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Locating the inner edge of the neutron star crust using terrestrial nuclear laboratory data
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Within both dynamical and thermodynamical approaches using the equation of state for neutron-rich nuclear
matter constrained by the recent isospin diffusion data from heavy-ion reactions in the same subsaturation density
range as the neutron star crust, the density and pressure at the inner edge separating the liquid core from the
solid crust of neutron stars are determined to be 0.040 fm−3 � ρt � 0.065 fm−3 and 0.01 MeV/fm3 � Pt �
0.26 MeV/fm3, respectively. These together with the observed minimum crustal fraction of the total moment
of inertia allow us to set a new limit for the radius of the Vela pulsar significantly different from the previous
estimate. It is further shown that the widely used parabolic approximation to the equation of state of asymmetric
nuclear matter leads systematically to significantly higher core-crust transition densities and pressures, especially
with stiffer symmetry energy functionals.
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I. INTRODUCTION

Having been the major testing grounds of our knowledge
on the nature of matter under extreme conditions, neutron
stars are among the most mysterious objects in the universe.
To understand their structures and properties has long been
a very challenging task for both the astrophysics and the
nuclear physics community [1]. Theoretically, neutron stars
are expected to have a solid inner crust surrounding a liquid
core. Knowledge on properties of the crust plays an important
role in understanding many astrophysical observations [2–12].
The inner crust spans the region from the neutron drip-out
point to the inner edge separating the solid crust from the
homogeneous liquid core. While the neutron drip-out density
ρout is relatively well determined to be about 4 × 1011 g/cm3

[13], the transition density ρt at the inner edge is still largely
uncertain mainly because of our very limited knowledge on the
equation of state (EOS), especially the density dependence of
the symmetry energy, of neutron-rich nucleonic matter [6,7].
These uncertainties have hampered our accurate understanding
of many important properties of neutron stars [1,6,7].

Recently, significant progress has been made in constrain-
ing the EOS of neutron-rich nuclear matter using terrestrial
laboratory experiments (See Ref. [14] for the most recent
review). In particular, the analysis of isospin-diffusion data
[15–17] in heavy-ion collisions has constrained tightly the
density dependence of the symmetry energy in exactly the
same subsaturation density region around the expected inner
edge of neutron star crusts. Moreover, the obtained constraint
on the symmetry energy was found to agree with isoscaling
analyses in heavy-ion collisions [18], the isotopic dependence
of the giant monopole resonance in even-A Sn isotopes [19],
and the neutron-skin thickness of 208Pb [17,20,21]. In this
article, using the equation of state for neutron-rich nuclear
matter constrained by the recent isospin diffusion data from
heavy-ion reactions in the same subsaturation density range
as the neutron star crust, we determine the inner edge of
neutron star crusts. Consequently, the limit on the radius of

the Vela pulsar is significantly different from the previous
estimate. In addition, we find that the widely used parabolic
approximation (PA) to the EOS of asymmetric nuclear matter
enhances significantly the transition densities and pressures,
especially with stiffer symmetry energy functionals.

II. THE THEORETICAL METHOD

The inner edge corresponds to the phase transition from the
homogeneous matter at high densities to the inhomogeneous
matter at low densities. In principle, the inner edge can be
located by comparing in detail relevant properties of the
nonuniform solid crust and the uniform liquid core mainly
consisting of neutrons, protons, and electrons (npe matter).
However, this is practically very difficult because the inner
crust may contain nuclei having very complicated geometries,
usually known as the “nuclear pasta” [1,10,22–24]. Further-
more, the core-crust transition is thought to be a very weak
first-order phase transition and model calculations lead to very
small density discontinuities at the transition [5,25–27]. In
practice, therefore, a good approximation is to search for the
density at which the uniform liquid first becomes unstable
against small amplitude density fluctuations with clusteriza-
tion. This approximation has been shown to produce a very
small error for the actual core-crust transition density and it
would yield the exact transition density for a second-order
phase transition [5,25–27]. Several such methods including
the dynamical method [2–5,25,28,29], the thermodynamical
method [7,30,31], and the random phase approximation (RPA)
[27,32] have been applied extensively in the literature. Here,
we use both the dynamical and the thermodynamical methods.

In the dynamical method, the stability condition of a ho-
mogeneous npe matter against small periodic density perturba-
tions with clusterization can be well approximated by [2–5,28]

Vdyn(k) = V0 + βk2 + 4πe2

k2 + k2
T F

> 0, (1)
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where

V0 = ∂µp

∂ρp

− (∂µn/∂ρp)2

∂µn/∂ρn

, k2
T F = 4πe2

∂µe/∂ρe

,

β = Dpp + 2Dnpζ + Dnnζ
2, ζ = −∂µn/∂ρp

∂µn/∂ρn

,

and k is the wave vector of the spatially periodic density
perturbations and µi is the chemical potential of particle i.
In the above expressions, we used the relation ∂µn

∂ρp
= ∂µp

∂ρn

following ∂µn

∂ρp
= ∂

∂ρp
( ∂ε
∂ρn

) = ∂
∂ρn

( ∂ε
∂ρp

) = ∂µp

∂ρn
, with ε being

the energy density of the npe matter. The three terms in
Eq. (1) represent, respectively, the contributions from the bulk
nuclear matter, the density gradient (surface) terms, and the
Coulomb interaction. For the coefficients of density gradient
terms we use their empirical values of Dpp = Dnn = Dnp =
132 MeV · fm5 consistent with the Skyrme-Hartree-Fock cal-
culations [28,33]. At kmin = [( 4πe2

β
)1/2 − k2

T F ]1/2, the Vdyn(k)

has the minimal value of Vdyn(kmin) = V0 + 2(4πe2β)1/2 −
βk2

T F [2–5,28]. Its vanishing point determines the ρt .
The thermodynamical method requires the system to

obey the intrinsic stability condition [34] or the following
inequalities [7,30]

−
(

∂P

∂v

)
µ

> 0, (2)

−
(

∂µ

∂qc

)
v

> 0. (3)

These conditions are equivalent to require the convexity of
the energy per particle in the single phase [7,30] by ignoring
the finite size effects due to surface and Coulomb energies
as shown in the following. In the above, the P = Pb + Pe is
the total pressure of the npe system with the contributions Pb

and Pe from baryons and electrons, respectively. The v and qc

are the volume and charge per baryon number. The µ is the
chemical potential defined as

µ = µn − µp. (4)

In fact, Eq. (2) is simply the well-known mechanical stability
condition of the system at a fixed µ. It ensures that any local
density fluctuation will not diverge. On the other hand, Eq. (3)
is the charge or chemical stability condition of the system
at a fixed density. It means that any local charge variation
violating the charge neutrality condition will not diverge. If
the β-equilibrium condition is satisfied, namely, µ = µe, the
electron contribution to the pressure Pe is only a function of the
chemical potential µ, and in this case one can rewrite Eq. (2) as

−
(

∂Pb

∂v

)
µ

> 0. (5)

By using the relation ∂E(ρ,xp)
∂xp

= −µ, one can get [30]

−
(

∂P

∂v

)
µ

= 2ρ3 ∂E(ρ, xp)

∂ρ
+ ρ4 ∂2E(ρ, xp)

∂ρ2

− ρ4

(
∂2E(ρ, xp)

∂ρ∂xp

)2 /
∂2E(ρ, xp)

∂x2
p

> 0 (6)

−
(

∂qc

∂µ

)
v

= 1

/
∂2E(ρ, xp)

∂x2
p

+ ∂ρe

∂µe

/
ρ, (7)

where qc = xp − ρe/ρ. ρ = 1/v is the baryon density and
E(ρ, xp) is the energy per baryon for the nucleonic matter.
Within the free Fermi gas model, the density of electrons
ρe is uniquely determined by the electron chemical potential
µe. Then the thermodynamical relations Eqs. (2) and (3) are
identical to [7,30]

−
(

∂Pb

∂v

)
µ

= ρ2

[
2ρ

∂E(ρ, xp)

∂ρ
+ ρ2 ∂2E(ρ, xp)

∂ρ2

−
(

∂2E(ρ, xp)

∂ρ∂xp

ρ

)2 /
∂2E(ρ, xp)

∂x2
p

]
> 0,

(8)

−
(

∂qc

∂µ

)
v

= 1

/
∂2E(ρ, xp)

∂x2
p

+ µ2
e

π2h̄3ρ
> 0, (9)

respectively. The second inequality is usually valid. Thus, the
following condition from the first one,

Vther = 2ρ
∂E(ρ, xp)

∂ρ
+ ρ2 ∂2E(ρ, xp)

∂ρ2

−
(

∂2E(ρ, xp)

∂ρ∂xp

ρ

)2 /
∂2E(ρ, xp)

∂x2
p

> 0, (10)

determines the thermodynamical instability region.
Based on general thermodynamic relations and ∂µn

∂ρp
= ∂µp

∂ρn
,

one can show [33]

2

ρ

∂E

∂ρ

∂2E

∂x2
p

+ ∂2E

∂ρ2

∂2E

∂x2
p

−
(

∂2E

∂ρ∂xp

)2

= ∂µn

∂ρn

∂µp

∂ρp

−
(

∂µn

∂ρp

)2

. (11)

Thus, for ∂2E/∂x2
p > 0, Eq. (10) is equivalent to requiring a

positive bulk term V0 in Eq. (1). Generally speaking, ρt is in the
subsaturation density region where ∂2E/∂x2

p is almost always
positive for all models. Therefore, the thermodynamical
stability condition is simply the limit of the dynamical one
as k → 0 by neglecting the Coulomb interaction.

To locate the inner edge of the neutron star crust, we
use the same MDI (Momentum Dependent Interaction) EOS
that was used in analyzing the isospin diffusion in heavy-ion
reactions [16,17]. The MDI interaction is based on a modified
finite-range Gogny effective interaction [35] and has been
extensively used in our previous work [14]. The baryon
potential energy density part of the MDI EOS can be expressed
as [16,35,36]

V (ρ, T , δ) = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

)
+ B

σ + 1

ρσ+1

ρσ
0

(1 − xδ2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

×
∫∫

d3pd3p′ fτ (�r, �p)fτ ′(�r, �p′)
1 + ( �p − �p′)2/
2

. (12)
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FIG. 1. (Color online) The density dependence of Vdyn and V ′
ther

for MDI interaction with x = 0 using both the dynamical and
the thermodynamical methods with the full EOS and its parabolic
approximation (PA).

Here τ is 1/2 (−1/2) for neutrons (protons) and δ = 1 − 2xp

is the isospin asymmetry. The meaning and values of other
parameters can be found in Refs. [16] and [35]. The parameter
x is introduced to vary only the density dependence of the
symmetry energy while keeping other properties of the nuclear
EOS fixed [16]. In particular, the symmetry energy Esym(ρ) =
1
2 ( ∂2E

∂δ2 )δ=0 at saturation density ρ0 = 0.16 fm−3 is fixed at
30.54 MeV for all values of the parameter x. The isospin
symmetric part of the MDI EOS was shown to agree with the
experimental constraints obtained from relativistic heavy-ion
collisions up to about five times the saturation density [37].

III. RESULTS

First, to show how the uniform npe matter becomes stable
from unstable with increasing baryon density and how to
locate the transition density and see the difference between the
dynamical and thermodynamical methods as well as effects of
the PA, we show in Fig. 1 the density dependence of Vdyn and
V ′

ther using the MDI interaction with x = 0 within both the
dynamical and thermodynamical methods with the full EOS
and its PA. Here, we have defined

V ′
ther = Vther

∂2E

∂x2
p

/ (
ρ2 ∂µn

∂ρn

)
(13)

and it should be noted that V ′
ther has the same vanishing

point as the Vther and the same dimension as the Vdyn. For
the MDI interaction with x = 0 the transition densities using
the full EOS within the dynamical and the thermodynamical
method are 0.065 fm−3 and 0.073 fm−3, respectively. While the
corresponding results using the PA are 0.080 and 0.090 fm−3,
respectively. Thus, the transition densities are generally lower
with the dynamical method as the density gradient term and the
Coulomb interaction make the system more stable. However,
the PA significantly lifts the transition density regardless of
the approach used. In fact, the difference between calculations

FIG. 2. (Color online) The ρt as a function of L from the
dynamical and thermodynamical methods with and without the
parabolic approximation in the MDI interaction. The triangles are
obtained by Kubis [30] and the star with an error bar represents
L = 86 ± 25 MeV.

using the full EOS and its PA is much larger than that caused
by using the two different methods.

Shown in Fig. 2 is the ρt as a function of the slope
parameter of the symmetry energy L = 3ρ0

∂Esym(ρ)
∂ρ

|ρ=ρ0 with
the MDI interaction. For comparisons, we have included
results using both the dynamical and the thermodynamical
methods with the full EOS and its parabolic approximation,
i.e., E(ρ, δ) = E(ρ, δ = 0) + Esym(ρ)δ2 + O(δ4) from the
same MDI interaction. With the full MDI EOS, it is clearly
seen that the ρt decreases almost linearly with increasing L

for both methods. This feature is consistent with the RPA
results [32]. It is interesting to see that both the dynamical
and the thermodynamical methods give very similar results
with the former giving slightly smaller ρt than the later
(the difference is actually less than 0.01 fm−3) and this
is due to the fact that the former includes the density
gradient and Coulomb terms that make the system more
stable and lower the transition density. The small difference
between the two methods implies that the effects of density
gradient terms and the Coulomb term are unimportant in
determining the ρt . On the other hand, surprisingly, the PA
drastically changes the results, especially for stiffer symmetry
energies (larger L values). Also included in Fig. 2 are the
predictions by Kubis using the PA of the MDI EOS in the
thermodynamical approach [30]. Furthermore, we find that
in the parabolic approximation, using the EOS of E(ρ, δ) =
E(ρ, δ = 0) + [E(ρ, δ = 1) − E(ρ, δ = 0)]δ2 + O(δ4) leads
to almost the same results. The large error introduced by
the PA is understandable because the β-stable npe matter
is usually highly neutron rich and the contribution from the
higher order terms in δ is appreciable. This is especially the
case for the stiffer symmetry energy that generally leads to
a more neutron-rich npe matter at subsaturation densities. In
addition, simply because of the energy curvatures involved in
the stability conditions, the contributions from higher order
terms in the EOS are multiplied by a factor larger than the
quadratic term. These features agree with the early finding [38]

035802-3



JUN XU, LIE-WEN CHEN, BAO-AN LI, AND HONG-RU MA PHYSICAL REVIEW C 79, 035802 (2009)

that the ρt is very sensitive to the fine details of the nuclear
EOS. We notice that the EOS of asymmetric nuclear matter
always contains the higher order terms in isospin asymmetry
(at least for the kinetic part of the EOS). Our results indicate
that one may introduce a huge error by assuming a priori that
the EOS is parabolic for a given interaction in calculating the
ρt . We thus apply the experimentally constrained L to the ρt -L
correlation obtained using the full EOS in constraining the ρt .
In the following, we mainly focus on the dynamical method
because it is more complete and realistic.

The transport model analysis of the isospin diffusion
data from heavy-ion collisions allowed us to constrain the
parameter x in Eq. (12) to be between x = 0 and x = −1
in the density range of 0.3ρ0 and 1.2ρ0 [16,17]. With the
full MDI EOS, the slope parameter was determined to be
L = 86 ± 25 MeV. The approximately 30% error in L is
systematic in nature mainly because of the uncertainty of
the in-medium nucleon-nucleon cross sections used in the
transport model [17]. The statistical errors in both the data
analysis [15] and the model calculations [16,17] are less than
the systematic error. The error in L will lead to roughly
similar systematic errors in all quantities we study here. As
shown in Fig. 2, the constrained L then limits the transition
density to 0.040 fm−3 � ρt � 0.065 fm−3. It is interesting
to mention that both approaches used here for finding the
core-crust transition density in the npe matter in neutron
stars have also been widely used in studying the spinodal
decomposition density associated with the liquid-gas phase
transition in nuclear matter, see, e.g., Refs. [39–42] for some
recent applications in neutron-rich matter. As expected, see,
e.g., Ref. [43], the two phase transitions are asymptotically
but inherently related. Applying both the dynamical and
thermodynamical approaches to symmetric nuclear matter
(SNM) at zero temperature for MDI interaction by ignoring
the Coulomb and surface terms, we find a transition density
of 0.63ρ0. It is consistent with the spinodal decomposition
density for SNM at zero temperature from the relativistic mean
field model [39] and Skyrme density functionals [41]. On the
other hand, recent studies [44,45] indicate that some effects
beyond the mean field approximation may affect the EOS of
asymmetric nuclear matter in the low-density region. Thus,
it would be interesting to study how the effects beyond the
mean field approximation as well as other effects such as the
many-body forces may change the core-crust transition density
of neutron stars.

The pressure at the inner edge, Pt , is also an important
quantity that might be measurable indirectly from observations
of pulsar glitches [7,9]. Shown in Fig. 3 is the Pt as functions
of L and ρt by using the dynamical method with both the full
MDI EOS and its PA. Again, it is seen that the PA leads to
huge errors for larger (smaller) L (ρt ) values. For the full MDI
EOS, the Pt decreases (increases) with the increasing L (ρt )
while it displays a complex relation with L or ρt for the PA.
The complex behaviors are due to the fact that the ρt does not
vary monotonically with L for the PA as shown in Fig. 2. From
the constrained L values, the Pt is limited between 0.01 and
0.26 MeV/fm3.

The constrained values of ρt and Pt have important
implications for many properties of neutron stars [4,7,10,28].

FIG. 3. (Color online) The Pt as functions of L and ρt by using the
dynamical method with and without parabolic approximation in the
MDI interaction. The star with an error bar in the left panel represents
L = 86 ± 25 MeV.

As an example, here we examine their impact on constraining
the mass-radius (M-R) correlation of neutron stars. The crustal
fraction of the total moment of inertia �I/I can be well
approximated by [6,7,9]

�I

I
≈ 28πPtR

3

3Mc2

(1 − 1.67ξ − 0.6ξ 2)

ξ

×
[

1 + 2Pt (1 + 5ξ − 14ξ 2)

ρtmbc2ξ 2

]−1

, (14)

where mb is the mass of baryons and ξ = GM/Rc2 with
G being the gravitational constant. As it was stressed in
Ref. [6], the �I/I depends sensitively on the symmetry energy
at subsaturation densities through the Pt and ρt , but there is
no explicit dependence upon the higher density EOS. So far,
the only known limit of �I/I > 0.014 was extracted from
studying the glitches of the Vela pulsar [9]. This together with
the upper bounds on the Pt and ρt (ρt = 0.065 fm−3 and
Pt = 0.26 MeV/fm3) sets approximately a minimum radius
of R � 4.7 + 4.0M/M� km for the Vela pulsar. The radius
of the Vela pulsar is predicted to exceed 10.5 km should it
have a mass of 1.4M�. A more restrictive constraint will be
obtained from the lower bounds of ρt = 0.040 fm−3 (Pt =
0.01 MeV/fm3), which is indicated by the curve with solid
stars in Fig. 4, and it can be approximately parametrized by
R = 5.5 + 14.5M/M� km. It is thus seen that the error of the
transition density and pressure obtained in the present work is
still large and it leads to large uncertainties for the mass-radius
relation of the Vela pulsar. As a conservative estimate, we
thus deduce a constraint of R � 4.7 + 4.0M/M� km using
the upper bounds on the Pt and ρt obtained in the present
work. We notice that a constraint of R � 3.6 + 3.9M/M� km
for this pulsar has previously been derived in Ref. [9] by
using ρt = 0.075 fm−3 and Pt = 0.65 MeV/fm3. However,
the constraint obtained in the present work using for the first
time data from both the terrestrial laboratory experiments
and astrophysical observations is significantly different and
actually it is more stringent.

To put the above constraints on the Vela pulsar in perspec-
tive, we show them in Fig. 4 together with the M-R relation by
solving the Tolman-Oppenheimer-Volkoff (TOV) equation. In
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FIG. 4. (Color online) The M-R relation of static neutron stars
from the full EOS and its parabolic approximation in the MDI
interaction with x = 0 and x = −1. For the Vela pulsar, the constraint
of �I/I > 0.014 implies that allowed masses and radii lie to the
right of the line linked with solid squares (ρt = 0.065 fm−3 and Pt =
0.26 MeV/fm3, the upper bounds obtained in the present work), solid
stars (ρt = 0.040 fm−3 and Pt = 0.01 MeV/fm3, the lower bounds
obtained in the present work), or open squares (ρt = 0.075 fm−3 and
Pt = 0.65 MeV/fm3, used in Ref. [9]).

the latter, we use the well-known BPS EOS [2] for the outer
crust. In the inner crust with ρout < ρ < ρt , the EOS is largely
uncertain and, following Ref. [27], we use an EOS of the form
P = a + bε4/3 with the constants a and b determined by the
total pressure P and the total energy density ε at ρout and ρt .
The full MDI EOS and its parabolic approximation with x = 0
and x = −1 are used for the uniform liquid core with ρ � ρt . In
this way, the P is a continuous function of the ε at the boundary
between different regions as required. Assuming that the core
consists of only the npe matter without possible new degrees of
freedom or phase transitions at high densities, the PA leads to
a larger radius for a fixed mass compared to the full MDI EOS.
Furthermore, using the full MDI EOS with x = 0 and x = −1
constrained by the heavy-ion reaction experiments, the radius
of a canonical neutron star of 1.4M� is tightly constrained

within 11.9 to 13.2 km, which is consistent with the constraint
R � 4.7 + 4.0M/M� km for the Vela pulsar.

IV. SUMMARY

In summary, the density and pressure at the inner edge
separating the liquid core from the solid crust of neutron
stars are determined to be 0.040 fm−3 � ρt � 0.065 fm−3

and 0.01 MeV/fm3 � Pt � 0.26 MeV/fm3, respectively, using
the MDI EOS of neutron-rich nuclear matter constrained by
the recent isospin diffusion data from heavy-ion reactions
in the same subsaturation density range as the neutron star
crust. These constraints allow us to set a new limit on the radius
of the Vela pulsar. It is significantly different from the previous
estimate and thus puts a new constraint for the mass-radius
relation of neutron stars. Furthermore, we find that the widely
used parabolic approximation to the EOS of asymmetric
nuclear matter leads systematically to significantly higher
core-crust transition densities and pressures, especially for the
energy density functional with stiffer symmetry energies. Our
results thus indicate that one may introduce a huge error by
assuming a priori that the EOS is parabolic with respect to
isospin asymmetry for a given interaction in locating the inner
edge of neutron star crusts.
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