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In the present paper, we investigate the onset of the “pasta” phase with different parametrizations of the density
dependent hadronic model and compare the results with one of the usual parametrizations of the nonlinear
Walecka model. The influence of the scalar-isovector virtual δ meson is shown. At zero temperature, two
different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation.
At finite temperature, only the coexistence phases method is used. npe matter with fixed proton fractions and
in β equilibrium are studied. We compare our results with restrictions imposed on the values of the density and
pressure at the inner edge of the crust, obtained from observations of the Vela pulsar and recent isospin diffusion
data from heavy-ion reactions, and with predictions from spinodal calculations.
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I. INTRODUCTION

“Frustration” is a phenomenon characterized by the exis-
tence of more than one low-energy configuration. The “pasta”
phase is a frustrated system [1–3]. At densities of the order
of 0.006–0.1 fm−3 [4] in neutral nuclear matter and 0.04–
0.065 fm−3 [5] in β-equilibrium stellar matter, a competition
between the strong and the electromagnetic interactions takes
place leading to a frustrated system. The basic shapes of these
complex structures were first named [1] after well-known types
of cheese and pasta: droplets (bubbles = Swiss cheese), rods
= spaghetti (tubes = penne) and slabs (lasagna) for three, two,
and one dimensions, respectively. A droplet (bubble) and a rod
(tube) have densities larger (smaller) than their surroundings
and are normally defined within a Wigner-Seitz cell. The pasta
phase is the ground state configuration if its free energy per
particle is lower than that corresponding to the homogeneous
phase at the same density. The pasta phase is expected to exist
somewhere between a solid and a liquid phase, more like a
liquid crystal [6]. Its mechanical and thermal properties are
likely to depend on its shape, but that study still remains to be
done.

These pasta shapes at subnuclear densities are expected to
exist both in the crust of neutron stars (zero temperature, very
low proton fraction, matter in β equilibrium) and in supernova
(finite temperature, proton fraction around 0.3). In neutron
stars, the pasta phase coexists with a neutron gas; in supernova,
there is no neutron gas or it is very low in density [7].

In a recent work [4], we studied the existence of the pasta
phase at zero and finite temperature within three different
parametrizations of the relativistic nonlinear Walecka model
(NLWM) [8], namely, NL3 [9], TM1 [10], and GM3 [11], the
last one generally used in the studies of stellar matter. At zero
temperature, two different methods were used: the coexisting
phases (CP) and the Thomas-Fermi (TF) approximation.
We checked that while the final equations of state (EOSs)
obtained with the different methods do not vary much, the
internal structures vary considerably. The TF approximation
was performed to test the much simpler CP calculation, and
we have seen that the success of the CP calculation depends

on the parametrization of the surface energy for very small
proton fractions and close to the transition densities. At finite
temperature, only the CP method was used and compared
with predictions from spinodal calculations. The pasta phase
shrinks with the increase of the temperature, and we have found
that homogeneous matter can be the preferential phase also at
very low densities depending on the temperature and the proton
fraction. If β equilibrium is imposed, the pasta phase does not
appear in a CP calculation. This indicates the necessity of
using a good parametrization for the surface energy which is
temperature, proton fraction, and geometry dependent, as also
stressed in Refs. [12,13].

The authors of Ref. [14] related the fraction of the moment
of inertia contained in the crust of the Vela pulsar with the mass
and radius of the neutron star and the pressure and density at
the crust-core interface. From a realistic EOS, they obtained
an expected range of values for the pressure at the inner edge
of the crust and therefore also a relation between the radius
and mass of the pulsar. This work shows the importance of
understanding the exact density limits of the pasta phase and its
consequences on the choice of appropriate equations of state.
More recently, a new radius-mass relation for the Vela pulsar
was obtained taking as constraints recent isospin diffusion
data from heavy-ion reactions [5]. In that work, both the
thermodynamic and the more accurate and reliable dynamical
method were utilized in order to constrain the densities and
related pressures of the pasta phase present in the crust of
neutron stars. The pressures were obtained from the equation
of state for neutron-rich nuclear matter constrained by isospin
diffusion data obtained in the same subsaturation density range
as the existing ones in the neutron star crust [15].

It is, however, not clear how good the predictions are for the
transition density obtained from spinodal calculations. Cluster-
ization of the crust may have been formed through equilibrium
processes, and it is important to compare spinodal results with
equilibrium results, obtained from the minimization of the
free energy. In Ref. [4], a first comparison revealed that as a
rule the transition densities obtained within an equilibrium
calculation are larger than the ones determined from the
dynamical spinodals.
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In the present work, we use the same approximations (CP
and TF) used in Ref. [4] to obtain the pasta structures but
improve on the choice of the relativistic mean-field (RMF)
models; i.e., we obtain results with various density dependent
hadronic models and investigate the influence of the δ mesons.
We next justify our choices.

Density dependent hadronic models [16,17] have shown to
provide richer and different results in many cases than those
obtained with the simpler NLWM parametrizations [18–20].
In many situations, the results are similar to the ones obtained
with nonrelativistic Skyrme-type models [20–23].

The inclusion of the isovector-scalar virtual δ(a0(980))
meson in hadronic effective field theories [24,25] influences
the calculation of the effective masses with important conse-
quences on the symmetry energy, spinodals [18], and other
quantities possibly related to the appearance of the pasta
phase. The δ field introduces in the isovector channel the
structure already existing in the isoscalar channel, i.e., a
balance between a scalar (attractive) and a vector (repulsive)
potential.

In the following study, we consider three density dependent
coupling parametrizations, TW [16], DDHδ [17], and GDFM
[12], and two models with constant couplings, NL3 and NL3δ.
Neither NL3 nor TW include the δ meson. A comparison
is done between the transition pressures and densities from
the pasta phase to homogeneous matter obtained within the
above-mentioned models and with the predictions obtained in
Ref. [5].

In Sec. II, we briefly review the formalism underlying the
homogeneous neutral npe matter. The pasta phase is built in
Sec. III with the help of the coexisting phases method and
in Sec. IV with the Thomas-Fermi approximation. In Sec. V,
our results are displayed and discussed; and in Sec. VI, our
conclusions are drawn.

II. THE FORMALISM

We consider a system of protons and neutrons with mass
M interacting with and through an isoscalar-scalar field φ

with mass ms , an isoscalar-vector field V µ with mass mv ,
an isovector-vector field bµ with mass mρ and an isovector-
scalar field δ with mass mδ . We also include a system of
electrons with mass me. Protons and electrons interact through
the electromagnetic field Aµ. The Lagrangian density reads

L =
∑
i=p,n

Li + Le + Lσ + Lω + Lρ + Lδ + Lγ , (1)

where the nucleon Lagrangian reads

Li = ψ̄i

[
γµiDµ − M∗]ψi, (2)

with

iDµ = i∂µ − 
vV
µ − 
ρ

2
τ · bµ − e

1 + τ3

2
Aµ, (3)

M∗ = M − 
sφ − 
δτ · δ, (4)

and the electron Lagrangian is given by

Le = ψ̄e[γµ(i∂µ + eAµ) − me]ψe. (5)

The meson and electromagnetic Lagrangian densities are

Lσ = 1
2

(
∂µφ∂µφ − m2

s φ
2
)
,

Lω = 1
2

(− 1
2�µν�

µν + m2
vVµV µ

)
,

Lρ = 1
2

(− 1
2 Bµν · Bµν + m2

ρbµ · bµ
)
,

Lδ = 1
2

(
∂µδ∂µδ − m2

δδ
2),

Lγ = − 1
4FµνF

µν,

where �µν = ∂µVν − ∂νVµ, Bµν = ∂µbν − ∂νbµ − 
ρ(bµ ×
bν), and Fµν = ∂µAν − ∂νAµ. The parameters of the models
are the nucleon mass M = 939 MeV, four density dependent
coupling parameters 
s, 
v, 
ρ , and 
δ of the mesons to
the nucleons, the electron mass me, and the electromagnetic
coupling constant e = √

4π/137. In the above Lagrangian
density, τ is the isospin operator. From the Euler-Lagrange for-
malism, we obtain coupled differential equations for the scalar,
vector, isovector-scalar, isovector-vector, electromagnetic, and
nucleon fields. In the static case, there are no currents, and the
spatial vector components are zero. In Ref. [4], a complete
description of the Thomas-Fermi approximation applied to
different parametrizations of the NLWM is given. As the
differences arising from the inclusion of the δ mesons and the
use of density dependent couplings are small, we do not repeat
the equations here. A rearrangement term is the landmark
of most density dependent hadronic models [26,27], and the
simple mean field approximation (MFA) is outlined next so that
its appearance is better understood. The equations of motion
for the fields can be obtained and solved self-consistently in
the MFA (the photon and meson fields are classical fields),
neglecting states of negative energy (no-sea approximation)
[16].

The meson fields within the mean field approximation are
obtained from the equations

m2
sφ0 = 
sρs, (6)

m2
vV0 = 
vρ, (7)

m2
ρb0 = 
ρ

2
ρ3, (8)

m2
δδ3 = 
δρs3. (9)

The second members of these equations include the equilib-
rium densities ρ = ρp + ρn, ρ3 = ρp − ρn, ρs = ρsp + ρsn,
and ρs3 = ρsp − ρsn, where the proton/neutron densities are
given by

ρi = 1

π2

∫
p2 dp(fi+ − fi−), i = p, n, (10)

and the corresponding scalar density by

ρsi
= 1

π2

∫
p2 dp

M∗
i√

p2 + M∗
i

2
(fi+ + fi−), (11)

with the distribution functions given by

fi± = 1

1 + exp[(ε∗
i (p) ∓ νi)/T ]

, (12)

where ε∗
i =

√
p2 + M∗

i
2,

M∗
i = M − 
s φ0 − τ3i 
δ δ3, (13)
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and the effective chemical potentials are

νi = µi − 
vV0 − 
ρ

2
τ3i b0 − �R

0 , (14)

with τ3i = ±1 the isospin projection for the protons and
neutrons, respectively. The density dependent models in the
mean field approximation contain a rearrangement term �R

0
[17]:

�R
0 = ∂
v

∂ρ
ρV0 + ∂
ρ

∂ρ
ρ3

b0

2
− ∂
s

∂ρ
ρsφ0 − ∂
δ

∂ρ
ρs3δ3.

Notice that for T = 0 MeV, the distribution function for
particles given in Eq. (12) becomes the simple step function
fi = θ (P 2

Fi − p2), and the distribution function for antiparti-
cles vanishes.

In the description of the equations of state of a system, the
required quantities are the baryonic density, energy density,
pressure, and free energy. The energy density reads

E =
∑
i=n,p

Ki + Eσ + Eω + Eδ + Eρ, (15)

with

Ki = 1

π2

∫
p2dp

√
p2 + M∗

i
2(fi+ + fi−), (16)

Eσ = m2
s

2
φ2

0 , (17)

Eω = m2
v

2
V 2

0 , (18)

Eδ = m2
δ

2
δ2

3, (19)

Eρ = m2
ρ

2
b2

0. (20)

The pressure is given by

P =
∑
i=n,p

Pi + Pσ + Pω + Pδ + Pρ, (21)

with the partial pressures associated with the nucleons and the
various fields

Pi = 1

3π2

∫
dp

p4√
p2 + M∗

i
2

(fi+ + fi−) ,

Pσ = −m2
s

2
φ2

0

(
1 + 2

ρ


s

∂
s

∂ρ

)
,

Pω = m2
v

2
V 2

0

(
1 + 2

ρ


v

∂
v

∂ρ

)
,

Pρ = m2
ρ

2
b2

0

(
1 + 2

ρ


ρ

∂
ρ

∂ρ

)
,

Pδ = −m2
δ

2
δ2

3

(
1 + 2

ρ


δ

∂
δ

∂ρ

)
.

The free energy density is defined as

F = E − T S, (22)

with the entropy density

S = 1

T
(E + P − µpρp − µnρn). (23)

As for the electrons, their density and distribution functions
read

ρe = 1

π2

∫
p2dp(fe+ − fe−), (24)

with

fe±(r, p, t) = 1

1 + exp[(εe ∓ µe)/T ]
, (25)

where µe is the electron chemical potential and εe =√
p2 + m2

e . We always consider neutral matter, and therefore
the electron density is equal to the proton density. In the cal-
culation of the nonhomogeneous phase, the Coulomb energy
of the proton and electron distributions is included. We study
both matters (homogeneous and pasta structured), with a fixed
proton fraction, as we get in heavy-ion collisions (although
in this case, matter is not neutral), and in β equilibrium as in
stellar matter. In the latter, charge neutrality conditions fix the
electron chemical potential and density. The onset of muons
occurs above the transition density to homogeneous phase,
and therefore the proton density remains equal to the electron
density.

The energy density, pressure, free energy density, and
entropy density of the electrons are

Ee = 1

π2

∫
dpp2

√
p2 + m2

e(fe+ + fe−), (26)

Pe = 1

3π2

∫
dp

p4√
p2 + m2

e

(fe+ + fe−), (27)

Fe = Ee − T Se, (28)

and

Se = 1

T
(Ee + Pe − µeρe). (29)

To obtain the equations for the TW parametrization [16]
of the density dependent hadronic model, all information on
the δ meson is excluded. For the NL3 [9] parametrization,
the density dependent parameters are substituted by the usual
coupling constants gs, gv , and gρ , and nonlinear parameters are
included (see Ref. [4], for instance). The NL3δ parametrization
is defined with the same values for gs and gv as in the NL3
parametrization, gρ = 14.29 and gδ = 7.85, in such a way
that the symmetry energy has the same value at the saturation
density as the NL3 parametrization. We show in Table I the
nuclear matter properties reproduced by the models we discuss
in the present work.

The density dependent coupling parameters are adjusted in
order to reproduce some of the nuclear matter bulk properties,
using the following parametrization for the σ and ω mesons:


i(ρ) = 
i(ρ0)hi(x), x = ρ/ρ0, (30)

with

hi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
, i = s, v, (31)
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TABLE I. Nuclear matter properties at the saturation density.

NL3/NL3δ TW DDHδ GDFM
[9] [16] [17] [12]

B/A (MeV) 16.3 16.3 16.3 16.25
ρ0 (fm−3) 0.148 0.153 0.153 0.178
K (MeV) 272 240 240 337
Esym. (MeV) 37.4 32.0 25.1 32.11
M∗/M 0.60 0.56 0.56 0.68
L (MeV) 117/148 55 44 57
Tc (MeV) 14.55 15.18 15.18 15.95

and

hρ(x) = exp[−aρ(x − 1)], (32)

for the TW model [16]. For the DDHδ model [17], we use the
TW parametrization for 
s and 
v , and for the ρ and δ mesons
we take

hi(x) = ai exp[−bi(x − 1)] − ci(x − di), i = ρ, δ.

The parameters ai, bi, ci and di are given in Table II, and ρ0 is
the saturation density.

The density dependent parametrization (GDFM) obtained
in Ref. [12] takes into account the renormalization of the
relativistic mean-field theory due to Fock exchange terms. It
ensures a good description of the properties of the equation of
state at high density as obtained with calculations for asym-
metric nuclear matter [13] with Dirac-Brueckner-Hartree-Fock
calculations.

The GDFM parametrization for all four mesons coupling
parameters reads


i(ρ) = ai + (bi + dix
3) exp(−cix). (33)

Around the saturation density, a correction to the coupling
parameter for the ω meson is introduced:


vcor(ρ) = 
v(ρ) − acor exp

[
−

(
ρ − ρ0

bcor

)2
]

, (34)

where acor = 0.014 and bcor = 0.035 fm−3. The parameters
for the GDFM model are given in Table III.

The properties we discuss in the following depend on the
isovector channel of the nuclear force, mainly the results
obtained for β-equilibrium matter. Therefore we show in
Fig. 1 the symmetry energy and slope of the symmetry energy
L = 3ρ0∂εsym/∂ρ. This quantity defined at the saturation
density is given in Table I. The symmetry energy of NLW
models becomes quite hard for densities above ∼0.1 fm−3.

TABLE III. Parameters of the GDFM model [12].

i mi(MeV) ai bi ci di

σ 550 7.7868 2.58637 2.32431 3.11504
ω 782.6 9.73684 2.26377 7.05897 –
ρ 769 4.56919 5.45085 1.20926 –
δ 983 2.68849 6.7193 0.503759 0.403927

However, at subsaturation densities, the δ meson gives rise to
softer symmetry energies; this is true for NL3δ and for DDHδ

and GDFM, with DDHδ being softer than GDFM. Looking
at the slope of the symmetry energy, we see that GDFM and
DDHδ show a very similar behavior. Except for TW, all models
show at low densities a decrease of the slope followed by an
increase of the slope above ρ ∼ 0.05 fm−3 for NLW models
or ρ ∼ 0.12 fm−3 for density dependent models with the δ

meson. For TW, the slope always decreases with density more
slowly than that for all the other models.

III. COEXISTING PHASES

A. Nuclear pasta

As in Refs. [3,4], for a given total density ρ and proton
fraction Yp = ρp/ρ, the pasta structures are built with different
geometrical forms in a background nucleon gas. This is
achieved by calculating from the Gibbs conditions the density
and the proton fraction of the pasta and of the background
gas, so that in the whole we have to solve simultaneously the
following equations:

P I(νI
p, νI

n,M
∗
n

I
,M∗

p
I) = P II(νII

p , νII
n ,M∗

n
II
,M∗

p
II)

, (35)

µI
i = µII

i , i = p, n, (36)

m2
s φ

I
0 = 
sρ

I
s , (37)

m2
sφ

II
0 = 
sρ

II
s , (38)

m2
δδ

I
3 = 
δρ

I
s3, (39)

m2
δδ

II
3 = 
δρ

II
s3, (40)

fρI
p + (1 − f )ρII

p = ρp = Ypρ, (41)

where I and II label each of the phases, f is the volume fraction
of phase I,

f = ρ − ρII

ρI − ρII
, (42)

and Yp is the global proton fraction. The density of electrons
is uniform and taken as ρe = Ypρ. For the NL3 and NL3δ

TABLE II. Parameters of the TW [16] and DDHδ models [17,18].

i mi (MeV) 
i(ρ0) ai bi ci di

σ 550 10.72854 1.365469 0.226061 0.409704 0.901995
ω 783 13.29015 1.402488 0.172577 0.344293 0.983955
ρTW 763 7.32196 0.515 – – –
ρDDHδ 763 11.727 0.095268 2.171 0.05336 17.8431
δ 980 7.58963 0.01984 3.4732 −0.0908 −9.811
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FIG. 1. (Color online) (a) Symmetry energy and (b) slope of
symmetry energy for the models under study.

parametrizations, nonlinear σ terms must be included in
Eqs. (37) and (38).

The total pressure is given by P = P I + Pe. The total
energy density of the system is given by

E = f E I + (1 − f )E II + Ee + Esurf + ECoul, (43)

where, by minimizing the sum Esurf + ECoul with respect to
the size of the droplet/bubble, rod/tube or slab, we get [3]
Esurf = 2ECoul, and

ECoul = 2α

42/3
(e2π�)1/3

[
σD

(
ρI

p − ρII
p

)]2/3
, (44)

where α = f for droplets and α = 1 − f for bubbles, σ is
the surface energy coefficient, and D is the dimension of the
system. For droplets, rods, and slabs,

� =
⎧⎨
⎩

(
2−Df 1−2/D

D−2 + f
)

1
D+2 , D = 1, 3,

f −1−ln(f )
D+2 , D = 2,

(45)

and for bubbles and tubes the above expressions are valid with
f replaced by 1 − f .

Concerning the surface energy, the authors of Ref. [3] state
that, in this case, the appearance of the pasta phase essentially
depends on the value of the surface tension. We fixed the
surface tension at different values and confirmed their claim.
We parametrized the surface energy coefficient in terms of
the proton fraction according to the functional proposed in
Ref. [28], which was obtained by fitting Thomas-Fermi and
Hartree-Fock numerical values with a Skyrme force,

σ = σ0
16 + b

1
Y 3

p
+ 1

(1−Yp)3 + b
ht , (46)

with

ht =
[

1 −
(

T

4TcYp(1 − Yp)

)2
]2

, (47)

σ0 = 1.03 MeV/fm2, b = 24.4, and Tc is the critical temper-
ature above which there is a smooth transition from the gas
phase to the liquid phase [19] (given in Table I). We have
checked that small variations of this temperature do not affect
our results. The proton fraction considered throughout the
calculation of σ is the one of the denser phases.

Each structure is considered to be in the center of a charge
neutral Wigner-Seitz cell composed of neutrons, protons, and
leptons [29]. The Wigner-Seitz cell is a sphere/cylinder/slab
whose volume is the same as the unit body centered cubic
(BCC) cell. In Ref. [29], the internal structures are associated
with heavy nuclei. Hence, the radii of the droplet (rod, slab)
and the Wigner-Seitz cell are, respectively, given by

RD =
(

σD

4πe2
(
ρI

p − ρII
p

)2
�

)1/3

, RW = RD

(1 − f )1/D
.

(48)

B. Stellar pasta

In this case, hadronic matter is in β equilibrium. The
condition of β equilibrium in a system of protons, neutrons,
electrons, and muons is

µp = µn − µe, (49)

where µe = µµ. As the muons are added, the imposition of
charge neutrality requires that

ρp = ρe + ρµ. (50)

The Gibbs conditions to be enforced are

µI
n = µII

n , µI
e = µII

e , (51)

and

f
(
ρI

p − ρI
e − ρI

µ

) + (1 − f )
(
ρII

p − ρII
e − ρII

µ

) = 0, (52)

together with Eqs. (35), (37)–(40). Here, the density of
electrons is no longer taken to be uniform as in the last
section, but appears as the solution of Eq. (52). The densities
of interest to the study of the pasta phase are too low for the
muons to appear, which generally occurs for densities above
0.1 fm−3 [23].

IV. PASTA PHASE WITHIN THE THOMAS-FERMI
APPROXIMATION

In the present work, we repeat the same numerical pre-
scription given in Ref. [4]; that is, within the Thomas-Fermi
approximation of the nonuniform npe matter, the fields are
assumed to vary slowly so that the baryons can be treated
as moving in locally constant fields at each point. In the
Thomas-Fermi approximation, the energy is a functional of
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the density given by

ETF =
∫

d3r

( ∑
i=p,n,e

Ei(r) + 1

2

[
(∇φ0(r))2 + m2

s φ
2
0(r)

]

− 1

2

[
(∇V0(r))2 + m2

vV
2

0 (r)
] − 1

2

[
(∇b0(r))2 + m2

ρb
2
0(r)

]
+ 1

2

[
(∇δ3(r))2 + m2

δδ
2
3(r)

] + 
vV0(r)ρ + 1

2

ρb0(r)ρ3

− 1

2
[∇A0(r)]2 + e(ρp − ρe)A0(r)

)
, (53)

where

Ei = 1

π2

∫ pFi
(r)

0
dpp2(p2 + M�2)1/2, i = p, n, (54)

and

Ee = 1

π2

∫ pFe (r)

0
dpp2

(
p2 + m2

e

)1/2
. (55)

The definition of the thermodynamic potential reduces to

� = ETF[ρi] −
∑

i=n,p,e

µi

∫
drρi(r). (56)

The minimization of the above functional with the constraint
of a fixed number of protons, neutrons, and electrons yields
the equations(

p2
Fp

(r) + M�
p

2(r)
)1/2 + 
vV0(r) + 1

2
ρb0(r) + �R
0 + eA0(r)

= µp, (57)(
p2

Fn
(r) + M�

n
2(r)

)1/2 + 
vV0(r) − 1
2
ρb0(r) + �R

0

= µn, (58)

where M�
p and M�

n are given in Eq. (13) and

(
p2

Fe
(r) + m2

e

)1/2 − eA0(r) = µe. (59)

The numerical algorithm for the description of the neutral
npe matter was discussed in detail in Ref. [4]. The Poisson
equation is always solved by using the appropriate Green’s
function according to the spatial dimension of interest, and the
Klein-Gordon equations are solved by expanding the meson
fields in a harmonic oscillator basis with one, two, or three
dimensions based on the method proposed in Ref. [30].

V. RESULTS AND DISCUSSIONS

We show and discuss the results obtained using the
coexistence-phases (CP) and Thomas-Fermi (TF) methods in
the framework of the several relativistic models presented,
always for npe matter. We start with the results at T = 0 MeV.

In Fig. 2, results for a homogeneous description of matter
are compared with the output of the CP calculation for
two proton fractions. We see that all the models predict
the existence of a nonhomogeneous pasta phase: in models
with constant couplings, NL3 and NL3δ, this phase clearly
decreases if yp decreases (higher asymmetries); a different
behavior occurs for density dependent coupling models where
the nonhomogeneous phase extends to higher densities and
may even increase when the proton fraction reduces. From
Table IV, one can see that the TF method also predicts for
density dependent coupling models either a small increase
(DDHδ) or just a small decrease (TW) of the extension of the
pasta phase, if we decrease the proton fraction from 0.5 to
0.3. The GDFM model presents a large pasta phase at both
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FIG. 2. (Color online) npe matter (pasta + homogeneous phase) energy per particle at T = 0 MeV for RMF models with constant couplings
[(a), (c)] and density dependent coupling models [(b), (d)]: yp = 0.5 (top), yp = 0.3 (bottom).
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TABLE IV. Transition densities in fm−3 and corresponding pressures (CP and TF calculations) for the nonhomogeneous to homogeneous
phase at the inner edge of the crust (T = 0) MeV.

Model EOS Dynamic Thermodynamic Pasta (CP) P (CP) Pasta (TF) P (TF)
spinodal spinodal vs (MeV/fm3) vs (MeV/fm3)
vs EOS vs EOS uniform matter uniform matter

NL3 yp = 0.5 0.083 0.096 0.096 2.65 0.112 2.64
NL3 yp = 0.3 0.080 0.094 0.079 1.05 0.100 1.14
NL3 β equil. 0.053 0.065 – – 0.054 0.24
NL3δ yp = 0.5 0.083 0.096 0.096 2.65 0.112 2.64
NL3δ yp = 0.3 0.079 0.093 0.080 1.06 0.099 1.14
NL3δ β equil. 0.048 0.056 – – 0.051 0.16
TW yp = 0.5 0.083 0.096 0.098 2.74 0.113 2.66
TW yp = 0.3 0.084 0.095 0.099 1.40 0.111 1.27
TW β equil. 0.075 0.085 0.060 0.26 0.076 0.40
DDHδ yp = 0.5 0.083 0.096 0.098 2.74 0.113 2.66
DDHδ yp = 0.3 0.084 0.094 0.107 1.55 0.115 1.29
DDHδ β equil. 0.079 0.085 0.089 0.17 0.079 0.10
GDFM yp = 0.5 0.133 0.141 0.119 3.55 0.144 3.81
GDFM yp = 0.3 0.131 0.138 0.119 1.79 0.140 1.83
GDFM β equil. 0.051 0.058 0.027 0.04 0.052 0.13

asymmetries, but it is with the DDHδ model that the most
variety of pasta structures can be observed (see Fig. 3).

We also point out that models NL3 and NL3δ as well
as TW and DDHδ show the same transition densities for
yp = 0.5, because the effect of the δ meson is only seen for
asymmetric matter for the CP and spinodal calculations. Both
model pairs have the same coupling constants for the σ and
the ω mesons and only differ in the isovector channel, namely,
the ρ and δ meson couplings. However, in the TF calculation,
the distribution of protons and neutrons is free to adjust itself to
the lowest energy configuration. As a consequence, the proton
and neutron density distributions do not coincide within the
Wigner-Seitz cell, and the ρ and δ fields are not zero. However,
the differences are not large enough to change the transition
density, and we still get the same transition density within
TF, for yp = 0.5 and the model pairs (NL3, NL3δ) and (TW,
DDHδ).

For matter in β equilibrium at T = 0 MeV, the energy
per particle for the pasta is always slightly larger than for

the corresponding homogeneous matter in the models with
constant couplings within the CP method; so, in these cases,
the pasta is never preferred to represent the ground state of
the system. The absence of a pasta phase in the NL3 and
NL3δ parametrizations is related to the very high values of the
surface tension coefficient σ for these models, as can be seen
in Fig. 4.

For the DDH models, we show in Fig. 5 that these models
predict nonhomogeneous phases occurring for a relatively
small range of densities (below ρ ∼ 0.027 fm−3) for the
GDFM model but extending up to ρ ∼ 0.09 fm−3 in DDHδ.
TW shows an intermediate behavior. Because of the low
symmetry energy of the DDHδ model, which is only 25 MeV at
saturation density, it was shown in Ref. [31] that β-equilibrium
matter would even present at low densities a range of densities
with a negative compressibility. This behavior favors the
appearance of a larger variety of cluster forms.

Surface tension depends on the proton fraction of the
high-density region inside the Wigner-Seitz cell. Models with
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FIG. 3. (Color online) Comparison of the phase diagrams at T = 0 MeV for (a) yp = 0.5 and (b) yp = 0.3 obtained with the CP method
for several models.
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FIG. 4. (Color online) Surface tension coefficient σ at T =
0 MeV calculated according to Eq. (46).

a larger symmetry energy give a dense region with a larger
proton fraction and therefore a larger surface energy [see
Eq. (46)]. We also confirm that DDHδ shows the smallest
values for this quantity. Within the TF method, on the other
hand, the pasta phase is also found with the models bearing
constant couplings. This is because in the TF approach
the surface energy is calculated self-consistently and is not
introduced by hand. We know, however, that the TF approach
predicts a too steep surface; therefore, we may expect that a
quantal approach would predict a larger pasta phase [20].

The spinodal surface gives information about the minimal
dimension of the pasta phase. A spinodal decomposition would
be expected in the case of a fast transition; however, in stellar
matter we may expect that there is always plenty of time
to achieve equilibration. In Ref. [5], it was shown that the
thermodynamic spinodal results for pn matter did not differ
very much from the dynamic spinodal ones for npe matter.
This seems to indicate that the Coulomb interaction and surface
tension do not influence the pasta phase extension very much.
The thermodynamic spinodal for npe matter either does not
exist for density dependent hadronic models or is very small
for NLW models because of the large incompressibility of
electrons. However, although thermodynamically stable, npe
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FIG. 5. (Color online) npe matter energy per particle at T =
0 MeV for DDH models at β equilibrium. The full, dashed,
and dot-dot dashed lines stand for homogeneous matter; and the
corresponding dotted lines, for pasta phases.
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FIG. 6. (Color online) (a) Thermodynamic spinodal for np matter
and (b) dynamic spinodal for npe matter, for a transfer momentum
k = 80 MeV, for all the models under study.

matter clusterizes as soon as it suffers a density fluctuation
due to any kind of perturbation. Therefore we discuss the
extension of the nonhomogeneous phase by analyzing the
dynamical spinodal for npe matter, within the several models
considered.

In Fig. 6, we display both the thermodynamic spinodals
for np matter and the dynamical spinodals for npe matter for
a momentum transfer k = 80 MeV, which essentially defines
the envelope of the spinodal surfaces for all k values [32].
The dynamical spinodals are smaller than the thermodynamic
ones, as expected. The crossing densities of the EOS with a
fixed proton fraction equal to 0.5 and 0.3 and for β-equilibrium
matter are given in Table IV.

A larger extension of the pasta phase within the GDFM
model is expected from the thermodynamic spinodal, which
we show in Fig. 6. We notice that GDFM has a very peculiar
behavior with a much larger thermodynamic spinodal. There
is, however, an intermediate density region where matter is
not so unstable and the presence of electrons is enough to
raise the instability giving origin to two disconnected unstable
regions. Comparing all the spinodals, we expect smaller
nonhomogeneous regions for NL3δ and a larger one for GDFM
if yp is not too small. For very asymmetric matter such as
matter in β equilibrium, the TW and DDHδ models bear the
largest pasta phases, and NL3, NL3δ, and GDFM predict
similar results. We also verify that the dynamical spinodal
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predicts a slight increase of the unstable region when yp

decreases from 0.5 to 0.3. This behavior is directly related
to the concavity of the spinodal at yp = 0.5. In Ref. [23], it
was seen that the concavity of the thermodynamic spinodal
for the TW parametrization at yp = 0.5 is smaller than the
one obtained with the NLWM. The presence of electrons
and the Coulomb field in the calculation of the dynamical
spinodal gives rise to a spinodal that is not symmetric with
respect to the yp = 0.5 axis. The spinodal may extend to
larger densities for smaller proton fractions and the same
isospin asymmetry. As discussed in Ref. [33], we also expect a
larger extension of the nonhomogeneous phase if the electron
contribution is described correctly and the Coulomb field is
included self–consistently, which stabilizes npe matter and
extends the nonhomogeneous phase.

It is interesting to compare the density transitions obtained
within the spinodal approaches with the corresponding values
determined from the minimization of the free energy within
both the CP and TF approaches. As discussed before, the
dynamical spinodals are expected to indicate a lower limit.
Within the present models, the transition densities obtained
from the thermodynamic spinodal are ∼10–15% larger than
the values obtained from the dynamical spinodal, similar to
the conclusion drawn in Ref. [5]. For the proton fractions 0.5
and 0.3, these values are always larger than the ones obtained
within an equilibrium calculation, either CP or TF, except
for the GDFM model for which the CP results are smaller
than the spinodal ones. For the β-equilibrium calculation,
the CP method predicts no pasta phase for the NLWM
parametrizations (NL3 and NL3δ). This is due to the non-
self-consistent description of the surface in the CP approach.
The TF approach, which treats the surface self-consistently,
predicts, for all models, a transition density larger than, but
very similar to, the one predicted by the dynamical spinodal
calculation. This result is very interesting, because it implies
that to calculate the transition density at the inner edge of the
compact star crust, it is enough to use a dynamical spinodal
calculation.

In Table V, we compare the transition densities between the
different pasta geometries obtained in the present calculation
with the results from Ref. [12], where both a TF and a
microscopic calculation were done. In the TF calculation, the
surface description was not fully self-consistent because it
involved the inclusion of a surface energy parameter that was
adjusted to reproduce the experimental binding energy of the
nucleus 208Pb. We conclude that with a self-consistent TF
calculation, the transition densities between the different ge-
ometries and from nonhomogeneous to homogeneous matter

TABLE V. Transition densities in fm−3 between the different
geometries at T = 0 MeV and for the GDFM model. Comparison
with the results from Ref. [12].

CP TF TF [12] H [12]

Droplet-rod 0.047 0.048 0.052
Rod-slab 0.048 – –
Slab-hom. 0.027 0.052 0.061 0.064
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FIG. 7. (Color online) Phase diagrams at T = 0 MeV and yp =
0.5 obtained with the TF method for several models.

are quite smaller than the results in Ref. [12] obtained within
a microscopic description of the pasta structures including
pairing effects. This comparison should also be done for
different proton fractions and not only for β-equilibrium
matter.

From the phase diagrams shown in Figs. 3(a) and 3(b),
we observe that most models predict the formation of inho-
mogeneities of the type droplet, rod, slab, and tube for the
asymmetries considered. For yp = 0.3, only NL3 evolves to
homogeneous matter without a tube-like structure, and, on
the other side, DDHδ predicts the appearance of bubbles in a
narrow interval of densities. These differences are due to the
dependence of the surface energy on the proton asymmetry
and on the slope of the symmetry energy. In Fig. 7, the phase
diagrams obtained with the TF method for the models under
study are displayed with yp = 0.5. In this case, the bubble
structure, not present in Fig. 3(a), appears. The transition
densities are systematically higher with TF than with CP, as
seen in Table IV, and therefore another phase structure is
accommodated.

At this point, we compare our results shown in Table IV
for npe matter in β equilibrium with the predictions given
in Ref. [5]. According to Ref. [5], the transition density and
pressure from the liquid core to the solid crust at the inner edge
of neutron stars should lie within the ranges

0.04 � ρ � 0.065 fm−3, 0.01 � P � 0.26 MeV/fm3. (60)

The values for the pressure were constrained to the values for
the slope of the symmetry energy at the saturation density
given by L = 86 ± 25 MeV. The limits on the transition
pressure defined in Ref. [5] are, however, quite smaller than the
ones given in Ref. [14], namely, 0.25 � P � 0.65 MeV/fm3,
obtained from realistic EOS.

One can see in Table I that the NL3 and NL3δ models have
L values, respectively, slightly larger and larger than the upper
limit of the proposed L values. However, using the TF method,
we get for the transition densities and related pressures from
the pasta phase to the homogeneous phase, values within the
proposed range. On the other hand, the density dependent
models have L values slightly smaller than the lower limit of
the above L range.

In Ref. [34], a systematic analysis of the pasta regime in
terms of L was performed. The authors concluded that the
presence (or absence) of the pasta phase is controlled by this
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FIG. 8. Density and pressure of the inner edge that divides the
liquid core from the solid crust of neutron stars according to Ref. [5].

parameter, and the pasta phase was shown to appear in neutron
star matter when L � 100 MeV. This prediction coincides only
with our findings with the CP method, as can be seen from
Tables I and IV.

The results for the transition pressure and density in the TW
model lie just at the border of the rectangle that sets the limits
given in Eqs. (60) for the CP calculation, but they become too
high when the TF method is used. For the DDHδ parameter
set, the results for the pressure are inside the range shown in
Eqs. (60) both in the CP and TF approaches. However, for this
model, the transition density is too high for both calculations.
For the GDFM parametrization, the density within the CP
method is not good since it comes up too low, but the TF
results lie within the imposed constraints. For the NL3 and
NL3δ parametrizations, the pasta phase is only obtained within
the TF results, and they come out inside the constrained range.
These observations are summarized in Fig. 8.

Within the dynamical spinodal calculation, the transition
densities for TW and DDHδ are high, but all the other models
are within the density range given in Eqs. (60).

Also from Table IV one observes that the influence of the
δ meson is only effective for large proton asymmetries. For
proton fractions 0.5 and 0.3, NL3 and NL3δ give similar
results. The effect of the δ meson is only observed in the
β-equilibrium matter results: for the constant coupling models
the inclusion of the δ-meson makes the pasta phase range
a bit smaller, the results of the TF calculation being in
good agreement with the dynamical spinodal ones. Among
the density dependent models and considering all type of
calculations presented, we see that the extension of the pasta
phase for DDHδ is larger than the corresponding one within
TW which does not include the δ mesons. This is due to the
low value of the symmetry energy within the DDHδ model.

We now comment on the results with finite temperature, all
of them obtained with the CP method. In Fig. 9, we plot the free
energy per particle for the models with constant couplings. As
expected from the T = 0 MeV results, no pasta phase appears
when β equilibrium is enforced. For fixed proton fractions (0.5
and 0.3), the pasta phase shrinks with temperature. At very low
densities, the homogeneous phase has a lower free energy than
the pasta phase.

This behavior had already been noticed in Ref. [4] and is
reproduced with DDH parametrizations, as seen in Fig. 10 for
yp = 0.5, 0.3 and for matter in β equilibrium. From Figs. 10
and 11, it is seen that the size of the pasta phase depends
on the asymmetry of the npe matter and on the chosen
parametrization. Just two models provide pasta phase within
CP for matter in β equilibrium at T = 5 MeV: TW and DDHδ,
the second being larger than the first.

In Table VI, the transition densities obtained within the CP
approach and using the thermodynamic spinodal are given. No
data for a dynamical spinodal calculation at finite temperature
are available, except for NL3, see Ref. [4], where the transition
densities 0.080, 0.077 fm−3 were given, respectively, for
yp = 0.5 and 0.3 at T = 5 MeV. In this case, no crossing
occurs for β-equilibrium matter. These values are similar to the
ones obtained within the CP calculation. As discussed before,
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FIG. 9. (Color online) npe matter (pasta +
homogeneous phases) free energy per particle
at T = 5 MeV for RMF models with constant
couplings: NL3 [(a) and (c)] and NL3δ [(b) and
(d)]. yp = 0.5 (top), yp = 0.3 (bottom).
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we expect that the dynamical spinodal defines a lower limit
for the transition density. From the discussion of the results
obtained for the pasta phase at T = 0 MeV, we also expect that
the CP calculation only gives a lower limit for the transition
density because of the description of the surface which takes
too large values. The thermodynamic spinodal only suggests

an order of magnitude, which, according to Ref. [4] and for
NL3, was always a bit larger than the values coming from the
CP approach and closer to the TF results for the NLW models.

For the DDH models, it is seen that within the CP approach,
and similarly to the result already discussed at T = 0 MeV, the
pasta phase at T = 5 MeV does not decrease when going from
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for several models.

035804-11



S. S. AVANCINI et al. PHYSICAL REVIEW C 79, 035804 (2009)

TABLE VI. Transition densities in fm−3 and corresponding pressures (CP calcu-
lation) for the nonhomogeneous to homogeneous phase at the inner edge of the crust
(T = 5 MeV).

Model EOS Thermodynamic Pasta (CP) P (CP)
spinodal vs (MeV/fm3)
vs EOS EOS uniform matter

NL3 yp = 0.5 0.094 0.089 2.42
NL3 yp = 0.3 0.090 0.075 1.02
NL3 β equil. – –
NL3δ yp = 0.5 0.094 0.089 2.41
NL3δ yp = 0.3 0.090 0.072 0.96
NL3δ β equil. – –
TW yp = 0.5 0.095 0.094 2.59
TW yp = 0.3 0.094 0.094 0.94
TW β equil. 0.051 0.035 0.15
DDHδ yp = 0.5 0.095 0.094 2.59
DDHδ yp = 0.3 0.093 0.103 1.51
DDHδ β equil. 0.073 0.042 0.10
GDFM yp = 0.5 0.140 0.101 2.84
GDFM yp = 0.3 0.137 0.086 1.20
GDFM β equil. 0.029 – –

yp = 0.5 to yp = 0.3 for both the TW and DDHδ models. It
is also seen that for symmetric matter, the prediction obtained
from the thermodynamic spinodal is generally quite larger than
the values obtained within the CP calculation, except for the
DDHδ model, when they are similar. This may indicate that
within a TF calculation, larger transition densities would be
obtained.

Self-consistent calculations at finite temperature, both for
the pasta phase and for the dynamical spinodal, still have to be
implemented. These are of particular interest because neutrino
trapping occurs at finite temperature, and we expect that the
interaction of neutrinos with the npe clusters may affect the
neutrino energy deposition in stellar matter. However, while
the CP calculation fails to predict the transition densities for
β-equilibrium matter, we expect that it gives reasonable results
for the proton fractions of interest for stellar matter with
trapped neutrinos, yp ∼ 0.3.

We show in Table VII the highest temperatures for the
existence of the pasta phase for each of the models discussed
in this work within the CP approach. We take these values
as lower bounds for the limit temperature above which
the nonhomogeneous phase disappears. It is also worth
mentioning that we have searched for the pasta structures at
temperature steps of 1 MeV, due to the uncertainties mentioned

TABLE VII. Highest temperatures for which pasta phase was
found in MeV.

NL3 NL3δ TW DDHδ GDFM
[9] [16] [17] [12]

yp = 0.5 12.0 12.0 14.0 14.0 10.0
yp = 0.3 10.0 7.0 13.0 12.0 8.0
β equil. – – 5.0 8.0 4.0

above, and therefore the limiting temperature given is not
more than an order of magnitude. Two different situations
had to be considered when the homogeneous phase was taken
as the equilibrium configuration: (a) the pasta phase exists
but is not the preferential state of matter, because its free
energy comes out higher than the homogeneous phase, and
(b) the pasta phase does not exist within the precision of our
calculations.

VI. CONCLUSIONS

In the present work, we have investigated the extension of
the pasta phase for npe matter described within relativistic
density dependent models, namely, TW [16], DDHδ [17],
and GDFM [12], both at zero and finite temperatures. The
pasta phase was calculated at zero temperature within the
Thomas-Fermi method and compared with results obtained in
a simplified approach, the coexistence phases (CP) method [4].
Because of the approximate way the surface is described within
the CP approach, the pasta phase comes out smaller than with
TF: as in Ref. [4], we conclude that a correct description of the
surface energy and its dependence on the isospin, temperature,
and geometry is essential to obtaining better results using the
CP formalism.

The effect of including the δ meson was also explicitly
investigated: together with DDHδ and GDFM we have also
considered NL3δ. It was seen that models with the same
description of the isoscalar channel and the same symmetry
energy at the saturation density, namely, the pair (NL3, NL3δ),
showed a smaller nonhomogeneous phase for asymmetric
matter when the δ meson was included. This effect does not
occur for the pair (TW, DDHδ), because although both have
the same description of the isoscalar channel, the symmetry
energy of the DDHδ at saturation is smaller. As a result, the
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extension of the nonhomogeneous phase within the DDHδ

model is the largest one for β-equilibrium stellar matter and is
larger than the corresponding nonhomogeneous phase within
the TW model.

Results were compared with previous studies done within
NLWM and the predictions obtained from the analysis of
the thermodynamic and dynamic spinodals. One of the main
conclusions is that density dependent hadronic models gen-
erally predict larger nonhomogeneous phases for asymmetric
matter than NLW models. In fact, for β-equilibrium matter, a
similar conclusion had been taken in Ref. [23] only from the
analysis of the crossing of the β-equilibrium EOS with the
dynamical spinodal. Recent parametrizations of the Skyrme
force, e.g., SLy230a, NRAPR, or LNS, showed a similar
behavior [23]. We confirm this behavior within both the CP
and TF calculations.

One important conclusion obtained at T = 0 MeV is that
the transition density for β-equilibrium matter obtained within
a TF calculation almost coincides with the prediction from the
dynamical spinodal. This fact should be confirmed at finite
temperature. However, for symmetric matter or for isospin
asymmetries not much smaller than yp = 0.3, the TF transition
density is larger than the prediction of the dynamical spinodal.
This proton fraction is of particular interest for neutrino
trapped matter for which yp ∼ 0.3. In this case, a complete
equilibrium calculation should be done.

The parametrization GDFM has a very special behavior
with an instability region larger than all the other models, for
quite symmetric matter. However, for very asymmetric matter,
the instability region is smaller than that of other DDH models
and is of the order of the NLW models.

Another important conclusion drawn in the present work
is the dependence of the pasta phase extension on the isospin
asymmetry. For the NLWM, it is seen clearly that the pasta
phase extension decreases if the isospin asymmetry decreases.
For the density dependent models, a reduction of the proton
fraction from 0.5 to 0.3 almost does not affect the pasta
phase or may increase it within the CP calculation and the
dynamical spinodal approach. Within the dynamical spinodal
approach, this behavior is due to the small concavity of the
spinodal surface for symmetric matter and the deformation of
the spinodal due to the presence of protons, electrons, and the
Coulomb field. A smaller fraction of protons contributes with
less repulsion and gives a larger instability region. Of course
the presence of electrons shields the proton repulsion, and
therefore the effect is not so strong as it would be for charged
matter. An adequate description of electrons and the Coulomb
interaction is important to getting a correct description of
the pasta phase extension. In Ref. [3], it was shown that the
largest pasta phase extension occurs when the inclusion of the
Coulomb field is done in a self-consistent way.

We have checked which parametrizations fulfill the con-
straints imposed in Ref. [5] for the derivative of the symmetry
energy and the transition density and pressure. While the
density dependent hadronic models are below the lower limit
for the symmetry energy derivative, the NLWM are above
the upper limit. However, both NL3 and NL3δ together with
GDFM fall within the transition pressure/density limits, while
TW and DDHδ have too large transition densities. The GDFM
parametrization is the one that satisfies the constraints of
Ref. [5] more closely. It seems that the relation between both
quantities, the slope of the symmetry energy and the transition
density, is not, in fact, model free.

If we had considered the limits on the transition density
defined in Ref. [14], i.e., 0.25 < Pt < 0.65 MeV/fm3, all
models studied here have too small transition pressures except
for NL3, which lies just at the lower border, and TW. In
Ref. [5] it was shown that a larger slope L gives rise to
a smaller transition density and transition pressure. This
feature is seen when models within the same framework are
considered, namely, NL3 and NL3δ. However, no clear trend
is seen among the DDH models. In Ref. [23], it was shown
that the slope of the symmetry energy of the NLW models
differs from the one of density dependent hadronic models.
The parametrizations of Skyrme forces, such as SLy230a,
NRAPR, or LNS, which have values of L at saturation
close to the ones of DDH models, also have the transition
densities close to those of DDH models and above the limit
0.065 fm−3 imposed in Ref. [5]. This seems to show that a
more complete relation between the transition pressure and
transition density and the equilibrium isovector properties of
asymmetric nuclear matter have to be obtained. This could
include constraints on the slope and compressibility of the
symmetry energy at subsaturation densities. For instance, the
NLW models have positive compressibilities of the symmetry
energy at subsaturation densities above 0.05 fm−3, while
the DDH models and the recent Skyrme parametrizations
have negative compressibilities. Another point that should be
mentioned is that the data obtained from isospin diffusion in
heavy-ion reactions correspond to isospin asymmetries that
are far from the ones occurring at β-equilibrium matter. For
these large asymmetries, we expect that the contribution from
terms beyond the parabolic approximation for the isospin
dependence of the energy density of nuclear matter becomes
important [23].
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Rev. C 77, 025802 (2008).
[13] E. N. E. van Dalen, C. Fuchs, and A. Faessler, Eur. Phys. J. A

31, 29 (2007).
[14] Bennett Link, Richard I. Epstein, and James M. Lattimer, Phys.

Rev. Lett. 83, 3362 (1999).
[15] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[16] S. Typel and H. H. Wolter, Nucl. Phys. A656, 331 (1999);

Guo Hua, Liu Bo, and M. Di Toro, Phys. Rev. C 62, 035203
(2000).

[17] T. Gaitanos, M. Di Toro, S. Typel, V. Baran, C. Fuchs, V. Greco,
and H. H. Wolter, Nucl. Phys. A732, 24 (2004).

[18] S. S. Avancini, L. Brito, D. P. Menezes, and C. Providência,
Phys. Rev. C 70, 015203 (2004).

[19] S. S. Avancini, L. Brito, Ph. Chomaz, D. P. Menezes, and
C. Providência, Phys. Rev. C 74, 024317 (2006).

[20] S. S. Avancini, J. R. Marinelli, D. P. Menezes, M. M. W. Moraes,
and C. Providência, Phys. Rev. C 75, 055805 (2007); S. S.
Avancini, J. R. Marinelli, D. P. Menezes, M. M. Moraes, and
A. S. Schneider, ibid. 76, 064318 (2007).

[21] L. Brito, Ph. Chomaz, D. P. Menezes, and C. Providência, Phys.
Rev. C 76, 044316 (2007).

[22] M. Dutra, O. Lourenço, A. Delfino, J. S. Sá Martins,
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