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Quenching of Gamow-Teller strength due to tensor correlations in 90Zr and 208Pb
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We performed self-consistent Hartree-Fock plus random-phase approximation (HF+RPA) calculations for
charge-exchange 1+ states in 90Zr and 208Pb by using Skyrme interactions with tensor terms. We employed a
parameter set in which the tensor terms are added to the SGII interaction. It is pointed out that Gamow-Teller (GT)
states can couple strongly with the spin-quadrupole (SQ) 1+ states in the high-energy region above Ex = 30 MeV
due to the tensor interactions. As a result of this coupling, more than 10% of the GT strength is shifted to the
energy region above 30 MeV, and the main GT peak is moved 2 MeV downward. At the same time, the main SQ
1+ peak is moved upward by more than 10 MeV due to the tensor correlations. Schematic separable interactions
are proposed to elucidate the quenching mechanism induced by the tensor interaction on the GT state.
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Spin and spin-isospin excitation modes give a unique
opportunity to study the spin correlations in nuclei [1–3].
A systematic study of the energy and the collectivity of
these modes gives not only direct information on the spin
and isospin properties of the nuclear interaction, but also
on the equation of state of asymmetric nuclear matter. It
is claimed that the neutron skin thickness is determined
indirectly by the excitation energy spacing between the
isobaric analog state and Gamow-Teller (GT) resonances
[4]. More generally, spin collective resonances are deeply
related to several fundamental problems of interdisciplinary
fields, such as the description of neutron stars and supernova
explosions, the β decay of nuclei along the r-process path
of stellar nucleosynthesis, and the efficiency of solar neutrino
detectors.

It has been known that the random-phase approximation
(RPA) is an appropriate microscopic model for charge-
exchange giant resonances [5]. The self-consistency is an
extremely important requirement for the analysis of long
isotopic chains toward the drip line and the predictions of
new collective modes in unstable nuclei without introducing
any adjustable parameter. So far, Skyrme-RPA calculations
without the tensor interactions have been carried out for the
charge-exchange excitations [6,7]. Recently, the importance of
the tensor terms in Skyrme interactions has been recognized
in the study of the shell evolution of single-particle states
along isotopic or isotonic chains [8–10]. In the self-consistent
Hartree-Fock plus random-phase approximation (HF+RPA)
model, zero-range tensor terms were introduced to study
the effects of tensor forces on the GT transitions [11]. The
important findings are that about 10% of the GT strength is
shifted to the excitation energy region above 30 MeV (with
respect to the ground state of the target nucleus) already at
the 1p-1h level, and the main GT peak is moved downward
by about 2 MeV by RPA tensor correlations. The present
work is devoted to finding out the mechanism underlying this
redistribution of multipole strength, as well as to studying
the spin-quadrupole excitations. We employ here the same

zero-range tensor interaction as that in our previous work [11],
namely,
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In this expression, the coupling constants T and U denote the
triplet-even and triplet-odd tensor interactions, respectively.
The tensor terms lead to a modification to the spin-orbit
potential
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where the Jq(r)(q = p, n) are spin-orbit densities, whereas
α and β are composed of the central-exchange and tensor
contributions, that is, α = αC + αT and β = βC + βT with
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As the parameter set, we use the Skyrme force SGII, which
is among those appropriate for the description of spin-
dependent properties of nuclei. For the force SGII, αc =
57.7 MeV fm5 and βc = 10.0 MeV fm5. Taking into account
the contributions αc and βc, we have chosen for the tensor terms
the values αT = −180 MeV fm5 and βT = 120 MeV fm5,

0556-2813/2009/79(4)/041301(4) 041301-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.041301


RAPID COMMUNICATIONS

BAI, ZHANG, ZHANG, XU, SAGAWA, AND COLÒ PHYSICAL REVIEW C 79, 041301(R) (2009)

which are practically the same as those of the previous publi-
cations [8,10,11]. It should be noted that Jq gives essentially
no contribution in the spin-saturated cases. As in Ref. [11], we
choose 90Zr and 208Pb as examples to be calculated, because
90Zr is a proton spin-saturated nucleus with a spin-unsaturated
neutron 1g orbit and 208Pb is a spin-unsaturated nucleus both
for protons or neutrons.

For spin-dependent excitations with a given angular mo-
mentum λ and parity (−)λ+1, there are always two excitation
modes specified by the orbital angular momentum l = λ ± 1:
one is associated with the operator [rλ−1Yλ−1σ1]λ and has a
lower average excitation energy, while the other one is asso-
ciated with the operator [rλ+1Yλ+1σ1]λ and is characterized
by higher average excitation energy than the former one by
about 2hω. It was suggested [13] that the interaction term
[(Y0(1)σ1(1))1(r2Y2(2)σ1(2))1]0, which is associated with the
tensor force, produces a coupling between the lower and the
higher magnetic λ-pole excitation mode, as in the well-known
case of the deuteron ground state [12].

For the spin-dependent charge-exchange 1+ modes, we
consider two kinds of excitations:
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where the first one produces the GT excitation and the second
one produces the spin-quadrupole (SQ) excitation.

The calculated unperturbed GT− and SQ− strength dis-
tributions in 90Zr and 208Pb are displayed in Fig. 1. Results
labeled as ‘00’ or ‘11’ correspond to the ones without or with
the tensor term [Eq. (1)] in the HF calculations. As shown in
the figure, the unperturbed GT strength is distributed in the
energy region below 20 MeV (low frequency) for both nuclei
90Zr and 208Pb. On the other hand, the strengths of SQ− are

FIG. 1. (Color online) Unperturbed charge-exchange GT− and
1+ SQ− strengths in 90Zr and 208Pb. In panels (a) and (c), the results
of GT− transitions in 90Zr and 208Pb are displayed, respectively. In
panels (b) and (d), the results of charge-exchange SQ− transitions in
90Zr and 208Pb are displayed, respectively. The results without and
with tensor terms are labeled as ‘00’ and ‘11,’ respectively.

FIG. 2. (Color online) Charge-exchange GT− and 1+ SQ−
strength distributions in 90Zr and 208Pb. In panels (a) and (c), the
RPA results of GT transitions in 90Zr and 208Pb are displayed,
respectively. In panels (b) and (d), the RPA results of charge-exchange
SQ transitions in 90Zr and 208Pb are displayed, respectively. The
curves corresponding to the results with and without the tensor
terms in both HF and RPA are labeled as ‘11’ and ‘00,’ respectively.
Those calculated with the separable interaction [Eq. (9)] for RPA are
labeled SEP. The discrete RPA peaks have been smoothed by using
a Lorentzian averaging with width 1 MeV. The arrow corresponds to
the experimental energy [14]. See the text for details.

distributed in two regions: one with a small portion of SQ−
strength is located in the same region as that of GT−, while
the main 1+ SQ− strength is distributed in the region above
30 MeV.

In the present work, HF and RPA calculations have been
performed for the charge-exchange 1+ states in 90Zr and 208Pb
with and without the tensor interactions. The results for the
GT− and 1+ SQ− strength distributions are shown in Fig. 2.
The results without tensor terms are labeled by ‘00’, while
those with tensor terms in both HF and RPA calculations are
labeled by ‘11’. In the RPA calculations, the two-body spin-
orbit interaction is not included, but its effect on the final
result was shown to be negligible for the GT excitations [7].
The energy shift caused by the tensor force in the two nuclei
are calculated by using the RPA calculations and the analytic
formula in Ref. [11]. The results are displayed in Table I. Good
agreement in the energy shift calculated by the two methods

TABLE I. Energy weighted sum rule (EWSR) m− + m+(1)
obtained by the self-consistent HF+RPA calculations with and
without the tensor terms. δERPA and δEDC are the contributions of
the tensor terms to the calculated GT centroid energy, respectively,
by using RPA and the analytical formula in Ref. [11]. All values are
in MeV.

m− + m+(1) m− + m+(1) δERPA δEDC

no tensor with tensor

90Zr 469 547 2.6 2.66
208Pb 2524 2690 1.26 1.3
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indicates that the self-consistency is quite well preserved in
the numerical calculations.

From Fig. 2, three points should be noticed. First, more
than 10% of the GT− strength has been shifted from the
low-energy region to the energy region above 30 MeV by
the tensor correlations. Second, the high frequency 1+ SQ
strengths are moved upward more than 10 MeV for both 90Zr
and 208Pb by the tensor correlations. Adding tensor terms to
the SGII force, the peak of the calculated excitation strength
of the GT transition becomes quite close to the experimental
results obtained by 90Zr(p, n)90Nb reactions. Third, most of
the GT− strengths appearing in the energy region above
30 MeV coincide with the peaks of the 1+ SQ− strengths.
This coincidence indicates possible strong coupling between
the low-frequency GT− excitations and the high-frequency
1+ SQ− excitations by the tensor interactions.

To understand the effect of tensor forces on GT− and
1+ SQ− excitations in a more transparent way, we simulate the
main effects of tensor correlations by a separable interaction
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in the RPA calculations. Taking the coupling constants λ1 and
λ2 as adjustable parameters, we performed RPA calculations
for 90Zr and 208Pb by replacing the Skyrme tensor terms by
this two-term separable interaction. The calculated results are
displayed in Fig. 2 with the label SEP. We can see in this
figure that the global features of tensor effects on both GT−
and 1+ SQ− strength distributions can be well accounted for by
using the two-term separable interaction. For 90Zr, the coupling
constants λ1 = 0.16 MeV fm−2 and λ2 = 0.0043 MeV fm−4

are chosen for the RPA calculations. The results with the
separable forces mimics well those of Skyrme tensor terms
labeled as ‘11’ in Fig. 2; i.e., the main peak of 1+ SQ− strength
appears at Ex ∼ 51 MeV, and more than 7% of the GT−
strength is shifted to this energy region by the RPA correlations
induced by the separable interaction. For the nucleus 208Pb,
we choose the coupling constants λ1 = 0.029 MeV fm−2 and
λ2 = 0.00087 MeV fm−4. In this case also, the SEP results
are similar to those of Skyrme plus tensor labeled as ‘11’;
namely, the main 1+ SQ peak appears at Ex ∼ 52.6 MeV,
and about 8% of the GT strength is shifted to this energy
region by the RPA correlations coming from the separable
interactions.

To study more specifically the effects of the separable
interactions, RPA calculations were done by using λ1 and λ2

terms, separately. In Fig. 3, the GT− and charge-exchange
1+ SQ− strength distributions in 90Zr and 208Pb are displayed.
Results labeled as λ1(λ2) correspond to those using only
the term λ1(λ2). The SEP results are the same as shown in
Fig. 2. It is clearly seen that the λ1 term couples GT with
1+ SQ excitations so that 7% or 8% of the total GT strength
is shifted to the region around the high-energy peak of 1+

FIG. 3. (Color online) Charge-exchange GT− and 1+ SQ−
strengths in 90Zr and 208Pb. In panels (a) and (c), the RPA results
of GT transitions in 90Zr and 208Pb are displayed, respectively. In
panels (b) and (d), the RPA results of charge-exchange SQ transitions
in 90Zr and 208Pb are displayed, respectively. The separable interaction
[Eq. (9)] is adopted in the RPA calculations, while HF calculations
are performed by using the Skyrme tensor terms [Eq. (1)]. The RPA
calculations are performed in three different ways: only the λ1 term
(labeled λ1); only the λ2 term (labeled λ2); both λ1 and λ2 terms
(labeled SEP). The discrete RPA peaks have been smoothed by using
a Lorentzian averaging with width 1 MeV. See the text for details.

SQ excitations in 90Zr and 208Pb, respectively. While the
coupling term λ1 has only a minor effect on the 1+ SQ
excitations, the GT strength distribution is moved downward
by the coupling to the 1+ SQ excitations. While the λ2 term
does not make any appreciable coupling between GT and SQ
modes, the dominant peaks of SQ excitations are shifted to
substantially higher energy, close to the SEP results, and take
part of the low-energy 1+ SQ strengths to the high-energy
region.

In summary, we studied the effects of the tensor interactions
on the GT− and charge-exchange 1+ SQ− excitations in the
self-consistent HF+RPA calculations. The tensor interactions
are taken into account on top of the Skyrme parameter set SGII.
Without the tensor forces, all the GT strength is distributed in
the energy region below 30 MeV, while the strength of 1+ SQ−
excitations are distributed in two energy regions: a small por-
tion is in the same energy region as the GT strength, whereas
the main portion of the strength appears above 40 MeV.
When the tensor force is included, more than 10% of the
GT strength is shifted from the low-energy region to the
energy region above 30 MeV, and the main peak of GT
strength is moved downward by about 2 MeV. Concerning
the 1+ SQ excitations, the tensor force moves most of their
strength in the high-energy region. It is pointed out that the
GT peaks in the energy region above 30 MeV in most cases
correspond to the peaks of the 1+ SQ strength, indicating
the strong coupling between these two excitation modes that
is produced by the tensor forces. We introduced a simple
separable interaction with two terms λ1 and λ2 in the RPA
calculation to elucidate the role of the tensor correlations on
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the spin-dependent excitations. The main results obtained with
the Skyrme set plus the tensor force are reproduced pretty
well. The λ1 term couples the low-frequency GT mode and
the high-frequency 1+ SQ mode, shifting 7% or 8% of the
total GT strength to the high-energy region of the 1+ SQ
excitations, and the λ2 term pushes the 1+ SQ excitations
to even higher energy. The main peak of GT strength moves

downward by about 2 MeV due to the net effect of the λ1 and λ2

terms.
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