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Charm and longitudinal structure functions within the Kharzeev-Levin-Nardi model
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We use the Kharzeev-Levin-Nardi (KLN) model of the low x gluon distributions to fit recent HERA data on
FL and F c

2 (F b
2 ). Having checked that this model gives a good description of the data, we use it to predict FL

and F c
2 to be measured in a future electron-ion collider. The results are similar to those obtained with the de

Florian-Sassot and Eskola-Paukkunen-Salgado nuclear gluon distributions. The conclusion of this exercise is that
the KLN model, simple as it is, may still be used as an auxiliary tool to make estimates for both heavy-ion and
electron-ion collisions.
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The small-x regime of QCD has been intensely investigated
in recent years (for recent reviews see, e.g., Refs. [1,2]). The
main prediction is a transition from the linear regime described
by the DGLAP dynamics to a nonlinear regime where parton
recombination becomes important in the parton cascade and
the evolution is governed by a nonlinear equation. At very
small values of x we expect to observe the saturation of the
growth of the gluon densities in hadrons and nuclei. One of
the main topics of hadron physics to be explored in the new
accelerators, such as the CERN Large Hadron Collider (LHC)
and possibly the future electron-ion collider, is the existence
of this new component of the hadron wave function, denoted
as Color Glass Condensate (CGC) [1].

The search for signatures of the CGC has been the subject
of active research (for recent reviews see, e.g., Ref. [1]).
Saturation models [2–7] can successfully describe HERA data
in the small x and low Q2 region. Moreover, some properties
that appear naturally in the formalism of the color glass
condensate have been observed experimentally. These include,
for example, geometric scaling [8–10] and the supression of
high pT hadron yields at forward rapidities in d-Au collisions
[11–16]. However, it has been shown that both geometric
scaling [17] and high pT supression [18,19] can be understood
with other explanations, not based on saturation physics.

In view of these (and other) results we may conclude
that there is some evidence for saturation at HERA and
the BNL Relativistic Heavy Ion Collider (RHIC). However,
more definite conclusions are not yet possible. To discriminate
between these different models and test the CGC physics, it
would be very important to consider an alternative search.
To this purpose, the future electron-nucleus colliders offer a
promising opportunity [20–24].

The color glass condensate is important in itself as a new
state of matter. However, apart from that, we need to know
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very well its properties because the CGC forms the initial
state of the fluid created in nucleus-nucleus collisions. Any
detailed simulation of a heavy-ion collision needs a realistic
Ansatz for the initial conditions. This would correspond to
knowing accurately the unintegrated gluon distribution in the
projectile and in the target. These distributions will presumably
be known in the future, with the help of the results of deep
inelastic scattering (DIS) off nuclei. Even before experiment,
one can try to calculate the gluon density in the initial state
of heavy-ion collisions by numerically solving the classical
Yang-Mills equations, as done in Ref. [25]. This is, however,
very time consuming. Meanwhile, in practical applications we
need to use use models for these distributions. Because these
models are used as input for heavy numerical calculations,
they must be simple.

One simple approach to saturation physics was developed
by Kharzeev, Levin, and Nardi (KLN) in a series of arti-
cles [26] where a simple model for the unintegrated gluon
distribution was proposed. It was used in many phenomeno-
logical applications. In particular it was very successful
when applied to hydrodynamical simulations [27–29]. In
Ref. [27] it was shown that hydrodynamical simulations with
the KLN model initial conditions were able to describe the
centrality, rapidity, and energy dependence of charged hadron
multiplicities very well. Moreover these simulations could
reproduce the transverse momentum spectra of charged pions
and also the centrality dependence of the nuclear modification
factors.

In view of the success of the KLN model as an input for
numerical simulations, we think that it would be interesting to
confront it with recent DIS data and, if necessary, change
it to get a better agreement with these data. Of course,
the KLN model will remain a phenomenological model to
be replaced by something more fundamental in the future.
However, in a refined and still simple version, it may be a
very useful tool, capturing the essential physics of gluon satu-
ration and parametrizing the presently available experimental
information.

In this article we apply the KLN model to deep inelastic
scattering, the domain where parton distributions have to be
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FIG. 1. Charm structure function, F c
2 , computed with the KLN model. Data are from Ref. [30].

tested. If it fails badly in reproducing DIS data, it must be
discarded. Because the KLN model gives only an Ansatz
for the gluon distribution but says nothing about quarks,
it is difficult to use it to make predictions for the most
well-known DIS observables, such as the structure functions
F2. We must then look for quantities that are dominated
by the gluon content of the proton. These are the charm
(bottom) and longitudinal structure functions, Fc

2 (Fb
2 ) and FL,

respectively.
Let us first discuss charm production and its contribution

to the structure function. In the last years, both the H1 and
ZEUS Collaborations have measured the charm component
Fc

2 of the structure function at small x and have found it
to be a large (approximately 25%) fraction of the total [30].
This is in sharp contrast to what is found at large x, where
typically Fc

2 /F2 ≈ O(10−2). This behavior is directly related
to the growth of the gluon distribution at small x.

To estimate the charm contribution to the structure function
we consider the formalism developed in Ref. [31] where the
charm quark is treated as a heavy quark and its contribution
is given by fixed-order perturbation theory. This involves the
computation of the boson-gluon fusion process γ ∗g → cc.
A cc pair can be created by boson-gluon fusion when the
squared invariant mass of the hadronic final state is W 2 � 4m2

c .

Because W 2 = Q2(1−x)
x

+ M2
N , where MN is the nucleon

mass, the charm production can occur well below the Q2

threshold, Q2 ≈ 4m2
c , at small x. The charm contribution to

the proton/nucleus structure function, in leading order (LO),
is given by [32]

1

x
F c

2

(
x,Q2,m2

c

) = e2
c

αs(µ2)

2π

∫ 1

ax

dy

y
Cc

g,2

(
x

y
,ξ

)
g(y,µ2),

(1)
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FIG. 2. Bottom structure function, F b
2 , computed with the KLN model. Data are from Ref. [30].

where a = 1 + ξ (ξ ≡ m2
c

Q2 ) and the renormalization scale µ is

assumed to be either µ2 = 4m2
c or µ2 = 4m2

c + Q2. Cc
g,2 is the

coefficient function given by

Cc
g,2(z, ξ ) = {[z2 + (1 − z)2 + 4ξ z (1 − 3z) − 8ξ 2 z2]

× ln H + β [−1 + 8z (1 − z) − 4ξ z (1 − z)]},
(2)

where β = 1 − 4 ξz

(1−z) and H = 1+β

1−β
.

The dominant uncertainty in QCD calculations comes from
the uncertainty in the charm quark mass. In this article we
assume mc = 1.2 GeV. In Eq. (1), g(y, µ2) is the gluon
distribution, which is usually taken from the CTEQ [33],
MRST [34], or GRV [35] parametrizations. In what follows
we shall use the KLN Ansatz

xg(x,Q2) =
⎧⎨
⎩

κ0

αs

(
Q2

s

)SQ2 (1 − x)D, Q2 < Q2
s ,

κ0

αs

(
Q2

s

)SQ2
s (1 − x)D, Q2 > Q2

s .
(3)

In the above expression, S is the area of the target and αs

is the running coupling αs = 12/[25π ln(Q2/�2)] (with � =
0.224 GeV). In Eq. (3), D = 4 and κ0 is a constant parameter
to be adjusted by requiring that the distribution xg(x,Q2)
satisfies the momentum sum rule

∫ 1
0 dxxg(x,Q2) = p, where

p is the value obtained with the GRV98 gluon density. Qs is

the saturation scale given by

Q2
s (x) = Q2

0

(x0

x

)λ

, (4)

where Q2
0 = 0.34 GeV2, x0 = 3.0 × 10−3, and λ = 0.25.

In Fig. 1 we show Fc
2 as a function of x obtained with

the above expression and compared to the ZEUS and H1
data. Solid and dashed lines correspond to different choices
for the renormalization scale. We can observe that there
is a surprisingly good agreement between the KLN model
and the data, especially considering that only minor changes
in the parameters were made, with respect to those found
previously in the analysis of RHIC data [26]. We can also
obtain a reasonable description of large Q2 data, which is also
surprising because the KLN model has no DGLAP evolution,
being tuned to the low x and low Q2 region of the phase space,
where gluon saturation is expected to occur. In Fig. 2 we show
the results for Fb

2 and compare them with the H1 data [36].
With the exception of the points with Q2 = 200 GeV2, the
agreement with data is similar to the one found for Fc

2 .
New experimental HERA data on FL have recently ap-

peared [37]. The longitudinal structure function in deep
inelastic scattering is one of the observables from which the
gluon distribution can be unfolded. Longitudinal photons have
zero helicity and can exist only virtually. In the quark model,
helicity conservation of the electromagnetic vertex yields the
Callan-Gross relation, FL = 0, for scattering on quarks with

035211-3
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FIG. 3. Longitudinal structure function FL computed with the
KLN model and with the gluon distributions taken from CTEQ6L
(dash dotted line), MRST98 (dotted line), and GRV98 (dashed line).
Data are from Ref. [37].

spin 1/2 [38]. This does not hold when the quarks acquire
transverse momenta from QCD radiation.

Instead, QCD yields the Altarelli-Martinelli equation [39]

FL(x,Q2) = αs(Q2)

2π
x2

∫ 1

x

dy

y3

[
8

3
F2(y,Q2)

+ 4
∑

q

e2
q

(
1 − x

y

)
y g(y,Q2)

]
, (5)

expliciting the dependence of FL on the strong coupling
constant and the gluon density. At small x the second term
with the gluon distribution is the dominant one. In Ref. [40]
the authors have suggested that expression (5) can be rea-
sonably approximated by FL(x,Q2) ≈ 0.3 4αs

3π
xg(2.5x,Q2),

which demonstrates the close relation between the longitudinal
structure function and the gluon distribution.

In what follows we calculate FL using the Altarelli-
Martinelli equation, neglecting the F2 contribution and using
Eq. (3) in Eq. (5). The results are presented in Fig. 3, where
they are compared with the very recent H1 data [37] and
with the results obtained with the help of other standard
gluon distribution functions. The agreement between the

FIG. 4. Ratio full to linear (explained in the text) F cA
2 for A = 208.

FIG. 5. Ratios Rc (top) and RL (bottom) predicted by the KLN
model for A = 208 and different values of Q2.

FIG. 6. Ratio Rc calculated with the KLN, DS, and EPS nuclear
gluon distribution functions for A = 208 and Q2 = 2 (top) and Q2 =
11 (bottom) GeV2.
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FIG. 7. Ratio RL = calculated with the KLN, DS, and EPS
nuclear gluon distribution functions for A = 208 and Q2 = 2 (top)
and Q2 = 11 (bottom) GeV2.

KLN predictions and data is remarkably good. This is again
surprising because the KLN distribution is not expected to
work so well at such large values of Q2. The good agreement
indicates that the KLN distribution has a good asymptotic
behavior and it is compatible both with the data and with the
other standard gluon distributions.

Having checked that the KLN distribution reproduces sat-
isfactorily the existing DIS data on electron-proton collisions,
we now use it to make predictions for electron-ion collisions.
The expression for the nuclear charm structure function F

c,A
2 is

the same except for the change g(y,Q2) → gA(y,Q2), where
gA(y,Q2) is obtained from Eq. (3) with the replacements
S → SA = A2/3S and Q2

s → Q2A
s , where Q2A

s = A1/3Q2
s . To

estimate the strength of nonlinear effects in eA processes,
we can compute the linear contribution to FcA

2 using only the

second line of Eq. (3). We call this F
c(linear)
2 and compare it with

F
c(full)
2 , where the latter is calculated with both lines of Eq. (3)

and thus includes nonlinear effects. The ratio F
c(full)
2 /F

c(linear)
2

as a function of x is shown in Fig. 4 for A = 208 and for
several values of Q2.

The deviation of this ratio from unity shows the importance
of nonlinear effects. As expected, for large x and for large Q2

there are no saturation effects. In fact, saturation effects are
only noticeable at x < 10−6 and for small values of Q2. This
result confirms the findings of Ref. [41], where an estimate
of saturation effects in eA collisions performed with the color
dipole approach also led to the conclusion that they are only
marginally visible in F

c,A
2 . Having an idea of where saturation

effects could be relevant, we can compute an observable
quantity, which is Rc(x,Q2) = F

c,A
2 (x,Q2)/AF

c,p

2 (x,Q2).
The deviation from unity in this ratio is an indication of satu-
ration physics. A depletion in this ratio is called “shadowing,”
whereas an enhancement is called “antishadowing.”

In Fig. 5 in the top panel we calculate Rc and estimate
the magnitude of shadowing, which can be of 50% at very
low (but still reachable) values of x and Q2. The equivalent
ratio for the longitudinal structure functions RL(x,Q2) =
FA

L (x,Q2)/AF
p

L (x,Q2) is shown in the bottom panel of
Fig. 5 for the same choices of Q2. We observe that significant
nonlinear effects start to appear at larger values of x. RL

seems thus more promising than Rc. Following Ref. [41]
we compare the normalized ratios Rc and RL obtained with
the KNL model with the same ratios computed with the
standard collinear factorization approach with nuclear parton
distribution functions (nPDFs). We take two extreme cases,
one with almost no shadowing at all, based on the nPDFs of
de Florian and Sassot (called here DS) [42], and one with
maximum shadowing, based on the Eskola, Paukkunen, and
Salgado nPDF’s (called here EPS) [43].

The ratios Rc and RL are shown in Figs. 6 and 7,
respectively. From the figures we see that the KLN model
interpolates between the two extreme parametrizations, DS
and EPS, being closer to the latter. This is expected, because
the EPS gluon distribution comes from a fit of world data where
BRAHMS data on forward particle production were included.
Both KLN and EPS take RHIC data into account.

In summary, we have used the KLN model for the low
x gluon distributions, slightly changing the parameters fixed
from previous analysis, to fit HERA data on FL and Fc

2 . Having
checked that this model gives a good description of the data, we
have used it to predict FL and Fc

2 to be measured in electron-ion
collisions. The results are close to those obtained with the DS
and EPS nuclear gluon distributions. The conclusion of this
exercise is that the KLN model, simple as it is, may still be
used as an auxiliary tool to make estimates both for heavy-ion
and electron-ion collisions.
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