PHYSICAL REVIEW C 79, 039903(E) (2009)

Erratum: Conformal relativistic viscous hydrodynamics: Applications to RHIC results at $\sqrt{s_{NN}} = 200$ GeV [Phys. Rev. C 78, 034915 (2008)]

Matthew Luzum and Paul Romatschke (Received 16 February 2009; published 30 March 2009)

DOI: 10.1103/PhysRevC.79.039903 PACS number(s): 12.38.Mh, 25.75.Ld, 47.75.+f, 99.10.Cd

An error was found in the numerical hydrodynamical calculation used to generate data for Ref. [1]. Specifically affected was the freeze-out routine. Matching to experimental data was redone with the corrected routine, and the following table and figures (Table I and Figs. 6, 7, 8, and 9) have been corrected and updated, while all others are unaffected. The only difference is a change in the hydrodynamic initialization parameter values, with a slightly better fit to experimental data. All conclusions are unchanged.

TABLE I. Summary of parameters used for the viscous hydrodynamics simulations.

Initial condition	η/s	T_i [GeV]	T_f [GeV]	$\tau_0 [\text{fm/}c]$	$a [\mathrm{GeV^{-1}}]$
Glauber	10^{-4}	0.340	0.14	1	2
Glauber	0.08	0.333	0.14	1	2
Glauber	0.16	0.327	0.14	1	2
CGC	10^{-4}	0.310	0.14	1	2
CGC	0.08	0.304	0.14	1	2
CGC	0.16	0.299	0.14	1	2
CGC	0.24	0.293	0.14	1	2

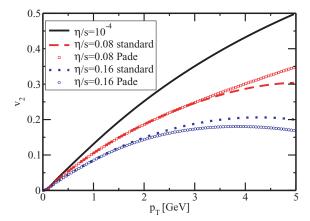


FIG. 6. (Color online) Charged hadron elliptic flow for the Glauber model at b = 7 fm with $T_i = 0.353$ GeV, $\tau_0 = 1$ fm/c and various viscosities.

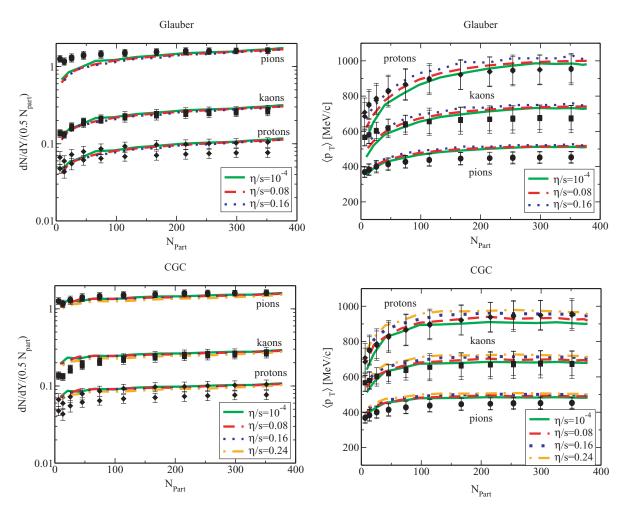


FIG. 7. (Color online) Centrality dependence of total multiplicity dN/dY and $\langle p_T \rangle$ for π^+, π^-, K^+, K^- , p and \bar{p} from PHENIX [2] for Au+Au collisions at $\sqrt{s}=200$ GeV, compared to the viscous hydrodynamic model and various η/s , for Glauber initial conditions and CGC initial conditions. The model parameters used here are $\tau_0=1$ fm/c, $\tau_\Pi=6\eta/s$, $\lambda_1=0$, $T_f=140$ MeV and adjusted T_i (see Table I).

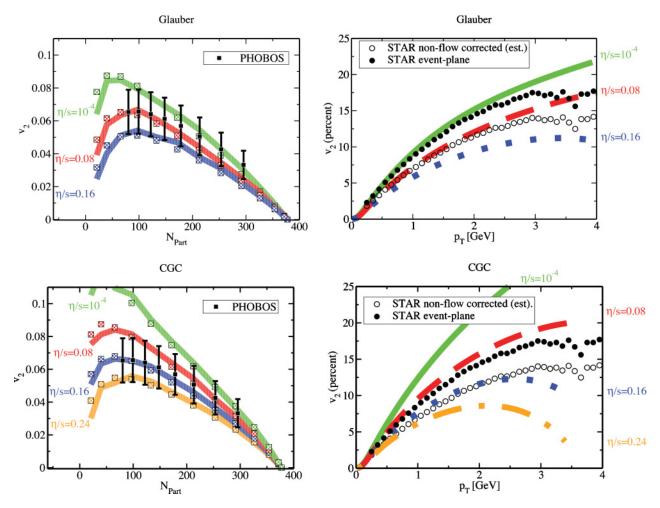


FIG. 8. (Color online) Comparison of hydrodynamic models to experimental data on charged hadron integrated (left) and minimum bias (right) elliptic flow by PHOBOS [4] and STAR [5], respectively. STAR event plane data has been reduced by 20 percent to estimate the removal of non-flow contributions [5,6]. The line thickness for the hydrodynamic model curves is an estimate of the accumulated numerical error (due to, e.g., finite grid spacing). The integrated v_2 coefficient from the hydrodynamic models (full lines) is well reproduced by $\frac{1}{2}e_p$ (dots); indeed, the difference between the full lines and dots gives an estimate of the systematic uncertainty of the freeze-out prescription.

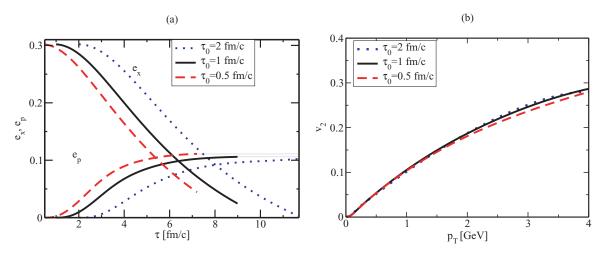


FIG. 9. (Color online) Momentum anisotropy (a) and elliptic flow for charged hadrons (b) for b=7 fm, $\eta/s=0.08$ and different hydrodynamic initialization times τ_0 . Horizontal light gray lines in (a) are visual aids to compare the final value of e_p . As can be seen from these plots, neither the final e_p nor the charged hadron v_2 depend sensitively on the value of τ_0 if the same energy distribution is used as initial condition at the respective initialization times. Simulation parameters were $T_i=0.29$ GeV, $T_f=0.14$ GeV for $\tau_0=2$ fm/c, $T_i=0.36$ GeV, $T_f=0.15$ GeV for $\tau_0=1$ fm/c, and $T_i=0.43$ GeV, $T_f=0.16$ GeV for $\tau_0=0.5$ fm/c.

- [1] M. Luzum and P. Romatschke, Phys. Rev. C 78, 034915 (2008).
- [2] S. S. Adler *et al.* (PHENIX Collaboration), Phys. Rev. C 69, 034909 (2004).
- [3] P. Romatschke and U. Romatschke, Phys. Rev. Lett. **99**, 172301 (2007).
- [4] B. Alver *et al.* (PHOBOS Collaboration), arXiv:nucl-ex/0702036.
- [5] B. I. Abelev *et al.* (STAR Collaboration), Phys. Rev. C 77, 054901 (2008).
- [6] A. Poskanzer (private communication).