtains

R̃

2η

[
−

∫
0
dt

(
1 − t

t

)iη 1

1 − t
(e+ + e−)

−
∫

0
dt

(
1 − t

t

)iη 1

1 − t
(e+ − e−)

t − α

γ

]

→ −i

2η
e

π
2 η	(1 − iη)R̃iη

(
e2iR̃ sin θ

2

(
1 − sin

θ

2

)iη

+ e−2iR̃ sin θ
2

(
1 + sin

θ

2

)iη
)

. (46)

Correspondingly we proceed at the upper limit of integration
t = 1 and it turns out that the e+ part decreases as O( 1

R̃
) and

only the e− part survives as

R̃

2η

[ ∫ 1

dt

(
1 − t

t

)iη
e+ − e−

γ

+
∫ 1

dt

(
1 − t

t

)iη
e+ + e−

γ

t − α

γ

−
∫ 1

dt

(
1 − t

t

)iη 1

t
(e+ + e−)

−
∫ 1

dt

(
1 − t

t

)iη 1

t
(e+ − e−)

t − α

γ

]

→ i

η
(2R̃)−iη

(
sin2 θ

2

)−iη

e
π
2 η	(1 + iη). (47)

The remaining pieces resulting from the integration limits t =
1/2 yield

R̃

2η

[
−

∫ 1/2

dtt−iη(1 − t)iη−1(e+ + e−)

−
∫ 1/2

dtt−iη(1 − t)iη−1(e+ − e−)
t − α

γ

+
∫

1/2
dt(1 − t)iηt−iη e+ − e−

γ
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+
∫

1/2
dt(1 − t)iηt−iη e+ + e−

γ

t − α

γ

−
∫

1/2
dt(1 − t)iηt−iη−1eiR̃t (e+ + e−)

−
∫

1/2
dt(1 − t)iηt−iη−1(e+ − e−)

t − α

γ

]

→ −1

η

1√
1/4 + α

ei R̃
2 sin R̃

√
1/4 + α. (48)

This cancels exactly against the first term in Eq. (43) after
multiplication by (1 − e−2πη), as it should.

The terms in Eq. (43) not directly proportional to R̃ decrease
like O( 1

R̃
). Finally the contributions from the interior of the

integration intervals decay faster as can be seen by deforming
the path of integration into the upper half plane, where e± is
exponentially damped.

Thus we are left with the leading asymptotic expression

B → (1 − e−2πη)
i

2η
e

π
2 η

(
− 	(1 − iη)R̃iη

(
e2iR̃ sin θ

2

×
(

1 − sin
θ

2

)iη

+ e−2iR̃ sin θ
2

(
1 + sin

θ

2

)iη
)

+ 2(2R̃)−iη

(
sin2 θ

2

)−iη

	(1 + iη)

)
. (49)

This is now to be combined with Eq. (33). Using Eq. (28),

	(1 + iη)

	(1 − iη)
≡ e2iσ0 (50)

and the asymptotic form of Ã

Ã → e− π
2 ηT −iη	(1 + iη) (51)

based on the asymptotic form [10]

1F1(α, β, z) → e±iπαz−α

	(β − α)
+ ezzα−β

	(α)
+ O

(
1

|z|
)

, (52)

we get

f̃R = −(2R̃)−2iηe2iσ0
η

2p

(
sin2 θ

2

)−iη

sin2 θ
2

+ η

2αp

⎛
⎝e2iR̃ sin θ

2

(
(1 − sin θ

2 )

2

)iη

+ e−2iR̃ sin θ
2

(
(1 + sin θ

2 )

2

)iη
⎞
⎠ . (53)

Now the physical Coulomb scattering amplitude is

Ac(θ ) = − η

2p

(
sin2 θ

2

)−iη

sin2 θ
2

e2iσ0 (54)

and we end up with

f̃R = (2R̃)−2iηAc(θ ) + η

4p sin2 θ
2

⎛
⎝e2iR̃ sin θ

2

(
(1 − sin θ

2 )

2

)iη

+ e−2iR̃ sin θ
2

(
(1 + sin θ

2 )

2

)iη
⎞
⎠

=
[
e−2iη ln(2R̃) − 1

2
eiη ln sin2 θ

2 −2iσ0

(
e2iR̃ sin θ

2 +iη ln
1−sin θ

2
2

+ e−2iR̃ sin θ
2 +iη ln

1+sin θ
2

2

) ]
Ac(θ ). (55)

The first term is the result expected from the literature [1,3]
and references therein. As [11] has shown, the diverging phase
factor e−2i�R (p) in case of an often used form of screening the
Coulomb potential

VR(r) = e2

r
e−( r

R
)n (56)

using the prescription of [1] turns out to be

�R(p) = η[ln(2pR) − C/n] (57)

with the Euler number C. For n → ∞ one recovers the
sharp cutoff, which we consider in this paper. This expec-
tation for the screening limit agrees with the first term in
Eq. (55) but not with the necessity of adding a second term.
Therefore the derivations in the literature based on partial wave
decomposition must be incomplete. Whether this is also true
for a finite value n in Eq. (56) remains to be seen.

IV. NUMERICAL RESULTS

We performed a number of numerical tests to check the
basic points in the derivation of the sharp cut-off Coulomb
wave function (25) and the asymptotic scattering amplitude
(55).

First we checked numerically how well the solution (24)
fulfills Eq. (15). In Table I the left and right sides of Eq. (15)
are shown for a number of cut-off radii R for pp scattering
with Elab

p = 13 MeV. The right side was obtained by a direct
two-dimensional numerical integration over x and y. A very
good agreement up to four significant digits is seen.

We also compared at the same energy the exact expression
for Ã as given in Eq. (24) with its asymptotic form (51) at a
number of screening radii. The results are shown in Fig. 2 and
Table II. The oscillating behavior seen in real and imaginary
parts of exact Ã (solid lines in Fig. 2) gradually diminishes with
increasing cut-off radius R. These oscillations are absent in the
asymptotic form for Ã (dashed lines in Fig. 2). The asymptotic
form for Ã approaches its exact value at R ≈ 50 fm as can be
seen in Fig. 2 and in the third column of Table II where the
ratio of Ã/Ãapprox is given.

To check the quality of our renormalization factor (55) we
applied it directly to the numerical solutions of the Lippmann-
Schwinger equation for the sharp cut-off Coulomb potential
with different cut-off radii.

In the case of a short-ranged potential V two-body scatter-
ing is described by the solution of the Lippmann-Schwinger
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TABLE I. The left and right sides of Eq. (15) at Elab
p = 13 MeV (η = 0.0439, p =

0.3959 fm−1) and different screening radii R.

R [fm] Ã 1 − ÃηT
∫ 1

0 dx1F1(−iη, 1, iT x)
∫ 1−x

0 dyeiTy 1
x+y

0.5 (0.98301, −0.00166) (0.98301, −0.00166)
1 (0.96724, −0.00634) (0.96724, −0.00634)
5 (0.91933, −0.08246) (0.91933, −0.08246)
10 (0.92770, −0.10294) (0.92770, −0.10294)
20 (0.91961, −0.13491) (0.91961, −0.13491)
50 (0.91606, −0.17185) (0.91606, −0.17185)
100 (0.90960, −0.20061) (0.90960, −0.20061)
500 (0.89376, −0.26439) (0.89377, −0.26439)
1000 (0.88528, −0.29140) (0.88528, −0.29140)
5000 (0.86250, −0.35307) (0.86252, −0.35307)

equation

T (z) = V + V
1

z − H0
T (z), (58)

where V is the two-body potential, H0 is the free Hamiltonian,
and T (z) the transition operator. In momentum space Eq. (58)
takes the form of an integral equation for the matrix ele-
ments of the transition operator 〈�q ′ | T (z) | �q〉 ≡ T (�q ′, �q ). In
this equation matrix elements of the potential V are used
〈�q ′ | V | �q〉 ≡ V (�q ′, �q ). In our case both V (�q ′, �q ) and
T (�q ′, �q ) depend only on the magnitudes q ′ ≡| �q ′ |, q ≡| �q |
and the cosine of the angle between �q and �q ′, q̂ ′ · q̂:

V (�q ′, �q) = V (q ′, q, q̂ ′ · q̂), (59)

T (�q ′, �q) = T (q ′, q, q̂ ′ · q̂). (60)

(Note we dropped the dependence on the parameter z.) As a
consequence the Lippmann-Schwinger equation can be written
as a two-dimensional integral equation [12]

T (q ′, q, x ′) = 1

2π
v(q ′, q, x ′, 1)

+
∫ ∞

0
dq ′′q ′′2

∫ 1

−1
dx ′′v(q ′, q ′′, x ′, x ′′)

× 1

z − q ′′2
m

T (q ′′, q, x ′′), (61)

where

v(q ′, q, x ′, x)

=
∫ 2π

0
dϕV (q ′, q, x ′x +

√
1 − x ′2

√
1 − x2 cos ϕ)

(62)

and m is the reduced mass of the system.
For the sharply screened Coulomb potential of the range R

considered in this paper

V (q ′, q, x) = e2

2π2

1 − cos(QR)

Q2
, (63)

where Q ≡
√

q ′2 + q2 − 2q ′qx. However, the integral over ϕ

in Eq. (62) cannot be carried out analytically.
It is clear that V (q ′, q, x) shows a highly oscillatory

behavior, especially for large R. Thus solving the two-
dimensional equation (61) is a difficult numerical problem.
We were interested in solutions for positive energies where

z = Ec.m. + iε ≡ q2
0

m
+ iε. (64)

We solved Eq. (61) by generating the corresponding Neumann
series and summing it up by Pade which is a very reliable and
accurate method. Usually six iterations were fully sufficient. In

TABLE II. The exact value of Ã as in Eq. (24) (left column), asymptotic form given by
Eq. (51) (middle column), and their ratio (right column) at Elab

p = 13 MeV for different screening
radii R.

R [fm] Ã Ãapprox Ã/Ãapprox

0.1 (0.99653, −0.00007) (0.92852, 0.07999) (1.06534, −0.09185)
1.0 (0.96724, −0.00634) (0.93186, −0.01402) (1.03784, 0.00881)
2.0 (0.94156, −0.02249) (0.93100, −0.04233) (1.01035, 0.02178)
3.0 (0.92536, −0.04353) (0.93010, −0.05888) (0.99389, 0.01611)
5.0 (0.91933, −0.08246) (0.92855, −0.07970) (0.99040, −0.00380)

10.0 (0.92770, −0.10294) (0.92570, −0.10788) (1.00152, 0.00551)
20.0 (0.91961, −0.13491) (0.92199, −0.13596) (0.99731, 0.00074)
50.0 (0.91606, −0.17185) (0.91578, −0.17289) (1.00009 0.00115)

100.0 (0.90960, −0.20061) (0.91011, −0.20064) (0.99946, −0.00008)
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FIG. 2. (Color online) The real (top) and imaginary (bottom) part
of Ã as a function of the screening radius R at Elab

p = 13 MeV. The
solid (black) line represents the exact expression given in Eq. (24)
and the dashed (red) line shows the asymptotic form as given in
Eq. (51).

each iteration the Cauchy singularity was split into a principal-
value integral (treated by subtraction) and a δ-function piece.
We used 120 or 140 q-points and 150 or 190 x-points. The q-
integral points are chosen in the definite interval (0, q̄), where
typically q̄ = 50 fm−1. In order to obtain directly the on-shell
t-matrix element T (q0, q0, x, Ec.m.) we added q = q0 to the
set of q-points. To better control the behavior of the transition
matrix element for small scattering angles also x = 1 was
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FIG. 3. (Color online) The real (top) and imaginary (bottom) part
of AC(θ ) ≡ −2π 2mT (q0, q0, cos θ ) as a function of cos θ for R =
10 fm (left panel) and 20 fm (right panel) at Elab

p = 13 MeV. The
dash-dotted line represents a direct numerical prediction (without any
renormalization). The dotted line shows AC(θ ) with inclusion of the
asymptotic renormalization factor given in Eq. (55) and the dashed
(red) line is for AC(θ ) with inclusion of the exact renormalization
factor obtained from Eqs. (33), (34), and (43) (see text). The solid
line represents the pure Coulomb amplitude given in Eq. (54). Note
that the dashed, dotted, and solid lines practically overlap with the
exception of very forward angles for the imaginary part.
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FIG. 4. (Color online) The same as in Fig. 3 but for R = 40 fm
(left panel) and 80 fm (right panel).

added to the set of x-points. A typical run required less than
9 min on 256 nodes (1024 processors) on the IBM Blue Gene/P
parallel computer at the Jülich Supercomputing Centre.

In Figs. 3–5 we show with dash-dotted line the real
and imaginary parts of the transition amplitudes AC(θ ) ≡
−2π2mT (q0, q0, cos θ ) for sharp cut-off Coulomb potential
pp scattering at Elab

p = 13 MeV and a number of cut-off radii
R = 10 and 20 fm (Fig. 3), R = 40 and 80 fm (Fig. 4), and
R = 100 and 120 fm (Fig. 5). With increasing cut-off radius
a development of strong oscillations in the scattering angle
dependence for the real parts of the numerical solutions is
clearly seen. These oscillations follow on average the real part
of the pure Coulomb amplitude given by Eq. (54) and shown by
the solid line. The imaginary parts of the numerical solutions
are totally off from the imaginary part of the pure Coulomb
amplitude and have even an opposite sign. Now applying to
the numerical solutions the asymptotic renormalization factor
from Eq. (55) dramatically improves the agreement (dotted
lines in Figs. 3–5). Not only are the oscillations in the real parts
practically removed and the pure Coulomb and renormalized
amplitudes practically overlapping but the renormalization
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FIG. 5. (Color online) The same as in Fig. 3 but for R = 100 fm
(left panel) and 120 fm (right panel).
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FIG. 6. (Color online) The real (top) and imaginary (bottom)
part of AC(θ ) ≡ −2π 2mT (q0, q0, cos θ ) as a function of cos θ for
R = 20 fm (left panel) and 100 fm (right panel) at Elab

p = 13 MeV.
The dotted line represents a direct numerical prediction (without any
renormalization). The solid (red) line shows AC(θ ) with renormal-
ization factor e−2iη ln(2pR) and the dashed line represents the pure
Coulomb amplitude given in Eq. (54).

brings also imaginary parts into agreement with the exception
of very forward angles. When one desists to use the asymptotic
expansion for f̃R and instead calculates it exactly according to
Eqs. (33), (34), and (43) then the ratio f̃R

AC (θ) provides the exact
renormalization factor. Performing exact renormalization of
the numerical solutions provides very good agreement between
imaginary parts of the numerical and pure Coulomb amplitudes
also at the very forward angles (dashed line in Figs. 3–5).

We also checked how important the two additional terms
in the renormalization factor of Eq. (55) are. To this aim we
renormalized the numerical solutions with the standard form of
the renormalization factor, given by the first term in Eq. (55).
In Fig. 6 solid (red) lines show the amplitude renormalized
in this way. It is clearly seen, that keeping only the standard
form of the renormalization factor, it is not possible to reach
the physical amplitude. Standard renormalization reduces
slightly oscillations in the real part of the numerical solution,
and changing the sign of the imaginary part invokes in it
large oscillations. So after standard renormalization strong
oscillations are present both in the real and imaginary parts
and fail totally.

V. SUMMARY

The renormalization method for a screened on-shell
Coulomb t-matrix enjoys a widespread use; see for instance
[13,14]. As pointed out in the Introduction the underlying
mathematical considerations leave room for doubt. To shed
light on that issue we regarded potential scattering on a sharply
cut-off Coulomb potential directly in three dimensions, avoid-
ing obstacles in the infinite sum of angular momenta. The idea
was to use the Lippmann-Schwinger equation which uniquely
defines the wave function including its boundary conditions.
Inside the range of the potential it is the standard Coulomb

wave function multiplied by an unknown normalization factor.
Using that form also on the left side of the Lippmann-
Schwinger equation for radii smaller than the cut-off radius
determines that normalization factor uniquely. Based on that
we succeeded analytically to determine the normalization
factor and thus obtained in this manner the exact analytic
result for the wave function. This also allowed us to derive
the analytical expression for the scattering amplitude in the
limit of infinite cut-off radius. The connection to the standard
Coulomb scattering amplitude Ac(θ ) turned out, however, to be
different from the standard form used widely in the literature
and is given in Eq. (55). Our form consists of two terms, one of
which is the standard one, e−2iη ln 2prAc(θ ). To that, however, is
added a new expression which is singular at θ = 0 and θ = π .
These analytical results are fully backed up by accompanying
numerical investigations. Our renormalization factor brings in
a very good agreement between the strongly deviating and
oscillating numerical solution of the Lippmann-Schwinger
equation with the sharp cut-off Coulomb potential and the
exact Coulomb amplitude. The standard renormalization factor
fails completely.
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APPENDIX: S-WAVE POTENTIAL SCATTERING FOR A
SHARPLY CUT-OFF COULOMB POTENTIAL

The (reduced) wave function for s-wave scattering obeys
the Lippmann-Schwinger equation

φ(+)(r) = sin(pr) − m

p

∫ R

0
dr ′eipr> sin(pr<)

e2

r ′ φ
(+)(r ′)

(A1)

with r<(>) the smaller (greater) of r, r ′. Inside the potential
range φ(+)(r) has to have the form

φ(+)(r) = AF0(pr), (A2)

where F0(pr) is proportional to the standard Coulomb wave
function

F0(pr) = preiprF (1 + iη, 2,−2ipr). (A3)

Inserting Eq. (A2) into Eq. (A1) yields
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φ(+)(r) = sin(pr) − 2ηA

(
eipr

∫ r

0
dr ′ sin(pr ′)

1

r ′ F0(pr ′)

+ sin(pr)
∫ R

r

dr ′eipr ′ 1

r ′ F0(pr ′)
)

= sin(pr) − 2ηpA

2i

(
eipr

∫ R

0
dr ′e2ipr ′

×F (1 + iη, 2,−2ipr ′)

− e−ipr

∫ R

r

dr ′e2ipr ′
F (1 + iη, 2,−2ipr ′)

− eipr

∫ r

0
dr ′F (1 + iη, 2,−2ipr ′)

)
. (A4)

One faces two types of integrals, which can be solved
using the following properties of the confluent hypergeometric
function:

F (1 + iη, 2,−2ipr) = 1

2pη

d

dr
F (iη, 1,−2ipr), (A5)

F (1 + iη, 2,−2ipr) = −e−πη

2πη

∫
	

dte−2iprt

(
t

1 − t

)iη

(A6)

with the path 	 given in Sec. III, and

F (iη, 1,−2ipr) − F (1 + iη, 1,−2ipr)

= 2iprF (1 + iη, 2,−2ipr). (A7)

One obtains∫ r

0
dr ′F (1 + iη, 2,−2ipr ′)

= 1

2pη
(F (iη, 1,−2ipr) − 1), (A8)∫ r

0
dr ′e2ipr ′

F (1 + iη, 2,−2ipr ′)

= − 1

2ηp
(1 − e2iprF (1 + iη, 1,−2ipr). (A9)

Therefore

φ(+)(r) = sin(pr) − 2ηpA

2i

(
2i

2ηp
sin(pr)e2ipR

×F (1 + iη, 1,−2ipR)

− 2ipr

2ηp
eiprF (1 + iη, 2,−2ipr)

)
= sin(pr)(1 − Ae2ipRF (1 + iη, 1,−2ipR))

+ApreiprF (1 + iη, 2,−2ipr)

= φ(+)(r) + sin(pr)(1 − Ae2ipR

×F (1 + iη, 1,−2ipR)). (A10)

Consequently the LS equation (A1) is identically fulfilled, as it
should be and one obtains an explicit condition for the constant

A:

1 − Ae2ipRF (1 + iη, 1,−2ipR) = 0 (A11)

or

A = e−2ipR

F (1 + iη, 1,−2ipR)
. (A12)

Inserting this result into Eq. (A2) the exact s-wave function
for a sharply cut-off Coulomb is obtained

φ(+)(r) = e−2ipR

F (1 + iη, 1,−2ipR)
preiprF (1 + iη, 2,−2ipr).

(A13)

It obeys the LS equation (A1).
The asymptotic behavior r → ∞, which provides the

scattering phase shift δR(p), is given through the LS equation
and we read off from Eq. (A4)

φ(+)(r) → sin(pr) − eiprA′ (A14)

with

A′ = 2ηpA

∫ R

0
dr ′ sin(pr ′)eipr ′

F (1 + iη, 2,−2ipr ′).

(A15)

At the same time this yields

e2iδR (p) = 1 − 2iA′. (A16)

Using Eqs. (A8) and (A9) again gives

A′ = A

2i
(e2ipRF (1 + iη, 1,−2ipR) − F (iη, 1,−2ipR))

(A17)

and consequently

e2iδR (p) = 1 − A(e2ipRF (1 + iη, 1,−2ipR)

−F (iη, 1,−2ipR)). (A18)

The interest lies now in the limit R → ∞. We use Eq. (A12)
and the asymptotic form (52) of F and obtain

e2iδR (p) → e2iσ0−2iη ln(2pr) (A19)

or

δR(p) → σ0 − η ln(2pr). (A20)

Of course this result is well known and can be trivially
obtained by matching the interior Coulomb wave function to
the free one containing δR(p).

We performed this exercise to explicitly demonstrate that
the LS equation (A1) is indeed identically fulfilled for arbitrary
r below the cut-off radius R. In the three-dimensional case we
succeeded analytically to do this only for the special value
r = 0, though it is valid for any r < R, and were forced to
verify the general case numerically.

[1] J. R. Taylor, Nuovo Cimento B 23, 313 (1974).
[2] M. D. Semon and J. R. Taylor, Nuovo Cimento A 26, 48

(1975).

[3] E. O. Alt, W. Sandhas, and H. Ziegelmann, Phys. Rev. C 17,
1981 (1978).

[4] V. G. Gorshkov, Sov. Phys. JETP 13, 1037 (1961).

044003-10



EXACT THREE-DIMENSIONAL WAVE FUNCTION AND THE . . . PHYSICAL REVIEW C 79, 044003 (2009)

[5] V. G. Gorshkov, Sov. Phys. JETP 20, 234 (1965).
[6] W. F. Ford, Phys. Rev. 133, B1616 (1964).
[7] W. F. Ford, J. Math. Phys. 7, 626 (1966).
[8] J. C. Y. Chen and A. C. Chen, in Advances of

Atomic and Molecular Physics, edited by D. R.
Bates and J. Estermann (Academic, New York, 1972),
Vol. 8.

[9] N. G. de Bruijn, Asymptotic Methods in Analysis (North Holland
Publishing Co., Amsterdam, 1961).

[10] Handbook of Mathematical Functions, edited by Milton

Abramowitz and Irene A. Stegun (Dover Publishers, New York,
1972).

[11] M. Yamaguchi, H. Kamada, and Y. Koike, Prog. Theor. Phys.
114, 1323 (2005).

[12] Ch. Elster, J. H. Thomas, and W. Glöckle, Few-Body Syst. 24,
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