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We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton
distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of
the purely transverse momentum transfer, our nuclear GPDs become impact-parameter-dependent nuclear parton
distribution functions (PDFs). Nuclear shadowing induces nontrivial correlations between the impact parameter
b and the light-cone fraction x. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude
and the DVCS cross section on 208Pb at high energies. We calculate the cross section of the Bethe-Heitler (BH)
process and address the issue of the extraction of the DVCS signal from the eA → eγA cross section. We find
that the eA → eγA differential cross section is dominated by DVCS at the momentum transfer t near the minima
of the nuclear form factor. We also find that nuclear shadowing leads to dramatic oscillations of the DVCS
beam-spin asymmetry, ALU , as a function of t . The position of the points where ALU changes sign is directly
related to the magnitude of nuclear shadowing.
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I. INTRODUCTION

Hard exclusive reactions and generalized parton distribu-
tions (GPDs) have been at the focus of hadronic physics for
the past decade [1–6]. GPDs interpolate between elastic form
factors and structure functions and contain detailed informa-
tion on distributions and correlations of partons (quarks and
gluons) in hadronic targets (pions, nucleons, and nuclei). In
particular, GPDs describe the distribution of partons both in the
longitudinal momentum direction and in the impact parameter
(transverse) plane [7] and also allow us to access the total
angular momentum of the target carried by the partons [8].

The QCD factorization theorems for hard exclusive pro-
cesses [9,10] state that GPDs are universal distributions
that enter the perturbative QCD description of various hard
exclusive processes such as deeply virtual Compton scattering
(DVCS), γ ∗T → γ T (where T denotes any hadronic target),
exclusive production of mesons, γ ∗T → M T [where M

denotes a (pesudo)scalar or a vector meson], and many other
processes, including generalizations of these two reactions.

Although the factorization theorems make it theoretically
possible to extract GPDs from the data, this is a difficult
task in practice since GPDs are functions of four variables
and the GPDs enter experimentally measured observables
in the form of convolution with hard coefficient functions.
Therefore, there is a clear need for modeling GPDs, both to
interpret the results of the completed experiments in terms of
the microscopic structure of the hadron target and also to plan
future experiments.
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In this work, we study quark and gluon GPDs of heavy
nuclei and DVCS on nuclear targets at small values of Bjorken
xB (large energies). In particular, we generalize the theory
of leading twist nuclear shadowing [11–13] to the case of
GPDs and compute next-to-leading order quark and gluon
GPDs of nuclei for 10−5 � xB � 0.2 and at a fixed virtuality
Q2. Using the obtained nuclear GPDs, we compute the DVCS
amplitude, the DVCS cross section, and the DVCS beam-spin
asymmetry for the heavy nuclear target of 208Pb. Our results
can be summarized as follows:

(i) Leading twist nuclear shadowing suppresses very sig-
nificantly the DVCS amplitude and the DVCS cross
section at small values of Bjorken xB .

(ii) In the ξ → 0 limit, nuclear GPDs reduce to impact-
parameter-dependent nuclear parton distribution func-
tions (PDFs). Therefore, nuclear GPDs allow one
to access the spatial image of nuclear shadowing.
The shadowing correction to nuclear GPDs introduces
nontrivial correlations between the light-cone fraction
x and the impact parameter b.

(iii) DVCS interferes with the purely electromagnetic
Bethe-Heitler (BH) process. At small values of the
momentum transfer t , which dominate coherent nuclear
DVCS (without nuclear breakup), and also for the
t-integrated cross sections, the BH cross section is
much larger than the DVCS one. This makes it rather
challenging to extract a small DVCS signal on the
background of the dominant BH contribution to the
eA → eγA cross section. However, owing to the rapid
t dependence, the DVCS cross section becomes (much)
larger than the BH cross section near the minima
of the nuclear form factor. This suggests that the
measurements of nuclear DVCS at the values of t close
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to the minima of the nuclear form factor will not only be
very sensitive to the magnitude of nuclear shadowing
(owing to the suppression of the nonshadowed Born
contribution) but will also have a sufficiently small BH
contribution.

(iv) Another possible way to access nuclear GPDs in the
small xB region is through the measurement of the
DVCS beam-spin asymmetry, ALU . Nuclear shadowing
causes dramatic oscillations of the asymmetry at fixed
φ = 90◦ as a function of the momentum transfer t .
The position of the points where ALU changes sign is
directly related to the magnitude of nuclear shadowing.

The rest of the paper is structured as follows. In Sec. II we
derive the expression for nuclear shadowing for nuclear GPDs.
In Sec. III, we analyze the ξA → 0 limit of the resulting nuclear
GPDs, point out the equivalence of the nuclear GPDs in this
limit to the impact-parameter-dependent nuclear PDFs, and
discuss the spacial image of nuclear shadowing. Predictions for
DVCS observables (the DVCS amplitude and cross section and
the beam-spin DVCS asymmetry) are presented and discussed
in Sec. IV. Finally, we summarize and draw conclusions in
Sec. V.

II. LEADING TWIST NUCLEAR SHADOWING AND
NUCLEAR GPDs

The nuclear structure function F2A(xB,Q2) measured
in inclusive deep inelastic scattering (DIS) with nuclear
targets differs from the sum of free nucleon structure
functions F2N (xB,Q2) over the entire range of values of
Bjorken xB [14–17]. In particular, for small values of
xB, 10−5 � xB � 0.05–0.1, F2A(xB,Q2)/[AF2N (xB,Q2)] <

1, which is called nuclear shadowing.
As we learned from DIS with fixed nuclear targets, the

effect of nuclear shadowing is quite large for small xB . The
kinematics of the future high-energy collider [18,19] will cover
the small-xB region, where the effect of nuclear shadowing will
play a major role.

The leading twist theory of nuclear shadowing [11–13] is an
approach to nuclear shadowing, in which nuclear shadowing
in DIS with nuclei is explained in terms of hard diffraction
in lepton-nucleon DIS. In particular, by using the QCD fac-
torization theorems for inclusive and hard diffractive DIS and
generalizing the result for nuclear shadowing in pion-deuteron
scattering obtained by Gribov [20], the leading twist theory
of nuclear shadowing makes predictions for the shadowing
correction to nuclear PDFs, δfj/A(xB,Q2) ≡ fj/A(xB,Q2) −
Afj/N (xB,Q2), in terms of the free nucleon (proton) diffractive
PDFs f

D(4)
j/N for small values of xB, 10−5 � xB � 0.2. One

should note that the generalization of Gribov’s result to
DIS and to nuclei heavier than deuterium makes an explicit
assumption that the diffractive state produced in the interaction
with the first nucleon of the target elastically rescatters off the
rest of the nucleons (quasi-eikonal approximation) [11–13]. In
the limit of low nuclear density, when the interaction with only
two nucleons of the target is important, the relation between
δfj/A(xB,Q2) and f

D(4)
j/N is model independent. Since f

D(4)
j/N is

A(PA)

γ∗(q) γ

A (PA)

FIG. 1. DVCS on a nuclear target.

a leading twist quantity, so is δfj/A(xB,Q2), which explains
the name leading twist theory of nuclear shadowing.

In this work, we generalize the theory of leading twist
nuclear shadowing of usual nuclear PDFs [11–13] to the off-
forward kinematics, DVCS on nuclear targets, and nuclear
GPDs. The DVCS amplitude on any hadronic target is defined
as a matrix element of the T -product of two electromagnetic
currents (see, e.g., Ref. [3]),

H
µν

A = −i

∫
d4xe−i q·x〈P ′

A|T {Jµ(x)J ν(0)}|PA〉, (1)

where q(−q2 = Q2) is the momentum of the virtual photon
and PA and P ′

A are the momenta of the initial and final nucleus,
respectively. DVCS on a nuclear target is presented in Fig. 1.

For the analysis of the matrix element in Eq. (1), it is conve-
nient to introduce two lightlike vectors p̃ = 1/

√
2(1, 0, 0, 1)

and n = 1/
√

2(1, 0, 0,−1) and to work in the so-called
symmetric frame, where q and the average momentum of the
initial and final nucleus, P̄A ≡ (PA + P ′

A)/2, are large and
have no transverse component (with respect to the lightlike
directions defined by p̃ and n). Then, the involved momenta
can be parameterized as [3]

PA = (1 + ξA)P̄ +
A p̃ + M̄2

A

2P̄ +
A

(1 − ξA)n −
	�⊥
2

,

P ′
A = (1 − ξA)P̄ +

A p̃ + M̄2
A

2P̄ +
A

(1 + ξA)n +
	�⊥
2

,

(2)

� ≡ P ′
A − PA = −2ξAP̄ +

A p̃ + ξA

M̄2
A

P̄ +
A

n + 	�⊥,

q = −2ξAP̄ +
A p̃ + Q2

4ξAP̄ +
A

n,

where P̄ +
A ≡ P̄A · n; M̄2

A = M2
A − t/4, with MA the mass of

the nucleus and t = �2 the momentum transfer squared; Q2

is the photon virtuality; 	�⊥ is the component of � orthogonal
to the vectors p̃ and n. As follows from the decomposition of
Eq. (2),

ξA = Q2

4 P̄A · q
≈ xA

2 − xA

, (3)

where xA is the Bjorken variable with respect to the nuclear
target,

xA = Q2

2PA · q
= 1

A
xB. (4)

The Bjorken variable xB is defined in the usual way with
respect to a free nucleon.

In this work, we shall consider spinless nuclei since we
are not concerned with spin effects in nuclear shadowing.
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FIG. 2. Feynman graphs corresponding to the DVCS amplitude on a nuclear target, H
µν

A , showing the impulse (Born) approximation (a)
and the shadowing correction arising from the interaction with two nucleons (b) and three nucleons of the target (c), respectively.

To the leading twist accuracy and to the leading order in
the strong coupling constant, H

µν

A of a spinless nucleus is
expressed in terms of a single generalized parton distribution,
HA, convoluted with the hard scattering coefficient function
C+(x, ξA), (see, e.g., Ref. [3]),

H
µν

A = −g
µν

⊥

∫ 1

−1
dx C+(x, ξA)HA(x, ξA, t,Q2)

≡ −g
µν

⊥ HA(ξA, t,Q2), (5)

where g
µν

⊥ = gµν − p̃µnν − p̃νnµ and C+(x, ξA) = 1/(x −
ξA + iε) + 1/(x + ξA − iε). The function HA is also called
the Compton form factor (CFF).

At sufficiently high energies (small Bjorken xB), the
virtual photon interacts with many (all) nucleons of the
target and the DVCS amplitude on a nuclear target, H

µν

A ,
receives contributions from the graphs presented in Fig. 2.
Figures 2(a), 2(b), and 2(c) correspond to the interaction
with one, two, and three nucleons, respectively. Graphs that
correspond to the interaction with four and more nucleons of
the target are not shown, but they are implied. Therefore, H

µν

A

can be written as the following sum:

H
µν

A = H
(a)µν

A + H
(b)µν

A + H
(c)µν

A + · · · , (6)

where the terms in the right-hand side correspond to the graphs
shown in Figs. 2(a), 2(b), and 2(c), respectively.

A. Impulse approximation

Let us start with the calculation of the graph shown in
Fig. 2(a). For the case of a deuterium target, the derivation
was done in Ref. [21]. Therefore, in this section, we shall
follow Ref. [21], making straightforward generalizations to
heavier nuclei and high-energy kinematics. The calculation of
the graph in Fig. 2(a) can be carried out straightforwardly using
the light-cone (LC) formalism. In this formalism, each state
is characterized by its plus-momentum p+ = p · n = (p0 +
p3)/

√
2, the transverse momentum 	p⊥, and the helicity λ. The

minimal Fock component of the nuclear state |PA〉 is expressed
in terms of the nuclear LC wave function φA and the product

of nucleon states as

|P +
A , 	P⊥A〉

=
∑
λi

∫ A∏
i=1

dαi√
αi

d2	k⊥i

16π3
16π3δ

⎛
⎝ A∑

j=1

αj − 1

⎞
⎠δ

⎛
⎝ A∑

j=1

	k⊥j

⎞
⎠

×φA(α1, 	k⊥1, λ1, α2, 	k⊥2, λ2, . . .)

× |αiP
+
A , 	k⊥i + αi

	P⊥A, λi〉, (7)

where αi = p+
i /P +

A is the fraction of the nucleus plus-
momentum carried by nucleon i. Since we are not concerned
with the correlations of nucleons in the target nucleus, we
take φA as a product of the LC wave functions of individual
nucleons, φN ,

φA(α1, 	k⊥1, λ1, α2, 	k⊥2, λ2, . . .) =
A∏

i=1

φN (αi, 	k⊥i , λi). (8)

Substituting Eq. (7) for the initial and final nuclear states in
the nuclear DVCS amplitude [Eq. (5)], we obtain

H
(a)µν

A = −i

∫
d4xe−i q·x ∑

N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

× ρN
A (α′, 	k′

⊥, λ|α, 	k′
⊥, λ)

×〈p′
N |T {Jµ(x)J ν(0)}|pN 〉, (9)

where
∑

N denotes the sum over active (interacting) nucleons.
In Eq. (9) and in the rest of the paper, we neglect the
off-shellness of the nucleons in the photon-nucleon scattering
amplitude, which is a small correction of O(ε/mN ), where ε

is the average nuclear binding energy and mN is the mass of
the nucleon. The effect of the off-shellness in nuclear DVCS
was considered and estimated in Refs. [22,23].

The initial and final states of the active nucleon are

|pN 〉 =
∣∣∣∣∣α(1 + ξA)P̄ +

A , 	k⊥ − α
	�⊥
2

, λ

〉
,

(10)

|p′
N 〉 =

∣∣∣∣∣α′(1 − ξA)P̄ +
A , 	k′

⊥ + α′ 	�⊥
2

, λ

〉
.

The LC fraction and the transverse momentum of the ac-
tive nucleon are found from the conservation of the LC
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energy-momentum in the elementary γ ∗N → γN vertex:

α′ = 1 + ξA

1 − ξA

α − 2ξA

1 − ξA

≈ α − 2ξA,

(11)
	k′
⊥ = 	k⊥ + 1 − α

1 − ξA

	�⊥ ≈ 	k⊥ + (1 − α) 	�⊥.

In these equations, the approximate relations hold after one
neglects ξA compared to unity.

The function ρN
A is the overlap between the initial and final

nuclear LC wave functions,

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

=
(√

1 + ξA

1 − ξA

)A−1

φ∗
N (α′, 	k′

⊥, λ)φN (α, 	k⊥, λ)

×
∑
λi

∫ A∏
i=2

dαi d2	k⊥i

16π3
δ

⎛
⎝α +

A∑
j=2

αj − 1

⎞
⎠

× 16π3δ

⎛
⎝	k⊥ +

A∑
j=2

	k⊥j

⎞
⎠ |φN (αi, 	k⊥i , λi)|2

≈ φ∗
N (α′, 	k′

⊥, λ)φN (α, 	k⊥, λ). (12)

The last line is an approximation valid for sufficiently large
nuclei, when the effects associated with the motion of the
center of mass of the nucleus (taken into account by the
δ functions) can be safely neglected. Note that helicity
conservation requires that the helicity of the active nucleon
be the same in the initial and in the final state.

The matrix element in Eq. (9) can be evaluated by making a
transverse boost to the symmetric frame of the active nucleon
[21]. In that frame, one can use the standard definition,

−i

∫
d4xe−i q·x〈p′

N |T {Jµ(x)J ν(0)}|pN 〉

= H
µν

N (ξN, t,Q2), (13)

where H
µν

N is the DVCS amplitude for the bound nucleon. The
skewedness ξN is determined with the respect to the active
nucleon,

ξN ≡ Q2

4p̄N · q
= ξA

(1 + ξA)α − ξA

, (14)

where p̄N = (pN + p′
N )/2. Therefore, we obtain the connec-

tion between the DVCS amplitudes for the nuclear target and
for the bound nucleon,

H
(a)µν

A =
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×H
µν

N (ξN, t,Q2). (15)

To the leading twist accuracy, the DVCS amplitude for the
bound nucleon is parametrized in terms of four nucleon GPDs,
HN,EN, H̃N and ẼN :

H
µν

N (ξN, t,Q2)

= 1

2p̄+
N

(−g̃
µν

⊥ )
∫ 1

−1
dxC+(x, ξN )

×
[
HN (x, ξN , t)ū(p′

N )γ +u(pN )

+EN (x, ξN , t)ū(p′
N )

iσ+λ�λ

2mN

u(pN )

]
+ · · · , (16)

where · · · denotes the contribution of the GPDs H̃N and ẼN .
The tensor g̃

µν

⊥ is defined in the boosted frame (the symmetric
frame of the active nucleon) and, to a good accuracy, is equal
to g

µν

⊥ entering Eq. (5),

g̃
µν

⊥ ≡ gµν − q̃µ ˜̄pν
N + q̃ν ˜̄pµ

N

q̃ · p̃N

+ q̃µq̃ν

(q̃ · p̃N )2
˜̄p2

N + ˜̄pµ

N q̃ν

( ˜̄pN · p̃N )2
q2

≈ gµν − p̃µnν − p̃νnµ + O
(

x2
Bm̄2

N

Q2
,

1

Q2R2
A

)
, (17)

where the vectors q̃ and ˜̄pN refer to the boosted frame, m̄2
N =

m2
N − t/4, and RA is the nuclear radius. In the derivation of

Eq. (17) we used the fact that the transverse boost to the
symmetric frame of the active nucleon has not changed the
plus-component of the vectors and that the typical (transverse)
momenta of nucleons in a nucleus, | 	pN⊥| ∼ 1/RA, are small
compared to the virtuality Q2.

Using the fact that the helicities of the bound nucleon in
the initial and final states are the same and making a natural
assumption that ρN

A is the same for the λ = ±1 helicities, we
observe that the nucleon GPDs H̃ and Ẽ do not contribute
to Eq. (15), which is a consequence of the LC spinor algebra
(see, e.g., Ref. [21]). In addition, since we are interested in
the kinematics, where the values of xB and ξN are small, the
contribution of the GPDs E, which enters Eq. (15) with the
prefactor ξ 2

N , can be safely neglected. Therefore, we have that
the DVCS amplitude for the bound nucleon reads (keeping in
mind the equal helicities of the initial and final nucleon)

H
µν

N (ξN, t,Q2) = −g
µν

⊥
√

1 − ξ 2
N HN (ξN, t,Q2)

≈ −g
µν

⊥ HN (ξN, t,Q2), (18)

where HN is the CFF of the bound nucleon. Thus, we obtain
our final relation between the CFFs of the nuclear target in the
impulse approximation, H(a)

A , and that of the bound nucleon,

H(a)
A (ξA, t,Q2)

=
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×HN (ξN, t,Q2). (19)

It is important to point out that the integration over α

(longitudinal convolution) and 	k⊥ (transverse convolution)
takes into account the effect of the motion of the bound
nucleons in the target (Fermi motion effect). The Fermi motion
effect in DVCS on nuclear targets in the form of longitudinal
convolution was also considered in Refs. [21,24–27]. Both
the longitudinal and transverse convolutions along with the
modifications of the bound-nucleon GPDs, which depend on
	k⊥, were considered in Refs. [22,23].

To interpret the function ρN
A and to fix its normalization,

it is useful to consider the electromagnetic form factor of a
spin-0 nucleus, F em

A , which is defined as the matrix element of
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the operator of the electromagnetic current,

〈P ′
A|Jµ(0)|PA〉 = 2P̄

µ

A F em
A (t). (20)

Using the LC formalism just presented, we consider the plus-
component of Eq. (20) and obtain

2P̄ +
A F em

A (t) =
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×〈p′
N |J+(0)|pN 〉. (21)

In the reference frame in which we work, the momentum
transfer � is predominantly transverse at small xB [see Eq. (2)].
Therefore, the nucleon matrix element for the same nucleon
helicities is (predominantly) proportional to the Dirac nucleon
form factor, F1N (t):

〈p′
N |J+(0)|pN 〉 ≈ ū(p′

N )γ +u(pN )F1N (t) ≈ 2p̄+
NF1N (t)

= 2
ξA

ξN

P̄ +
A F1N (t). (22)

Therefore,

F em
A (t)

=
∑
N

F1N (t)
ξA

ξN

∑
λ

∫
dα√
αα′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

=
∑
N

FA(t) F1N (t), (23)

where we have introduced the nuclear form factor associated
with the distribution of nucleons in the nucleus (associated
with the nuclear density),

FA(t) ≡ ξA

ξN

∫
dα√
αα′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ). (24)

As follows from Eq. (23), FA(t) is normalized to unity
[FA(0) = 1]. This condition also fixes the normalization of
the nuclear LC wave function,∑

λ

∫
dα

α

d2	k⊥
16π3

ρN
A (α, 	k⊥, λ|α, 	k⊥, λ)

=
∑

λ

∫
dα

α

d2	k⊥
16π3

|φN (α, 	k⊥, λ)|2 = A. (25)

At small xB , the effect of the Fermi motion can be
safely neglected (see, e.g., Ref. [28]), and, as a consequence,
Eq. (19) can be significantly simplified as follows. The
function ρN

A is peaked around α ≈ 1/A. Thus, if one neglects
the Fermi motion of the bound nucleon, one evaluates ξN at
α = 1/A (where, for brevity, we shall use the same notation),
obtaining

ξN ≡ ξN (α = 1/A) = ξA

1
A

(1 + ξA) − ξA

≈ AξA. (26)

Therefore, by neglecting the Fermi motion and using
Eq. (24), Eq. (19) can be written in the following simplified
and approximate form:

H(a)
A (ξA, t,Q2) = ξN

ξA

∑
N

FA(t)HN (ξN, t,Q2). (27)

As a number of nucleons, H(a)
A scales as A2, which is a

natural scaling of the nuclear CFF [29]. The inclusion of the
Fermi motion effect and the effect associated with non-nucleon
degrees of the freedom in the nucleus modifies this intuitive
scaling [27,30].

The next important step is the conversion of the relation
between nucleus and nucleon CFFs [Eq. (27)] into a similar
relation between the corresponding GPDs. To the leading
twist accuracy and to the leading order in the strong coupling
constant,

HA(ξA, t) =
∫ 1

−1
dx HA(x, ξA, t)

×
(

1

x − ξA + iε
+ 1

x + ξA − iε

)
,

(28)

HN (ξN, t) =
∫ 1

−1
dxN HN (xN, ξN, t)

×
(

1

xN − ξN + iε
+ 1

xN + ξN − iε

)
.

The relevant quark LC fractions and momenta of the active
nucleon and the target nucleus are presented in Fig. 3.
Figure 3(a) represents the generic handbag approximation for
DVCS on a nuclear target, which expresses the CFF HA in
terms of the nuclear GPD HA and which corresponds to the
first line of Eq. (28).

At the same time, H(a)
A can be expressed in terms of the

nucleon CFF HN [see Eq. (27) and Fig. 3(b)]. In this case,
the nucleon GPD depends on the LC fractions ξN defined by
Eq. (14) and on xN , which is defined with respect to the active
nucleon,

xN ≡ k̄ · n

p̄N · n
= x

α(1 + ξA) − ξA

, (29)

where k̄ = (k + k′)/2 and k and k′ are the momenta of the
initial and final lepton, respectively. A useful consequence of
Eq. (29) is the proportionality of the LC fractions xN and x:

xN

ξN

= x

ξA

. (30)

This relation allows us to find the LC fractions of the
interacting quark in Fig. 3(b), which are equal to x + ξA =
(ξA/ξN )(xN + ξN ) and x − ξA = (ξA/ξN )(xN − ξN ), respec-
tively. Since the absolute value of xN cannot exceed unity, we
find that

|x| � ξA

ξN

≈ 1

A
. (31)

Note that the limit |x| � 1/A is standard for the approximation,
when the nucleus consists of A stationary nucleons. Using
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PA PA

x + ξA x− ξA

γ∗(q) γ

pN pN

PA PA

ξA
ξN

(xN + ξN ) ξA
ξN

(xN − ξN )

γ∗(q) γ

(a) (b)

FIG. 3. The handbag mechanism for DVCS
on a nuclear target. (a) The generic represen-
tation of nuclear GPDs. (b) A more detailed
representation of the same quantity in terms of
bound-nucleon GPDs. Shown are relevant quark
light-cone fractions and momenta of the active
nucleon and the target nucleus.

Eq. (19) and the second line of Eq. (28), we obtain

H(a)
A (ξA, t,Q2)

=
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×
∫ 1

−1
dxN HN (xN, ξN , t)

×
(

1

xN − ξN + iε
+ 1

xN + ξN − iε

)

=
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×
∫ ξA/ξN

−ξA/ξN

dx HN (xN, ξN, t)

×
(

1

x − ξA + iε
+ 1

x + ξA − iε

)
. (32)

Recalling the first line of Eq. (28) and the limits of integration
over x [Eq. (31)], we obtain the desired relation between the
nuclear GPD in the impulse approximation, H

(a)
A , and the

nucleon GPD:

H
(a)
A (ξA, t,Q2)

=
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

× HN (xN, ξN, t,Q2). (33)

We would like to note that Eq. (33) could also be derived by
starting directly from the definition of the nuclear GPD as
the matrix element between nuclear states and applying the
LC formalism for the nuclear states, as we did for the DVCS
amplitude.

Equation (33) is derived for the nuclear (nucleon) GPDs,
which are sums of quark GPDs weighted with the quark
electric charge squared. Certainly, the relation between the
nuclear and nucleon GPDs holds for individual parton flavors

(quarks and gluons):

H
j (a)
A (ξA, t,Q2)

=
∑
N

∑
λ

∫
dα√
α α′

d2	k⊥
16π3

ρN
A (α′, 	k′

⊥, λ|α, 	k⊥, λ)

×H
j

N (xN, ξN , t,Q2), (34)

where j is the parton flavor.
As we have already explained, the Fermi motion effect can

be safely neglected at large energies [see Eq. (27)]. In this case,
Eq. (34) can be simplified and written in the following form:

H
j (a)
A (x, ξA, t,Q2) ≈ ξN

ξA

∑
N

FA(t) H
j

N (xN, ξN , t,Q2). (35)

B. Double scattering correction

The graph in Fig. 2(b) describes the contribution to DVCS
on a nuclear target, when the interaction involves two nucleons
of the target. This graph gives the leading contribution to
nuclear shadowing. Details of the kinematics of the graph
in Fig. 2(b) are presented in Fig. 4.

PA PA

p1 p2

p2 p1

γ∗(q) γ

PA PA

α1xIP α1xIP − 2ξA

α1 α2

α1
α2

γ∗(q) γ

(a) (b)

FIG. 4. Double rescattering correction to DVCS on a nuclear
target. (a) The shadowing correction in terms of the γ ∗NN → γNN

amplitude. (b) An approximation based on the assumption that
the shadowing correction can be expressed in terms of DVCS on
a Pomeron, γ ∗IP → γ IP . Also shown are the relevant light-cone
momentum fractions.
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Using the LC formalism, we obtain the following expres-
sion for the contribution of the graph in Fig. 2(b):

H
(b)µν

A

= −i

∫
d4x e−iq·x ∑

pairs

∫
dα′

1√
α′

1α
′
2

d2	k′
⊥1

16π3

dα1dα2√
α1α2

d2	k⊥1d
2	k⊥2

(16π3)2

× ρ2N
A (α′

1α
′
2,

	k′
⊥1,

	k′
⊥2|α1, α2, 	k⊥1, 	k⊥2)

×〈p′
1p

′
2|T {Jµ(x)J ν(0)}|p1p2〉, (36)

where
∑

pairs denotes the sum over the pairs of the active
nucleons with momenta p1 and p2 in the initial state and with
momenta p′

1 and p′
2 in the final state. Each state is characterized

by the corresponding LC fractions and transverse momenta:

|p1,2〉 =
∣∣∣∣∣α1,2(1 + ξA)P̄ +

A , 	k⊥1,2 − α1,2

	�⊥
2

〉
,

(37)

|p′
1,2〉 =

∣∣∣∣∣α′
1,2(1 − ξA)P̄ +

A , 	k′
⊥1,2 + α′

1,2

	�⊥
2

〉
.

The LC fractions and the transverse momenta of the active
nucleons are related by the conservation of the LC energy-
momentum [see also Eq. (11)]:

α′
1 + α′

2 = α1 + α2 − 2ξA,
(38)	k′

⊥1 + 	k′
⊥2 = 	k⊥1 + 	k⊥2 + 	�⊥,

where we have neglected the factors ξA and α1,2 compared to
unity.

For brevity, we shall not show explicitly the nucleon
helicities, keeping in mind that the interaction does not change
the helicity of the nucleons. The function ρ2N

A is given by the
following overlap of the nuclear LC wave functions:

ρ2N
A (α′

1α
′
2,

	k′
⊥1,

	k′
⊥2|α1, α2, 	k⊥1, 	k⊥2)

= φ∗
N (α′

1,
	k′
⊥1)φN (α1, 	k⊥1)φ∗

N (α′
2,

	k′
⊥2)φN (α2, 	k⊥2)

×
∫ A∏

i=3

dαi d
2	k⊥i

16π3
δ

⎛
⎝ A∑

j=1

αj − 1

⎞
⎠

× 16π3δ

⎛
⎝ A∑

j=1

	k⊥j

⎞
⎠ |φN (α′

i ,
	k′
⊥i)|2

≈ φ∗
N (α′

1,
	k′
⊥1)φN (α1, 	k⊥1)φ∗

N (α′
2,

	k′
⊥2)φN (α2, 	k⊥2). (39)

Equation (36) is a general expression corresponding to the
graph in Fig. 2(b) and to the graph in Fig. 4(a). To proceed
with the derivation, we need to model the multiparticle
matrix element 〈p′

1p
′
2|T {Jµ(x)J ν(0)}|p1p2〉. Our model for

the 〈p′
1p

′
2|T {Jµ(x)J ν(0)}|p1p2〉 matrix element is based on

the studies of hard inclusive diffraction in DIS on the proton
at HERA in the reaction ep → eXp [31–34], which we shall
briefly review in the following.

The diffractive DIS ep → eXp reaction is presented in
Fig. 5. The ep → eXp cross section is expressed in terms

e

e

γ∗(q)

β

xIP

p p

X(MX)

FIG. 5. Diffractive DIS on the proton.

of the diffractive structure functions F
D(4)
2 and F

D(4)
L as

d4σD
ep

dxIP dtdxBdQ2

= 2πα2
em

xBQ4
[(1 + (1 − y)2)FD(4)

2 (xB,Q2, xIP , t)

− y2F
D(4)
L (xB,Q2, xIP , t)], (40)

where αem is the fine-structure constant and y = (p · q)/(p · k)
is the fractional energy loss of the incoming lepton. The vari-
ables t, xIP , and β are characteristic for diffractive processes,

t = (p′ − p)2,

xIP = q · (p − p′)
q · p

≈ M2
X + Q2

W 2 + Q2
, (41)

β = x

xIP

= Q2

2q · (p − p′)
≈ Q2

Q2 + M2
X

,

where MX is the invariant mass of the diffractively produced
final state and W 2 = (q + p)2. The variable xIP is the fraction
of the proton LC momentum lost in the diffractive scattering
(the LC fraction carried by the Pomeron); β is the LC
momentum carried by the interacting quark (parton). As
follows from the definition of xIP , the minimal value of xIP is
equal to Bjorken xB , which corresponds to MX = 0. Typically,
the contribution of F

D(4)
L is neglected because of its smallness

and because of the kinematic suppression by the y2 factor.
One of the main physics results of HERA is the observation

that hard diffraction in DIS constitutes a fairly large part (10%–
15%) of all DIS events and that hard diffraction in DIS is a
leading twist phenomenon, that is, that the diffractive structure
function F

D(4)
2 approximately scales (i.e., it only weakly—

logarithmically—depends on Q2).
The factorization theorem for hard diffraction in DIS [35]

states that, at given fixed t and xIP , the diffractive structure
function F

D(4)
2 can be written as a convolution of the hard

scattering coefficient function Cj with the universal diffractive
parton distributions f

D(4)
j (where j is the parton flavor):

F
D(4)
2 (x,Q2, xIP , t) = x

xIP

∑
j=q,q̄,g

∫ 1

x/xIP

dβ ′

β ′ Cj

(
x

xIP β ′ ,Q
2

)

× f
D(4)
j (β ′,Q2, xIP , t). (42)
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It is a phenomenological observation, which follows from the
QCD analysis of the HERA data on inclusive diffraction, that
the diffractive PDFs f

D(4)
j can be written as a product of the

Pomeron flux fIP/p, the parton distribution function of the
Pomeron, fj/IP , and the factor describing the t dependence,

f
D(4)
j (β,Q2, xIP , t) = fIP/p(xIP )fj/IP (β,Q2)Bdiff eBdiff t .

(43)

In Eq. (43), we neglected the contribution of the subleading
(Reggeon) exchange, which is not important in the considered
kinematics. The Pomeron flux has the following form [33,34]:

fIP/p(xIP ) =
∫ tmin

−1 GeV2
dt AIP

eBIP t

x
2αIP (t)−1
IP

,

(44)
αIP (t) = αIP (0) + α′

IP t,

where tmin ≈ −m2
Nx2

B ≈ 0, BIP = 5.5 GeV−2, αIP (0) = 1.111
(Fit B of Ref. [33]), and α′

IP = 0.06 GeV−2. The coefficient AIP

is found from the condition xIP fIP/p(xIP ) = 1 at xIP = 0.003.
The PDFs of the Pomeron, fj/IP , are found from global fits

to the HERA data on hard diffraction taken by the ZEUS
and H1 experiments [31–34] using the QCD factorization
theorem [Eq. (42)]. One of the main results of such fits is
that the gluon diffractive PDFs is much larger than the quark
diffractive PDFs.

The t dependence of hard inclusive diffraction at HERA
was recently measured by the H1 Collaboration using the
forward proton spectrometer, which allows the final proton
to be detected [34]. In the kinematics of the experiment, the
data were well described by the simple exponential form [Eq.
(43)] with the slope Bdiff ≈ 6 GeV−2. (Note that f

D(4)
j has the

dimension GeV−2.)
Our model for the 〈p′

1p
′
2|T {Jµ(x)J ν(0)}|p1p2〉 matrix

element is based on the observation that, in the considered
kinematics, the interaction of the active nucleons with the
virtual and real photons has a diffractive character and, hence,
proceeds via the t-channel exchange with the vacuum quantum
numbers (i.e., the Pomeron). The model is schematically
presented in Fig. 4(b). The space-time picture of the process is
the following. Nucleon 1 with longitudinal momentum fraction
α1 emits a Pomeron with momentum fraction α1xIP . The
virtual photon undergoes DVCS on that Pomeron, producing a
real photon and a Pomeron with the LC fraction α1xIP − 2ξA,
which is absorbed by nucleon 2. Note that although the
skewedness ξA is fixed by the external kinematics, the variable
xIP is integrated over since it is related to the LC fractions of
the active nucleons,

α′
1 = α1 − α1xIP ,

(45)
α′

2 = α2 + α1xIP − 2ξA.

The variable xIP has a clear physical interpretation: It is the
fraction of the LC momentum of the nucleon carried by the
Pomeron (see the previous discussion of diffraction in DIS).
Whereas xIP is the relevant variable for the Pomeron emitted by
nucleon 1, for the Pomeron emitted by nucleon 2, the relevant

fraction is

α′
2 − α2

α2
= α1xIP − 2ξA

α2
≈ xIP − 2ξN . (46)

Based on this discussion, our model for
〈p′

1p
′
2|T {Jµ(x)J ν(0)}|p1p2〉 reads

−i

∫
d4x e−iq·x〈p′

1p
′
2|T {Jµ(x)J ν(0)}|p1p2〉

= −(2π )kη16πBdiff φIP/N (xIP )φIP/N (xIP − 2ξN )

× 1

xIP

H
µν

IP (ξIP , t,Q2), (47)

where kη = (1 − iη)2/(1 + η2), η ≈ π/2(αIP (0) − 1) ≈ 0.17
is the ratio of the real to imaginary parts of the γ ∗N →
XN diffractive amplitude [11–13], φIP/N is the probability
amplitude of emitting a Pomeron off the nucleon, and H

µν

IP is
the DVCS amplitude on the Pomeron. In our analysis, we take
φIP/N (xIP ) = √

fIP/p(xIP ), where the Pomeron flux is defined
by Eq. (44). The DVCS amplitude on the Pomeron, H

µν

IP , is
modeled by using the PDFs of the Pomeron, fj/IP , which enter
Eq. (43). The t dependence of H

µν

IP is given by the factor eBdiff t .
The skewedness ξIP is defined with respect to the Pomeron

[compare to Eq. (14)],

ξIP = Q2

4 p̄IP · q
= ξA

α1xIP − ξA

, (48)

where p̄IP = (pIP + p′
IP )/2 with pIP and p′

IP the momenta of
the Pomerons emitted by nucleon 1 and nucleon 2, respectively.

A few words are in order about the remaining factors in
Eq. (47). The factor of 2π comes from the standard definition
of the connection between the Compton scattering amplitude
and the structure functions. The factor of 16π is specific
for diffraction and has its origin in the optical theorem (see,
e.g., Ref. [11]). Note also the overall minus sign, which is a
consequence of the fact that the considered matrix element is
essentially a product of two scattering amplitudes, which are
predominantly imaginary at high energies.

To implement Eq. (47) in Eq. (36), we insert the following
identity in Eq. (36):

1 =
∫

dα′
2 dxIP δ(α′

2 − α2 − α2(xIP − 2ξN ))

× δ(α′
1 − α1 + α1xIP )α1. (49)

Inserting Eq. (47) in Eq. (36), we obtain

H
(b)µν

A = −e

{∑
pairs

∫
dα′

1dα′
2√

α′
1α

′
2

d2	k′
⊥1

16π3

dα1dα2√
α1α2

d2	k⊥1d
2	k⊥2

(16π3)2

×
∫ 0.1

xmin
IP

dxIP δ(α′
2 − α2 − α2(xIP − 2ξN ))

× δ(α′
1 − α1 + α1xIP )α1φ

∗
N (α′

1,
	k′
⊥1)φN (α1, 	k⊥1)

×φ∗
N (α′

2,
	k′
⊥2)φN (α2, 	k⊥2)kη(32π2)

×BdiffφIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
µν

IP (ξIP , t,Q2), (50)
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where xmin
IP = max{xN, 2ξN }. The limits of integration over

xIP deserve a comment. The lower limit of integration is the
simultaneous requirement that the Pomeron LC fraction in
Eq. (46) is non-negative [see also Fig. 4(b)] and that the
Pomeron LC fraction is larger than the LC fraction of the
active quark, xIP � xN . The upper limit of integration is the
standard condition on the produced diffractive masses, which
can be cast in the form xIP � 0.1.

In addition, in Eq. (50) we made an assumption that
multiple interactions with the target nucleons lead only to
the attenuation of H

(b)µν

A and do not introduce an additional
imaginary contribution. This amounts to taking the real part of
the expression describing the interaction with two nucleons of
the target.

For comparison with the predictions of the leading twist
theory of nuclear shadowing for nuclear PDFs and for the
convenience of numerical calculations, we evaluate the overlap
of the nuclear LC wave functions in Eq. (50) in coordinate
space. The Fourier transform of the nuclear LC wave function
reads

φN (α, 	k⊥) =
√

2mN

∫
dz d2 	beimN αz+i	k⊥·	bφN (z, 	b). (51)

The normalization of the LC wave function in momentum
space [Eq. (25)] fixes the normalization of the wave function
in coordinate space,∫

dz d2 	b|φN (z, 	b)|2 ≡
∫

dz d2 	bρA(z, 	b) = 1, (52)

where ρA(z, 	b) is the nuclear density. We have used that α ≈
1/A. In our numerical analysis, we used a two-parameter Fermi
form for ρA(z, 	b) [36].

Thus, substituting Eq. (51) into Eq. (50), using the approx-
imation

α1√
α′

1α
′
2α1α2

≈ A ≈ ξN

ξA

, (53)

and integrating over the LC fractions and the transverse
momenta, we obtain our final expression for H

(b)µν

A :

H
(b)µν

A = −A(A − 1)

2

ξN

ξA

16πBdiffe

×
{∫

d2 	bei 	�⊥·	b
∫ ∞

∞
dz1

∫ ∞

z1

dz2

×
∫ 0.1

xmin
IP

dxIP ρA(b, z1)ρA(b, z2)

× kηe
−imN z2(xIP −2ξN )+imN z1xIP

×φIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
µν

IP (ξIP , tmin,Q
2), (54)

where we have used
∑

pairs = A(A − 1)/2. Note that to
perform the Fourier transform, we neglected the weak t

dependence of H
µν

IP compared to the rapid t dependence of the
nuclear distribution and, hence, evaluated H

µν

IP at the minimal
momentum transfer tmin ≈ −m2

Nx2
B ≈ 0. We also introduced

the z2 > z1 ordering to reflect the space-time evolution of
γ ∗NN → γNN scattering (see also, e.g., Ref. [37]).

Equation (54) can be turned into the relation between the
nuclear GPD and GPD of the Pomeron, quite similarly to the
corresponding derivation in the previous section. The DVCS
amplitude on the Pomeron, H

µν

IP , is expressed in terms of the
CFF of the Pomeron, HIP , as

H
µν

IP (ξIP , t,Q2) ≈ −g
µν

⊥ HIP (ξIP , t,Q2), (55)

where we neglected the same terms as in Eq. (17). Therefore,
for the contribution from the graph in Fig. 2(b) to the nuclear
CFF we obtain

H(b)
A = −A(A − 1)

2

ξN

ξA

16πBdiffe

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

×
∫ ∞

z1

dz2

∫ 0.1

xmin
IP

dxIP ρA(b, z1)ρA(b, z2)

× kηe
−imN z2(xIP −2ξN )+imN z1xIP φIP/N (xIP )

×φIP/N (xIP − 2ξN )

}
1

xIP

HIP (ξIP , tmin,Q
2). (56)

To the leading twist accuracy and to the leading order in
the strong coupling constant, HIP can be expressed in terms of
the GPD of the Pomeron, HIP , as

HIP (ξIP , t) =
∫ 1

−1
dx ′HIP (x ′, ξIP , t)

×
(

1

x ′ − ξIP + iε
+ 1

x ′ + ξIP − iε

)
. (57)

Using the same argument that led to Eq. (30), we find that

x ′

ξIP

= x

ξA

= xN

ξN

, (58)

where x parametrizes the interacting quark LC fractions
in the graph in Fig. 3(a). Those fractions are equal to
x + ξA = (ξA/ξIP )(x ′ + ξIP ) and x − ξA = (ξA/ξIP )(x ′ − ξIP ),
respectively. Since |x ′| � 1, we find that |x| � ξA/ξIP . Thus,
substituting Eq. (56) into the first line of Eq. (28), changing
the integration variable from x to x ′ according to Eq. (58),
recalling Eq. (57), and noticing that the ensuing relation holds
not only for the DVCS amplitude written to the leading order
in the strong coupling constant but also for individual parton
flavors, we obtain the contribution of the graph in Fig. 2(b) to
the nuclear GPD of flavor j,H

j (b)
A , as

H
j (b)
A (x, ξA, t,Q2)

= −A(A − 1)

2

ξN

ξA

16πBdiffe

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

×
∫ ∞

z1

dz2

∫ 0.1

xmin
IP

dxIP ρA(b, z1)ρA(b, z2)kη

× e−imN z2(xIP −2ξN )+imN z1xIP φIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
j

IP

(
ξIP

ξN

xN, ξIP , tmin,Q
2

)
. (59)
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The GPD of the Pomeron, H
j

IP , is modeled by using the PDFs
of the Pomeron, fj/IP . In our numerical analysis, we used
the model of GPDs in which it is assumed that the effect of
skewedness in GPDs can be neglected at the initial evolution
scale. This model corresponds to the double distribution model
[38] with a δ-function-like profile [39]. The details are given
in Sec. IV

C. Quasi-eikonal approximation for multiple rescatterings and
the final expression for nuclear PDFs

To evaluate the contribution of the graph in Fig. 2(c),
we use the following high-energy (small xB) space-time
development of the process. The virtual photon diffractively
interacts with nucleon 1 and produces a certain diffractive state
X characterized by xIP (diffractive mass MX). The produced
state is then assumed to elastically scatter on A − 2 nucleons
of the target. Finally, the last interaction of the state X

with nucleon 2 produces the final real photon. This picture
of multiple rescattering at high energy corresponds to the
quasi-eikonal approximation for the graph in Fig. 2(c) and
higher rescattering terms. The quasi-eikonal approximation
was used in the evaluation of nuclear PDFs in the framework
of the leading twist theory of nuclear shadowing [11–13] and
in the evaluation of the DVCS amplitude on nuclei in the
framework of Generalized vector meson dominance model
[27].

Within the quasi-eikonal approximation, the multiple in-
teractions can be summed and can be cast in the form of the
eikonal attenuation factor,

T = e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)
, (60)

where σ
j

eff is the effective cross section, which determines the
strength of the rescattering of the state X off the nucleons. This
cross section is defined as [11–13]

σ
j

eff(xB,Q2) = 16πBdiff

(1 + η2)xBfj/N (xB,Q2)

×
∫ 0.1

xB

dxIP βfIP/p(xIP )fj/IP (β,Q2), (61)

where fj/N is the usual parton PDF of the nucleon. For a given
flavor j, σ

j

eff is proportional to the probability of diffraction
relative to the total probability of the interaction. As an
example, we present σ

j

eff as a function of xB at fixed Q2 =
2.5 GeV2 for the ū quark and gluon flavors in Fig. 6.

Thus, collecting all contributions to the nuclear GPD H
j

A,

H
j

A(x, ξA, t,Q2) = H
j (a)
A + H

j (b)
A + H

j (c)
A + · · · , (62)

we obtain our final expression for flavor j GPD of a heavy
spinless nucleus:

H
j

A(x, ξA, t,Q2)

= ξN

ξA

FA(t)
∑
N

H
j

N (xN, ξN , t,Q2)

− A(A − 1)

2

ξN

ξA

16πBdiff e

{ ∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

 0

 10

 20

 30

 40

 50

 60

10-5 10-4 10-3 10-2 10-1

σ e
ff 

(m
b)

xB

Q2=2.5 GeV2

u-quark
gluon

FIG. 6. The effective cross section σ
j

eff [see Eq. (61)] for the ū

quarks and gluons as a function of Bjorken xB and at fixed Q2 =
2.5 GeV2.

×
∫ ∞

z1

dz2

∫ 0.1

xmin
IP

dxIP ρA(b, z1)ρA(b, z2)kη

× e−imN z2(xIP −2ξN )+imN z1xIP e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

×φIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
j

IP

(
ξIP

ξN

xN, ξIP , tmin,Q
2

)
. (63)

For practical applications and for a comparison to the case of
a free nucleon, it is convenient to simultaneously rescale the
LC fraction x and the nuclear GPDs on the left-hand side of
Eq. (63):

H
j

A(x, ξA, t,Q2) → ξN

ξA

H
j

A(xN, ξA, t,Q2). (64)

(where the rescaling of the nuclear GPD is necessary to
preserve sum rules involving the nuclear GPD). Then, our
master equation for the nuclear GPD becomes

H
j

A(xN, ξA, t,Q2)

= FA(t)
∑
N

H
j

N (xN, ξN , t,Q2)

− A(A − 1)

2
16πBdiff e

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

×
∫ ∞

z1

dz2

∫ 0.1

xmin
IP

dxIP ρA(b, z1)ρA(b, z2)kη

× e−imN z2(xIP −2ξN )+imN z1xIP e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

×φIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
j

IP

(
ξIP

ξN

xN, ξIP , tmin,Q
2

)
. (65)

As we explained earlier, we neglected the Fermi motion effect
in the first term in Eq. (65). If necessary, the Fermi motion
effect can be restored by replacing the first term in Eq. (65) by
the right-hand side of Eq. (34).
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III. NUCLEAR GPDS IN THE ξA → 0 LIMIT AND THE
SPACIAL IMAGE OF NUCLEAR SHADOWING

In the forward limit, nuclear GPDs reduce to nuclear PDFs,

H
j

A(x, 0, 0,Q2) = fj/A(x,Q2). (66)

Taking the ξA = t = 0 limit in Eq. (65), we obtain

H
j

A(xB, 0, 0,Q2)

=
∑
N

fj/N (xB,Q2) − A(A − 1)

2
16πBdiff e

×
{∫

d2 	b
∫ ∞

∞
dz1

∫ ∞

z1

dz2

∫ 0.1

xB

dxIP

× ρA(b, z1)ρA(b, z2)kη

× eimN xIP (z1−z2)e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

× fIP/p(xIP )
1

xIP

fj/IP

(
β = xB

xIP

,Q2

) }
. (67)

Here we used the fact that, in the ξA → 0 limit, ξN, ξIP , tmin →
0 and ξIP xN/ξN = x ′ → β = xB/xIP . The obtained expression
for the nuclear PDF fj/A as a forward limit of the nuclear GPD
coincides with the direct calculation of fj/A in the framework
of the leading twist theory of nuclear shadowing [11–13]; that
is, our master equation [Eq. (65)] has the correct (consistent)
forward limit.

Next let us consider the ξA → 0 limit (i.e., the limit when
the momentum transfer t is purely transverse, t = −�2

⊥).
Taking the ξA → 0 limit in Eq. (65), we obtain

H
j

A(xN, 0, t,Q2)

= FA(t)
∑
N

H
j

N (xN, 0, t,Q2) − A(A − 1)

2

× 16πBdiffe

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

∫ ∞

z1

dz2

∫ 0.1

xN

dxIP

× ρA(b, z1)ρA(b, z2)kη

× eimN xIP (z1−z2)e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

× fIP/p(xIP )
1

xIP

fj/IP

( xN

xIP

,Q2
)}

. (68)

Again, we used the fact that, in the ξA → 0 limit,
ξN, ξIP , tmin → 0, ξIP xN/ξN → xN/xIP , and H

j

IP ( ξIP

ξN
xN,

ξIP , tmin,Q
2) → fj/IP (xN/xIP ,Q2). Note also the lower limit

of integration over xIP , xmin
IP = xN . Since the t dependence

of the nuclear form factor, FA(t), is much faster than
that of the nucleon GPD H

j

N (xN, 0, t,Q2), the latter can
be evaluated at t = 0 (i.e., in the forward limit). Then,
Eq. (68) becomes

H
j

A(xN, 0, t,Q2)

= FA(t)
∑
N

fj/N (xN,Q2)

− A(A − 1)

2
16πBdiffe

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

∫ ∞

z1

dz2

×
∫ 0.1

xN

dxIP ρA(b, z1)ρA(b, z2)kη

× eimN xIP (z1−z2)e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

× fIP/p(xIP )
1

xIP

fj/IP

( xN

xIP

,Q2
)}

. (69)

In the case of nucleon GPDs, the interpretation of GPDs
in the ξ → 0 limit is given in the impact parameter represen-
tation, where the GPDs have the meaning of the probability
densities [7]. We shall also analyze our nuclear GPDs in the
ξA → 0 limit in the impact parameter space. To this end, we
introduce the nuclear GPD in the impact parameter space,

H
j

A(x, 0, 	b,Q2)

=
∫

d2 	�⊥
(2π )2

e−i 	�⊥·	b H
j

A(x, 0, t = −�2
⊥,Q2). (70)

The Fourier transform of Eq. (69) gives

H
j

A(xN, 0, 	b,Q2)

= TA(b)
∑
N

fj/N (xN,Q2) − A(A − 1)

2

× 16πBdiffe

{∫ ∞

∞
dz1

∫ ∞

z1

dz2

∫ 0.1

xN

dxIP

× ρA(b, z1)ρA(b, z2)eimN xIP (z1−z2)

× e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

× fIP/p(xIP )
1

xIP

fj/IP

( xN

xIP

,Q2
)}

, (71)

where TA(b) = ∫
dzρA(b, z) and ρA(b, z) is the nuclear density

[see Eq. (52)]. It is important to note that the nuclear
GPD H

j

A(xN, 0, 	b,Q2) given by Eq. (71) is nothing else
but the impact-parameter-dependent nuclear PDF introduced
and discussed in the framework of the leading twist nuclear
shadowing [11–13].

In Eq. (71), the first term is the Born approximation to H
j

A

corresponding to the graph in Fig. 2(a); the second term is the
nuclear shadowing correction corresponding to the graphs in
Figs. 2(b) and 2(c) and to higher rescattering terms not shown
in Fig. 2. We quantify the magnitude of the nuclear shadowing
correction by considering the ratio

Rj (xN, b,Q2) = H
j

A(xN, 0, 	b,Q2)

TA(b)
∑

N fj/N (xN,Q2)
, (72)

where the numerator is given by Eq. (71). In the absence of nu-
clear shadowing, Rj (xN, b,Q2) = 1. The ratio Rj (xN, b,Q2)
for the nucleus of 208Pb as a function of xN and b at fixed
Q2 = 2.5 GeV2 is presented in Fig. 7. In the figure, the top
panel corresponds to ū quarks; the bottom panel corresponds
to gluons.

Essentially, Fig. 7 presents the impact parameter depen-
dence of nuclear shadowing, or the spacial image of nuclear
shadowing. Several features of Fig. 7 deserve mentioning.
First, the amount of nuclear shadowing [the deviation of
Rj (xN, b,Q2) from unity] increases as one decreases xN

and b. Second, nuclear shadowing for gluons is larger than
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FIG. 7. Impact parameter dependence of nuclear shadowing for
208Pb. The graphs show the ratio Rj (xN, b, Q2) of Eq. (72) as a
function of the LC fraction xN and the impact parameter b at fixed
Q2 = 2.5 GeV2. The top panel corresponds to ū quarks; the bottom
panel corresponds to gluons.

for quarks. For instance, at xN = 10−5 and at b = 0, Rg =
0.073, but Rq = 0.23. Third, nuclear shadowing induces
nontrivial correlations between xN and b in the nuclear GPD
H

j

A(x, 0, 	b,Q2), even if such correlations are absent in the free
nucleon GPD. [In Eq. (71) we neglected the xN -b correlations
in the nucleon GPDs by neglecting the t dependence of
H

j

N (xN, 0, t,Q2).] In this respect, the spacial image of nuclear
GPDs at small xN is very different from the case of the free
nucleon: Whereas the free nucleon GPDs become independent
of b in the xN → 0 limit [7], the suppression of nuclear GPDs
by nuclear shadowing is strongly correlated with the impact
parameter b.

IV. NUCLEAR SHADOWING AND PREDICTIONS FOR
NUCLEAR DVCS OBSERVABLES

It is convenient to quantify the amount of nuclear shadowing
in our master expression for the nuclear GPD of a heavy
nucleus [Eq. (65)] in terms of the Rj (xN, ξN , t,Q2) ratio,
which we define as

Rj (xN, ξN, t,Q2)

≡ H
j

A(xN, ξA, t,Q2)

FA(t)
∑

N H
j

N (xN, ξN , t,Q2)

= 1 − A(A − 1)

2
16πBdiff e

{∫
d2 	bei 	�⊥·	b

∫ ∞

∞
dz1

×
∫ ∞

z1

dz2

∫ 0.1

xmin
IP

dxIP × ρA(b, z1)ρA(b, z2)kη

×e−imN z2(xIP−2ξN )+imN z1xIP e
− A

2 (1−iη)σ j

eff (xB,Q2)
∫ z2
z1

dz′ρA(	b,z′)

×φIP/N (xIP )φIP/N (xIP − 2ξN )

}

× 1

xIP

H
j

IP

(
ξIP

ξN

xN, ξIP , tmin,Q
2

)/

×
(

FA(t)
∑
N

H
j

N (xN, ξN, t,Q2)

)
. (73)

In the absence of nuclear shadowing (and the Fermi motion
effect), Rj (xN, ξN, t,Q2) = 1. The ratio Rj (xN, ξN, t,Q2)
is a generalization and a Fourier transform of the ratio
Rj (xN, b,Q2) of Eq. (72).

At high energies, scattering amplitudes are predominantly
imaginary. As follows from Eq. (28), to the leading twist
accuracy and to the leading order in αs , the imaginary part
of the DVCS amplitude (the CFF) reads

�mHA(ξA, t,Q2) = −πHA(ξA, ξA, t,Q2), (74)

where

HA(ξA, ξA, t) =
∑
q,q̄

e2
qH

q

A(ξA, ξA, t). (75)

Therefore, in our numerical analysis that follows, we shall
present our predictions for Rj (ξN, ξN , t,Q2).

In our numerical analysis, we use the model of GPDs of the
free nucleon and the Pomeron, in which it is assumed that the
effect of skewedness in GPDs can be neglected at the initial
QCD evolution scale (Q2

0 = 2.5 GeV2 in our case). Then, in
the xN = ξN case of interest, one has

H
j

N

(
ξN, ξN ,Q2

0

) = fj/N

(
ξN,Q2

0

)
,

(76)

H
j

IP

(
ξIP , ξIP ,Q2

0

) = fj/IP

(
ξIP ,Q2

0

) = fj/IP

(
ξN

xIP

,Q2
0

)
.

This model corresponds to the double distribution parametriza-
tion of GPDs [38] with a δ-function-like profile [39]; we shall
refer to this model of the GPDs as the forward-like model.
Note that the suggestion that the GPDs at small xB and at the
low input scale Q2

0 can be well approximated by the usual
forward PDFs was first proposed in Ref. [40].

It is very important to point out that the recent analysis
of the high-energy HERA data on DVCS on the proton
unambiguously indicated that the description of the data at
leading order accuracy requires almost no skewedness effect
in the input GPDs [41]. This clearly favors the forward-like
model of the PDFs over other small-xB parametrizations (see,
e.g., Ref. [42]).

Let us first examine the Rj (ξN, ξN , t,Q2) ratio of Eq. (73)
in the situation when the momentum transfer t is purely lon-
gitudinal, 	�⊥ = 0 and t = tmin ≈ −4ξ 2

Nm2
N . Figure 8 presents

Rj (ξN, ξN , t,Q2) for 208Pb as a function of Bjorken xB at
fixed Q2

0 = 2.5 GeV2 (solid curves). Also, for comparison
with nuclear shadowing in usual nuclear PDFs, we present the
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FIG. 8. Nuclear shadowing for the DVCS amplitude for 208Pb at 	�⊥ = 0. The plots show the ratio Rj (ξN , ξN , t,Q2) of Eq. (73) as a
function of xB at fixed Q2

0 = 2.5 GeV2 for the forward-like model of GPDs (solid curves). For comparison, the ratio of the usual nuclear to
nucleon PDFs, Rj (xB ) = fj/A(xB, Q2

0)/[Afj/N (xB, Q2
0)], is given by the dotted curves. The left panel corresponds to ū quarks; the right panel

corresponds to gluons.

ratio Rj (xB) = fj/A(xB,Q2
0)/[Afj/N (xB,Q2

0)] by the dotted
curves [13]. The left panel corresponds to ū quarks; the right
panel corresponds to gluons.

As one can see from Fig. 8, the suppression of
Rj (ξN, ξN , t,Q2

0) by nuclear shadowing is very large and it
is larger than the suppression of Rj (xB,Q2

0) in the forward
case. This is one of new results of this work and it comes from
our model for the graph in Fig. 4(b). In particular, we assumed
that the matrix element

〈p′
1p

′
2|T {Jµ(x)J ν(0)}|p1p2〉 ∝ φIP/N (xIP )φIP/N (xIP − 2ξN ),

(77)

which leads to the dynamical enhancement of nuclear shad-
owing because φIP/N (xIP − 2ξN ) � φIP/N (xIP ) for xIP close to
2ξN .

We stress that our results presented in Fig. 8 have an
exploratory character and are subject of significant theo-
retical uncertainties, which include our modeling of the
〈p′

1p
′
2|T {Jµ(x)J ν(0)}|p1p2〉 matrix element, the choice of

the model for the nucleon and Pomeron GPDs, and the

extrapolation of the fits for diffractive PDFs f
j

IP to unmeasured
kinematic regions.

We also mention that the rapid approach of Rj (ξN,

ξN, t,Q2
0) to unity as xB → 0.1 is driven both by the decrease

of the nuclear shadowing term and by the decrease of the
Born term driven by the nuclear form factor at t = tmin ≈
−x2

Bm2
N, FA(tmin).

Next we examine the ratio Rj (ξN, ξN , t,Q2) at fixed t as a
function of xB . In this case, the transverse momentum transfer
is no longer vanishing: | 	�⊥|2 ≈ −4ξ 2

Nm2
N − t . Our results are

presented in Fig. 9. The left panel corresponds to ū quarks; the
right panel corresponds to gluons. The solid curves correspond
to t = −0.005 GeV2; the dotted curves correspond to t =
−0.01 GeV2. For comparison, the ratio Rj (ξN, ξN , tmin,Q

2)
at t = tmin is given by the dot-dashed curves (the same curves
as in Fig. 8).

As one can see from Fig. 9, the effect of nuclear shadowing
[the deviation of Rj (ξN, ξN , t,Q2) from unity at small xB]
increases with increasing |t |. This is a natural consequence of
the fact that the Born term, whose t dependence is given by
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FIG. 9. Nuclear shadowing for the DVCS amplitude for 208Pb at fixed t . The plots show the ratio Rj (ξN , ξN , t,Q2) of Eq. (73) as a function
of xB at fixed Q2

0 = 2.5 GeV2. The left panel corresponds to ū quarks; the right panel corresponds to gluons. The solid curves correspond to
t = −0.005 GeV2; the dotted curves correspond to t = −0.01 GeV2. For comparison, the ratio Rj (ξN , ξN , tmin, Q

2) at t = tmin is given by the
dot-dashed curves.
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FA(t), decreases with increasing |t | faster than the shadowing
correction term.

Next we turn to a discussion of the observables measured
in DVCS. In lepton-nucleus scattering, it is convenient and
natural to use the invariant energy per nucleon. For our
results presented in the following, this means that we replace
ξA → ξN and assume that the invariant energy,

√
s, is given

per nucleon. Results of high-energy DVCS measurements are
usually presented in terms of the DVCS cross section at the
photon level,

dσDVCS

dt
= πα2

emx2
B

Q4
|ADVCS(ξN, t,Q2)|2, (78)

where αem is the fine-structure constant. For the DVCS
amplitude at high energies, we use the leading twist and leading
order in αs expression [see Eqs. (74) and (75)],

|ADVCS(ξN, t,Q2)|2 ≈ |HA(ξN, t,Q2)|2
≈ π2[HA(ξN, ξN , t,Q2)]2, (79)

where HA(ξN, ξN , t) = ∑
q,q̄ e2

qH
q

A(ξN, ξN , t) and H
q

A(ξN,

ξN , t) are given by our master equation [Eq. (65)].
Since gluons enter the DVCS amplitude at the one-loop level,
we do not use our results for the gluon nuclear GPD in our
calculations presented in the following. Note also that since
we do our calculations at fixed Q2

0 = 2.5 GeV2, we use four
quark flavors.

The DVCS process competes with the purely electromag-
netic BH process. The BH cross section at the photon level can
be written in the following form (see, e.g., Ref. [39]):

dσBH

dt
= πα2

em

4Q2t(1 − y + y2/2)

×
∫ 2π

0

dφ

2π

1

P1(φ)P2(φ)
|ABH(ξN, t,Q2)|2, (80)

where y is the fractional energy loss of the incoming lepton, φ
is the angle between the lepton and hadron scattering planes,
P1 and P2 are proportional to the lepton propagators, and
|ABH(ξN, t,Q2)|2 is the BH amplitude squared, which can be
expressed in terms of its Fourier harmonics cBH

n [39] as

|ABH(ξN, t,Q2, φ)|2 = cBH
0 +

2∑
n=1

cBH
n cos(nφ). (81)

The Fourier harmonics for a spinless target are given in
Ref. [43]. For the case of a spinless nucleus, |ABH(ξN, t,

Q2)|2 ∝ [FA(t)]2; see further details in Ref. [44].
Figure 10 presents our predictions for dσDVCS/dt and

dσBH/dt for 208Pb as a function of |t | at fixed Q2
0 = 2.5 GeV2

and xB = 0.001. In addition to the input just discussed, for the
evaluation of the BH cross section, we used y = 0.31, which
corresponds to the highest among discussed energy options of
the future Electron-Ion Collider (EIC), Elepton = 20 GeV and
Enucleus = 100 GeV/nucleon [18,19]. Also, for comparison,
we give the DVCS cross section on the proton in the same
kinematics (dot-dashed curves).

Several features of Fig. 10 deserve a discussion. First,
the t dependence of the BH and DVCS cross sections repeats
the pattern of [FA(t)]2 with several distinct minima. In the
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FIG. 10. Nuclear DVCS and BH cross sections for 208Pb as
a function of |t | at fixed Q2

0 = 2.5 GeV2 and xB = 0.001. For
comparison, the DVCS cross section on the proton is given by the
dot-dashed curves. For the evaluation of the BH cross section, we
used y = 0.31 (see the text).

case of the DVCS cross section, the minima are shifted by
the presence of the shadowing correction. Second, at small |t |,
the BH cross section is much larger than the DVCS cross
section owing to the enhancement by the 1/t kinematics
factor [see Eq. (80)]. As one increases |t | > |tmin|, the two
cross sections become compatible. Moreover, near minima of
the nuclear form factor, the BH cross section becomes very
small and, hence, the process is dominated by the DVCS
cross section. Therefore, the measurement of the eA → eγA

differential cross section at the momentum transfer t near the
minima of the nuclear form factor will provide a clean probe
of nuclear shadowing in nuclear GPDs and nuclear DVCS
owing to the suppressed BH background and the suppressed
unshadowed Born contribution to the DVCS amplitude.

Next we study the t-integrated DVCS and BH cross sections
at the photon level,

σDVCS =
∫ tmin

−1 GeV2
dt

σDVCS

dt
,

(82)

σBH =
∫ tmin

−1 GeV2
dt

σBH

dt
.

Figure 11 presents the t-integrated DVCS and BH cross
sections for 208Pb as a function of xB at fixed Q2

0 = 2.5 GeV2.
For comparison, the dot-dashed curve shows the DVCS cross
section on the proton in the same kinematics. For the BH
cross section, we give two curves, which correspond to two
different values of the c.m. lepton-nucleus energy

√
s: The

upper curves correspond to the low-energy option for the future
EIC, Elepton = 5 GeV and Enucleus = 50 GeV/nucleon (

√
s =

32 GeV); the lower curves correspond to the high-energy
option with Elepton = 20 GeV and Enucleus = 100 GeV/nucleon
(
√

s = 90 GeV) [18,19].
As one see from Fig. 11, in the discussed kinematics, the BH

cross section is much larger than the DVCS cross section for
xB < 0.01 for both considered high-energy options (lower BH
curve) and for xB < 0.05 for the low-energy option (upper BH
curve). Therefore, as far as the t-integrated eA → eγA cross
section is concerned, it appears rather challenging to extract
a small DVCS signal on the background of the dominant BH
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contribution. However, the high luminosity of the future EIC
should allow one to measure the t dependence of the DVCS
and BH cross sections, which will tremendously increase the
potential to probe nuclear GPDs in the domain of nuclear
shadowing (small xB ) (see Fig. 10 and the previous discussion).

Another possibility to study nuclear GPDs in the small-
xB region is given by the measurement of DVCS cross
section asymmetries (with polarized lepton beams or with

lepton beams with the opposite electric charges), which are
proportional to the interference between the DVCS and BH
amplitudes. As an example, we consider the DVCS beam-spin
asymmetry, ALU , measured with the polarized lepton beam
and an unpolarized target (which is always the case for
spin-0 nuclei that we consider). To the leading twist accuracy,
the expression for ALU for a spinless nuclear target reads
[39,43,44]

ALU (φ) = − 8K(2 − y)ZFA(t)�mHA(ξN, t,Q2) sin φ

1
xB

|ABH(ξN, t,Q2, φ)|2 + xB t P1(φ)P2(φ)
Q2 4(1 − y + y2/2)|�mHA(ξN, t,Q2)|2 , (83)

where K ∝ √
tmin − t is the kinematic factor [39], Z is

the nuclear charge, �mHA is the imaginary part of the
nuclear DVCS amplitude given by Eqs. (74), (75), and
(65), |ABH(ξA, t,Q2, φ)|2 is the square of the BH amplitude
[Eq. (81)], and the minus in front corresponds to the
electron beam. To consistently work to the leading twist
accuracy, one should use only the leading twist contributions
to P1(φ),P2(φ), and |ABH|2 in Eq. (83). However, in the
kinematics that we consider, t < 0.2 GeV2,Q2 = 2.5 GeV2,

and φ = 90◦, the higher twist corrections are either absent
(the terms being proportional to cos φ) or numerically in-
significant, so that we simply use the standard expressions
for P1(φ),P2(φ), and |ABH|2 [39].

Figure 12 presents our predictions for ALU (φ) as a function
of t at fixed xB = 0.001,Q2

0 = 2.5 GeV2, and the angle φ =
90◦. For a comparison, the dotted curve presents ALU for the
proton in the same kinematics. Both curves correspond to the
incoming lepton fractional energy loss y = 0.31, which in turn
corresponds to the high-energy option of the future EIC with
Elepton = 20 GeV and Enucleus = 100 GeV/nucleon.
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FIG. 11. The t-integrated nuclear DVCS and BH cross sections
for 208Pb as a function of xB at fixed Q2

0 = 2.5 GeV2. For comparison,
the DVCS cross section on the proton is given by the dot-dashed
curves. For the evaluation of the BH cross section, we used two energy
settings:

√
s = 32 GeV (the upper dashed curve) and

√
s = 90 GeV

(the lower dashed curve) (see the text).

Our predictions for ALU for 208Pb are rather remarkable.
The sole reason for the oscillations of ALU for 208Pb is nuclear
shadowing! The trend of the oscillations can be understood
as follows. At t = tmin, ALU = 0 because of the kinematic
factor K = 0 (resulting from the vanishing | 	�⊥| = 0). As one
slightly increases |t | > |tmin|, the kinematic factors rapidly
increase ALU (which is clearly seen for the proton), but, at
the same time, the nuclear shadowing correction decreases
the imaginary part of the nuclear DVCS amplitude, �mHA.
As a result, ALU increases, but not as rapidly as for the free
proton case. At some rather small values of t, |t | ≈ 0.01 GeV2

(a value that can be read off the left panel of Fig. 9), �mHA

changes sign and ALU goes through zero. Note that, at this
value of t , the nuclear form factor, FA(t), is still positive. As
one increases |t | further, |�mHA| increases, which increases
|ALU | (with both �mHA and ALU being negative at this point).
As |t | is increased even further, the nuclear form factor FA(t)
changes sign and makes ALU positive. The asymmetry stays
positive until �mHA changes sign and becomes positive again
[the form factor FA(t) still being negative]. As |t | is increased,
the mechanism of the oscillations just described repeats itself.
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FIG. 12. The DVCS beam-spin asymmetry, ALU (φ = 90◦), for
208Pb as a function of t at fixed xB = 0.001 and Q2

0 = 2.5 GeV2

(solid curve). For a comparison, the dotted curve presents ALU for
the proton in the same kinematics. The calculations correspond to
y = 0.31.
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We emphasize that the oscillations of ALU are caused by
nuclear shadowing that has a weaker t dependence than that
of the Born contribution [see Eq. (65)]. If the shadowing
correction in Eq. (65) is neglected, then the t dependence
of the DVCS and BH contributions is the same and is given
by the nuclear form factor FA(t). Then, in the expression for
the beam-spin asymmetry, ALU , the t dependence from FA(t)
cancels and ALU for a heavy nuclear target has the same
t dependence as ALU for the free proton (i.e., without the
oscillations).

V. SUMMARY AND DISCUSSION

We generalized the leading twist theory of nuclear shadow-
ing for usual nuclear parton distributions to nuclear generalized
parton distributions for quarks and gluons. We estimated quark
and gluon GPDs of spinless nuclei and found very large nuclear
shadowing.

In the limit that the momentum transfer is purely transverse,
ξA = ξN = 0, after Fourier transform, our nuclear GPDs
become impact-parameter-dependent nuclear PDFs. Nuclear
shadowing induces nontrivial correlations between the impact
parameter b and the light-cone fraction x.

Using our expressions for nuclear GPDs, we made pre-
dictions for the cross section of deeply virtual Compton
scattering on the heavy nucleus of 208Pb at high energies
(in the kinematics of the future EIC). We also calculated
the cross section of the purely electromagnetic Bethe-Heitler
process and addressed the issue of the extraction of the DVCS
signal, and, hence, the extraction of information on nuclear
GPDs and nuclear shadowing, from the measurement of the

eA → eγA process. Based on our studies, we can propose
two strategies. First, the eA → eγA differential cross section
at the momentum transfer t near the minima of the nuclear
form factor is dominated by the DVCS cross section, which
should allow for a clear extraction of the latter. Second,
nuclear shadowing leads to dramatic oscillations of the DVCS
beam-spin asymmetry, ALU , as a function of t . The position
of the points where ALU changes sign is directly related to the
magnitude of nuclear shadowing.

It is important to note that the t variations of the DVCS
and BH differential cross sections and the DVCS beam-spin
asymmetry, ALU , are very rapid, with a typical frequency of
the order of 1/R2

A. This certainly poses a challenge for any
future experiments since a rather high resolution in t will be
required.

One should also note that nuclear GPDs at small x will be
accessed in ultraperipheral nucleus-nucleus collisions at the
LHC [45]. In these collisions, the involved nuclei serve as
sources of real photons, which enables one to study photon-
nuclear interactions at energies up to ten times larger than
those achieved at HERA. Nuclear GPDs will be accessed in
exclusive photoproduction of heavy vector mesons [46] and
lepton pairs [47].
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