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Resonance parameters from K -matrix and T -matrix poles
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We extract K matrix poles from our fits to elastic pion-nucleon scattering and eta-nucleon production data in
order to test a recently proposed method for the determination of resonance properties, based on the trace of the
K matrix. We have considered issues associated with the separation of background and resonance contributions,
the correspondence between K matrix and T matrix poles, and the complicated behavior of eigenphases.
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In a study by Ceci and Collaborators [1], a method
for resonance parameter extraction was proposed, based on
properties of the trace of the T matrix and the associated
K matrix, from a multichannel fit to scattering data. The
relevant relations are [1]

Tr(K) = �̃R/2

ER − E
+

N∑
j �=R

tan δj , (1)

and

Tr(T ) = �̃R/2

ER − E − i�̃R/2
+

N∑
j �=R

eiδj sin δj , (2)

where

�̃R/2 = �R/2 + (ER − E) tan δB, (3)

E is the center of mass energy, ER is the resonance energy,
�R is the full width, δB is a background phase, and N is the
number of included channels. The index R labels the j =
R element of the diagonal K matrix, and δj is an eigenphase.
These expressions follow directly from the expressions for the
K and T matrices in terms of the eigenphases:

Tr(K) =
N∑

j=1

tan δj , Tr(T ) =
N∑

j=1

eiδj sin δj , (4)

assuming a single diagonal element of the K matrix has the
resonant form

tan δR = �R/2

ER − E
+ tan δB, (5)

with a K matrix pole at E = ER and the nonpole behavior
collectively described by the background phase. The quantities
�R,ER and δB are considered as functions of the energy, E.

The importance of Eqs. (1) and (2) for Ref. [1] is that
while the position of the T -matrix pole of the first term in
Eq. (2), ER − i�̃R/2, and its residue, �̃R/2, depend on δB , the
position of the K-matrix pole in Eq.(1), ER , and its residue, �R ,
do not. This is the model independence [2] cited in Ref. [1].
In light of this, the authors of Ref. [1] suggest the use of
K-matrix pole positions and residues to give a model-
independent characterization of resonance structure. Their
method involves the determination of the K matrix, from a
given T matrix, from which the pole positions, ER , and their
residues, �R , are extracted.

We have explicitly tested this method with a set of
amplitudes determined in recent fits to pion-nucleon scattering
and eta-nucleon production data. Using the T matrix in a
given partial wave, determined in fits to the observed data
[3], we determine the K matrix, from which we extract the
pole positions and residues for real energies. This analysis
yields at least two results which undermine the utility of
using the positions and residues of K-matrix poles as model-
independent characterizations of resonance structure. First,
we show that assuming a different form for Eq. (5) alters
the finding of Ref. [1] that the K-matrix pole and residue
are independent of the background, tan δB . Second, using
the T matrix determined in Ref. [3], we numerically calculate
the related K matrix [see Eq. (6)] and find that there are poles
in the T matrix which have no nearby poles in the K matrix
for real energies. This would seem to obviate the use of
K-matrix poles in characterizing resonance structures obser-
ved in scattering experiments, since the structures present in
the T matrix do not necessarily appear in the K matrix.

Prior to describing our numerical results, we revisit the
derivation of Eqs. (1) and (2) in relation to the assumptions of
Eq. (5). We then compare the result of Ref. [1] with the result
obtained with a different assumption (following Dalitz [4]) for
the parametrization [5] of the resonant eigenphase of Eq. (5).

The K matrix we use is real for energies above all thresholds
considered in the problem, and is related to the T matrix by

T = K (1 − iK)−1. (6)

The real symmetric K matrix is diagonalized by an orthogonal
transformation, U as

KD = UT K U. (7)

This matrix also diagonalizes the T matrix, and therefore the
S matrix, defined as S = 1 + 2iT . Since S is a unitary matrix,

(SD)ij = UT SU = δij e2iδi , (8)

where the δi are eigenphases. Using the relation between the
K and T matrices above, we have

(KD)ij = i(1 − SD)(1 + SD)−1 = δij tan δi . (9)

Having determined the eigenphases, we can reconstruct the
physical T matrix

Tif = (UTDUT )if =
∑

α

UiαUf αeiδα sin δα. (10)
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Taking the trace of Eqs. (9) and (10) gives the result in Eq. (4).
We first examine the use of these relations in a simple

scenario including a single resonant eigenphase and neglect
any background effects. Assuming only one eigenphase (δR)
passes through π/2 at energy ER and neglecting others, the
resonant eigenphase may be written in the form

tan δR = �R/2

ER − E
, (11)

which leads to

Tif = 1

2

�
1/2
i �

1/2
f

ER − E − i�R/2
(12)

with �i = U 2
iR�R and

∑
i U

2
iR = 1 (orthogonality) giv-

ing
∑

i �i = �R . The result, Eq. (12), is consistent with
Eqs. (1) and (2) for δB = 0. Next we consider how background
can be added, and whether a single dominant eigenphase is
appropriate. These questions have been addressed in the works
of Dalitz [4], Goebel and McVoy [6], and Weidenmüller [7].

Consider first the addition of a background phase to
Eq. (11). One way of doing this is the ansatz of Eq. (5)
employed in Ref. [1] (see also Ref. [8]) and used to obtain
Eqs. (1) and (2). This leads to the model independence of
Ref. [1] described above. An alternative parametrization of
the resonant eigenphase is considered in Refs. [4,6,7]. The
ansatz used there also assumes a single dominant eigenphase,
which rises through π/2, but posits a phase-addition rule: the
resonant eigenphase, δ̃R has the form

δ̃R = δ̃B + δP , (13)

where δ̃B is the background phase which determines the
eigenphase far from the resonance energy, and δP is the
resonant (pole) contribution. This form of resonance and
background separation modifies the above conclusion of model
independence. We consider the phase-addition rule in some
detail to clarify this point.

As a function with a simple pole, the resonant contribution,
δP may be written in general as

tan δP = γ (E)/2

E∗(E) − E
, (14)

where the position of the pole is given by E∗
P (E∗(E∗

P ) − E∗
P =

0) and the function γ (E) goes to a nonzero constant at the pole.
Note that, far from the pole, the eigenphase shift δ̃R reduces
to the nonpole part, δ̃B . Using Eqs. (13) and (14) we compute
the resonant element of the diagonal K matrix as

tan δ̃R =
1
2γ + (E∗ − E) tan δ̃B

(E∗ − E) − 1
2γ tan δ̃B

, (15)

which leads to a K matrix with the trace

Tr(K) = �(E)/2

E
∗
P (E) − E

+
N∑

j �=R

tan δj , (16)

where �(E)/2 = γ /2 + (E∗ − E) tan δ̃B and the location of
the pole in Tr(K) is E

∗
P , where

[(E∗(E) − E) − γ (E)

2
tan δ̃B(E)]

∣∣∣∣
E=E

∗
P

= 0. (17)

In general, E∗
P �= E

∗
P and the pole position of the K matrix, E

∗
P

depends on the background, tan δ̃B . The residue also depends
on δ̃B since �(E

∗
P ) = γ / cos2 δ̃B .

We could anticipate this result by comparing the forms
Eqs. (5) and (13). In Eq. (5), used in Ref. [1], the location
of the K-matrix pole, ER is independent of δB . The resonant
structure, �/[2(ER − E)], and the nonresonant contribution
are assumed to be decoupled. That is, if tan δB is a bounded
function of the energy, its value cannot affect the energy where
the resonant eigenphase, δR is π/2. In the “Dalitz form,”
Eq. (13), the location of the pole in the K matrix, determined
by the energy ER where the phase δR → π/2, is affected by the
“background phase,” δB . Since the true form of the K matrix
is unknown, the existence of alternative forms complicates
the extraction of pole positions. In fact, in dynamical models
of scattering amplitudes, the location of the K-matrix pole is
expected to depend, perhaps strongly, on the nonresonant (or
background) contribution to the amplitude [9].

Turning to the T matrix, in place of Eq. (12), the result is

Tif = 1

2
e2iδ̃B

�
′1/2
i �

′1/2
j

E′
R − E − i�′/2

+ UiRUjReiδ̃B sin δ̃B, (18)

for the corresponding T -matrix element with resonance ‘mass’
and ‘width’ shifted from the K-matrix pole parameters. Thus, a
different scheme for the addition of resonance and background
contributions can alter the relationship between K-matrix and
T -matrix resonance masses.

As another example of the model dependence of K- and
T -matrix poles, and to address the question of whether a single
resonant eigenphase is appropriate, we consider the following
simple S matrix from Refs. [6,7]:

Sij = ei(φi+φj )

[
δij + i

�i
1/2�j

1/2

ER − E − i�/2

]
, (19)

to show the effect of background on eigenphases. This S

matrix is symmetric and far from the resonance energy is
diagonal (the elastic background approximation) with eigen-
phases φi

1. Applying the unitary transformation diagonalizing
Eq. (19) and taking the determinant, yields

e2i
∑

i δi = e2i
∑

i φi
ER − E + i�/2

ER − E − i�/2
, (20)

where δi is an eigenphase and the last factor has the phase
behavior of an elastic resonance at ER . From Eq. (20) we
see the above phase-addition rule, Eq. (13), if only a single
eigenphase is significant. In general, however, it is the sum of
eigenphases that displays resonance behavior.

A few further comments on the parametrization of eigen-
phases may be useful. Weidenmüller [7] has shown that

1Note that a product form of background and resonant S matrices
S = SBSR , generally yields a nonsymmetric S matrix. This violates
time-reversal invariance, which is required to obtain a real K matrix;
The 2 × 2 S matrix in Eq. (19) is sufficiently simple to allow an
explicit calculation of eigenphases [6], σ±, using

σ± = 1
2 (S11 + S22) ± 1

2

[
(S11 − S22)2 + 4S2

12

]1/2
. (24)
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FIG. 1. The eigenphases in a four-channel fit to the S11 partial
wave from the SP06 solution from SAID.

individual eigenphases have an energy dependence determined
largely by the background. Through an application of Wigner’s
no-crossing theorem, he finds no single eigenphase increasing
by π , except for special values of the background phases.
As a result, the eigenphases ‘repel’ rather than crossing, the N

eigenphases individually increasing only by an average of π/N

over the width of the resonance in some cases. An example of
this behavior is given in Fig. 1, which shows the eigenphases
calculated from SAID [3] for the S11 partial wave, containing
two resonances.

Goebel and McVoy have applied the eigenvalue method
to resonant d-α scattering [6] data to explicitly study this
behavior. Eigenvalues for this two-channel scattering matrix
were also given, showing the appearance of square-root branch
points which complicate the energy dependence [10]. There
is a cancellation occurring when the sum of eigenvalues or
eigenphases is taken, and this supports the basic idea of using
a trace, as proposed in Ref. [1]. A direct relation between
resonance energy and the sum of eigenphases is given by the
equation [11,12]

tr Q = 2h̄
∑

i

dδi

dE
, (21)

relating the trace of Smith’s time-delay matrix to the energy
derivative of the sum of eigenphases, δi . One diagonal element
of the Q matrix has recently been shown to correlate precisely
with the T -matrix pole positions of resonances [12].

To explicitly test the method of Ref. [1], we have taken
amplitudes determined from our fits to pion-nucleon elas-
tic scattering data [3], and the reaction πN → ηN . The
parametrization we use is based on the Chew-Mandelstam
(CM) K matrix, which builds in cuts associated with the
opening of ηN, π	, and ρN channels. The CM form is
analytic and generates a T matrix which is unitary and can be
continued into the complex plane to find poles on the various
sheets associated with the ηN, π	, and ρN channels. The fits
can, in principle, include couplings to any of the channels,
though the π	 and ρN channels are not constrained by
data. However, the amplitude associated with each channel
has, by construction, the proper threshold behavior, two-
particle channel cuts, and pole positions. Amplitudes in the

elastic channel are further constrained by forward and fixed-t
dispersion relations.

Thus far, we have implicitly assumed that there is a direct
correspondence between K-matrix and T -matrix poles. It is
known [13] that this is not true in general. For example, in
the CM approach it is possible to generate T -matrix poles
for the resonances without explicitly adding a pole to the
CM K matrix [14]. If, however, a pure CM K-matrix pole
representation is used

Kij = γiγj (ρiρj )1/2

EK − E
, (22)

the resulting T matrix is

Tij = γiγj (ρiρj )1/2

EK − E − ∑
n γ 2

n Cn − i
∑

n γ 2
n ρn

, (23)

where ρn is the phase space factor for the ith channel, and Cn

is the real part of the Chew-Mandelstam function, obtained by
integrating phase space factors over appropriate unitarity cuts.

The fit under consideration uses a parametrization of a
CM K matrix [14], from which the unitary T matrix is
calculated. The K matrix, defined by Eq. (6), is computed from
the calculated T matrix as K = T (1 + iT )−1. The resulting
K matrix was checked for consistency by reproduction of
the T matrix from Eq. (6), and checked for unitarity at
each stage. The K matrix was then searched for poles at
energies associated with well-known resonances. When poles
did appear in a given amplitude, we confirmed that they
appeared in each associated amplitude at the same energy.
However, we did not generally find poles closely associated
with (T -matrix) resonance energies, nor did we find that
each resonance produced a K-matrix pole, as shown in
Tables I and II. If an explicit pole was inserted into the
CM K matrix, then this approach generated a corresponding
K-matrix pole. This was the case for the 	(1232) resonance,
where we found a K-matrix pole at 1232 MeV. K-matrix
poles also appeared near the N (1535), N(1650), and 	(1620)
resonance masses, in the πN S11 and S31 partial waves, though
no explicit CM K-matrix poles were used in the fit. For the
P11 and D13 partial waves, however, no CM K-matrix poles
were used in the fit, and no K-matrix poles were found near

TABLE I. Pole positions in complex energy plane of T and K

matrix for the πN → πN reaction from SAID [3] for isospin T = 1
2

partial waves. Each T -pole position is expressed in terms of its real
and imaginary parts (MR,−�R/2) in MeV. Only K-matrix pole
positions which satisfy 1.1 GeV < W < 2.0 GeV are considered.

�T J T poles K poles

S11 (1500, 50) (1650, 40) 1535 1675
P11 (1360, 80) (1390, 80)a – –
P13 (1665, 175) –
D13 (1515, 55) –
D15 (1655, 70) 1760
F15 (1675, 60) (1780, 130) – –

aThis pole is located on the second Riemann sheet.
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TABLE II. Pole positions in complex energy plane as in
Table I for isospin T = 3

2 partial waves.

�T J T poles K poles

S31 (1595, 70) 1660
P31 (1770, 240) –
P33 (1210, 50) (1460, 200) 1232 –
D33 (1630, 125) –
D35 (2000, 195) –
F35 (1820, 125) –

the resonance masses. In all of these cases, resonance poles
did appear in the corresponding T matrices.

In conclusion, we have not found a simple association be-
tween K-matrix and T -matrix poles for use in the extraction of
resonance properties. We have argued that: (i) K-matrix poles
are not generally independent of background contributions,
(ii) a pole in the T matrix does not necessarily imply a

pole in the K matrix. Therefore, K-matrix poles do not
appear to be useful candidates for characterizing resonance
parameters obtained from scattering amplitudes. Applied to a
particular S matrix obtained from a fit to pion-nucleon
and eta-nucleon scattering data [3] we find no one-to-one
association between K-matrix and T -matrix poles. We have
also noted that the separation of background and resonance
contributions is not unique and that eigenphase behavior may
be more complicated than the form chosen in Ref. [1]. We have
noted an explicit counterexample for the parametrization of the
resonant eigenphase, specifically Eq. (13), which violates the
model independence of Ref. [1]. We are currently exploring
the behavior of eigenphases using S matrices from scattering
amplitudes in order to determine whether eigenphase repulsion
is as common as suggested in Ref. [6].
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