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Contributions of radiative gluons and vector mesons to the F2 structure function
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We calculate unpolarized quark distribution functions and F2 structure functions for the proton and the neutron.
The calculation is preformed in the light-cone frame. For the bare nucleon three different distributions—namely,
spin-0 diquark, spin-0 plus spin-1 diquark, and no diquark models—have been used. Using perturbative QCD
an initial gluon distribution is generated inside the core nucleon. The physical nucleon is assumed to be a
superposition of the bare nucleon plus virtual light-cone Fock states of baryon octets and baryon decuplets along
with the corresponding pseudoscalar mesons and vector mesons. The initial distributions are evolved. The F2

structure functions are calculated from the evolved distributions and it is shown that they are in reasonable
agreement with the NMC and ZEUS results along with a CTEQ6M fit. Also, it is shown that the meson cloud
is a major contributing factor to the sea quark asymmetry and one needs both pseudoscalar mesons and vector
mesons to account fully for Gottfried sum rule violation.
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I. INTRODUCTION

The meson cloud model has been used extensively to
investigate nucleon structure. It all started with Sullivan’s
original work in 1972 [1], which pointed to the significance of
the pionic structure of the nucleon in high-energy processes.
Sullivan examined the role of one-pion exchange (OPE) in
deep inelastic scattering from nucleons. The pion being the
lightest meson is expected to play a dominant role in the
nucleon structure. Since the 1980s there have been numerous
publications investigating the role that heavier mesons play in
the nucleon structure [2–41]. In 1983 Thomas [10] realized
that the pionic content of the nucleon broke the SU(3)-flavor
symmetry. Thomas used the πNN process to put a limit on
the hardness of the πNN form factor. In 1990 Henley and
Miller [11] used the pion cloud to explain the asymmetry
between d̄ and ū. Kumano [12–14] used both πNN and
πN� processes to put limits on the cutoff parameters for
monopole, dipole, and exponential from factors and their
effects on the flavor asymmetry of the sea quark. Kumano’s
[12] work showed that the upper limits for the cutoff mass
should be 0.60, 0.95, and 0.75 GeV for monopole, dipole,
and exponential form factors, respectively. In 1991 Hwang
and collaborators [15] extended the analysis of deep inelastic
lepton scattering data by taking into account the effects of
additional mesons including ρ, ω, σ , K , and K∗. Their work
suggested that the πNN and πN� from factors are harder than
what was suggested by previous works. Namely, the cutoff
masses, according to their calculations, are over 1000 MeV
instead of being less than 500 MeV as suggested by previous
works. In the early 1990s Schreiber and collaborators [18]
used both πNN and πN� processes to calculate the nucleon
structure functions in the bag model. In 1992 Zoller [17] used
the Fock state decomposition of the nucleon in the light-cone
frame to investigate the effects of soft pion exchange on the
proton and neutron structure functions in deep inelastic lepton
scattering. Holtmann, Speth, and collaborators have used a
similar approach to investigate polarized and unpolarized
nucleon structure functions [25,27,28,30]. Pasquini, Boffi,

and collaborators have used the meson cloud to investigate
generalized parton distributions [37–39] and the electroweak
structure of the nucleon [40].

Before introducing the meson cloud one needs to start with
the bare nucleon. For that we use the light-front formalism.
Since the original work by Dirac [42] several decades ago,
there has been an extensive use of the light-front frame to
study high-energy processes. Among many other works, in the
early 1990s Schlumpf [43,44] used this approach to investigate
the electroweak properties of baryons. We used Schlumpf’s
approach to calculate the nucleon’s F2 and g1 structure
functions [2–6]. Miller has used the light-front formalism
to investigate nucleon electromagnetic form factors [41].
Brodsky and collaborators have studied the spin and orbital
angular momentum of composite systems in the light-cone
frame [45]. For a more in-depth study of the subject the
interested reader is referred to Refs. [46–49].

In Sec. II we briefly present a light-front representation
of three-body systems and introduce the two types of wave
functions that we will use for the core nucleon. This will
be followed by the formalism for the meson cloud model in
Sec. III. Results and discussion will be presented in Sec. IV,
which will be followed by a summary in Sec. V.

II. LIGHT-FRONT REPRESENTATION OF THE NUCLEON

In the following we present the basic definitions and
formalism [43,44]. A four-vector in the light-front frame is
defined as

a = (a+, a−, a⊥), (1)

where a± = (a0 ± a3)/
√

2 and a⊥ = (a1, a2). Following the
relativistic treatment of the nucleon by Berestetskii and
Terent’ev [50,51], we separate the center-of-mass motion of
the three quarks in the nucleon from their relative motion by
transforming their momenta, p1, p2, p3, into total and relative
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momenta as follows:

�P = �p1 + �p2 + �p3, (2a)

ξ = p+
1

p+
1 + p+

2

, η = p+
1 + p+

2

P + , (2b)

q⊥ = (1 − ξ )p1⊥ − ξp2⊥,
(2c)

Q⊥ = (1 − η)(p1⊥ + p2⊥) − ηp3⊥.

Then, the Hamiltonian of the system takes the form

H = P 2
⊥ + M̂2

2P + , (3)

where M̂ is the mass operator with the interaction term W :

M̂ = M + W, (4a)

M2 = Q2
⊥

η(1 − η)
+ M2

3

η
+ m2

3

1 − η
, (4b)

M2
3 = q2

⊥
ξ (1 − ξ )

+ m2
1

ξ
+ m2

3

1 − ξ
, (4c)

with m1, m2, and m3 as the constituent quarks masses. M and
M3 can be rewritten in a more transparent way in terms of the
relative momenta q and Q:

E1 =
√

q2 + m2
1, E2 =

√
q2 + m2

2,

(5a)

E3 =
√

Q2 + m2
3, E12 =

√
Q2 + M2

3 ,

ξ = E1 + q3

E1 + E2
, η = E12 + Q3

E12 + E3
, (5b)

M = E12 + E3, M3 = E1 + E2, (5c)

where q = (q1, q2, q3) and Q = (Q1,Q2,Q3).
The wave function of the nucleon can be written as

� = 	χφ, (6)

where 	, χ , and φ are the flavor, spin, and momentum
distributions, respectively. We are going to consider two
different wave functions for the core nucleon. First, assume
that the nucleon is a quark-diquark system. In general, the
nucleon state can be a linear combination of the spin-isospin
diquark states (0, 0), (0, 1), (1, 0), and (1, 1) written as

�1 = A√
2

[
uud

(
χρ1φλ1

1 + χρ2φλ2
1

)− udu
(
χρ1φλ1

1 − χρ3φλ3
1

)
− duu

(
χρ2φλ2

1 + χρ3φλ3
1

)]
+ B√

6

[
uud

(
χρ1φ

ρ1
1 + χρ2φ

ρ2
1 − 2χρ3φ

ρ3
1

)
+udu

(
χρ1φ

ρ1
1 − 2χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)
+ duu

( − 2χρ1φ
ρ1
1 + χρ2φ

ρ2
1 + χρ3φ

ρ3
1

)]
+ C√

2

[
uud

(
χλ1φ

ρ1
1 + χλ2φ

ρ2
1

)
−udu

(
χλ1φ

ρ1
1 − χλ3φ

ρ3
1

) − duu
(
χλ2φ

ρ2
1 + χλ3φ

ρ3
1

)]
+ D√

6

[
uud

(
χλ1φλ1

1 + χλ2φλ2
1 − 2χλ3φλ3

1

)

+udu
(
χλ1φλ1

1 − 2χλ2φλ2
1 + χλ3φλ3

1

)
+ duu

( − 2χλ1φλ1
1 + χλ2φλ2

1 + χλ3φλ3
1

)]
. (7a)

For the second case we assume that there is no clustering of
the quarks inside the nucleon [43]:

�2 = −1√
3

(uudχλ3 + uduχλ2 + duuχλ1)φ2. (7b)

We will be using three wave functions called Set 1, Set 2,
and Set 3. Set 1 and Set 2 correspond to the models that we
have used in Refs. [2–6]. Set 1 is the spin-0 diquark with
A = 0.9798, B = −0.2, C = 0.0, and D = 0.0 in Eq. (7a).
Set 2 is Eq. (7b). Set 3 is the model used in Ref. [2] that
includes the spin-1 diquark with A = −0.7874, B = 0.0, C =
0.0, and D = −0.6164 in Eq. (7a). Also, in Eq. (7), u and d

represent the up and down flavor, and χρi and χλi with i =
1, 2, 3 represent the Melosh transformed spin wave functions
[52], for example,

χ
ρ3
↑ = 1√

2
(↑↓↑ − ↓↑↑), (8a)

χ
ρ3
↓ = 1√

2
(↑↓↓ − ↓↑↓), (8b)

χλ3
↑ = 1√

6
(↓↑↑ + ↑↓↑ −2 ↑↑↓), (8c)

χλ3
↓ = 1√

6
(2 ↓↓↑ − ↓↑↓ − ↑↓↓). (8d)

The spin wave function of the ith quark is

↑= Ri

(
1
0

)
, ↓= Ri

(
0
1

)
. (9)

In Eq. (9), Ri are the Melosh matrices:

R1 = 1√
a2 + Q2

⊥
√

c2 + q2
⊥

×
(

ac − qRQL −aqL − cQL

cQR + aqR ac − qLQR

)
, (10a)

R2 = 1√
a2 + Q2

⊥
√

d2 + q2
⊥

×
(

ad + qRQL −aqL − dQL

dQR − aqR ad − qLQR

)
, (10b)

R3 = 1√
b2 + Q2

⊥

(
b QL

−QR b

)
, (10c)

where

a = M3 + ηM, b = m3 + (1 − η)M, (11a)

c = m1 + ξM3, d = m2 + (1 − ξ )M3, (11b)

qR = q1 + iq2, qL = q1 − iq2, (11c)

QR = Q1 + iQ2, QL = Q1 − iQ2. (11d)

The functions φ
ρi

1 and φλi
1 , with i = 1, 2, 3, and φ2 are the

momentum wave functions, which we take to be of the
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following form:

φ
ρi

1 = Nρi(Xj − Xk)φsi
1 /XT , (12a)

φλi
1 = Nλi(Xj + Xk − 2Xi)φ

si
1 /XT , (12b)

with i �= j �= k, and [43]

φ2 = N

(M2 + β2)3.5
. (12c)

Also,

X3 = Q2
⊥

2η(1 − η)β2
Q

+ q2
⊥

2ηξ (1 − ξ )β2
q

+ m2
1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
Q

, (13a)

X2 = q2
⊥

(1 − η)(1 − ξ )β2
Q + ξβ2

q

2β2
Qβ2

qηξ (1 − ξ )(1 − η + ξη)

+Q2
⊥

(1 − ξ )(1 − η)β2
q + ξβ2

Q

2β2
Qβ2

qη(1 − η)(1 − η + ξη)

+ q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − η + ξη)
+ m2

1

2ηξβ2
q

+ m2
2

2η(1 − ξ )β2
Q

+ m2
3

2(1 − η)β2
q

, (13b)

X1 = q2
⊥

(1 − ξ )β2
q + ξ (1 − η)β2

Q

2β2
Qβ2

qηξ (1 − ξ )(1 − ξη)

+Q2
⊥

(1 − ξ )β2
Q + ξ (1 − η)β2

q

2β2
Qβ2

qη(1 − ξ )(1 − ξη)

− q⊥Q⊥
β2

Q − β2
q

β2
Qβ2

qη(1 − ξη)
+ m2

1

2ηξβ2
Q

+ m2
2

2η(1 − ξ )β2
q

+ m2
3

2(1 − η)β2
q

, (13c)

XT = X1 + X2 + X3, (13d)

and

φsi
1 = 1

(1 + XT )ni
. (13e)

In these equations βQ, βq , and β are confinement scale
parameters and Nρi

, Nλi
, and N are normalization constants.

III. MESON CLOUD MODEL IN THE LIGHT-CONE
FRAME

Using the convolution model, one can decompose the
physical nucleon in terms of the core nucleon and intermediate,
virtual meson-baryon states [2–6,25,27,28,30]:

|N〉 = Z1/2[|N〉bare +
∑
BM

βBM |BM〉], (14)

where Z is the probability of the physical nucleon being in
the core state, BM stands for a virtual baryon-meson state,
and βBM is the probability amplitude for the physical nucleon

being in the BM state. The summation in Eq. (14), in general,
includes all physically possible pairs from the meson octet and
baryon octet and decuplet. In terms of the quark distributions
one can write

qN (x) = Z

[
qN,core(x) +

∑
MB

αMB

(∫ 1

x

nMB(y)qM

(
x

y

)
dy

y

+
∫ 1

x

nBM (y)qB

(
x

y

)
dy

y

)]
, (15)

where x is the fraction of the total momentum of the nucleon
being carried by the quark, q, αMB are spin-flavor Clebsch-
Gordan coefficients, nMB and nBM , the splitting functions,
are the probabilities of the nucleon being in state of MB or
BM , respectively, and y is the fraction of the momentum
being carried by the meson (baryon) in nMB(y) [nBM (y)]. The
splitting functions must satisfy the following equations:

nMB(y) = nBM (1 − y) (16)

and

〈xnMB〉 + 〈xnBM〉 = 〈nBM〉. (17)

In Eq. (17) 〈n〉 and 〈xn〉 are the first and second moments of
the splitting functions. Equation (16) ensures the global charge
conservation and Eq. (17) momentum conservation.

To calculate qN (x) one needs to know qN,core(x),
qM (x), qB (x), and nMB(x) explicitly. To calculate the core
quark distribution we use the following expression [53]:

qi,core(x) =
∫

[dx][dk⊥]δ(xi − x)|φ(xi, k⊥ i)|2, (18)

with

[dx] = dx1 dx2 dx3√
(x1x2x3)

, [dk⊥] = dk⊥1dk⊥2,

(19)∑
i

xi = 1,
∑

i

k⊥i = 0,

where x1 = ξη, x2 = η(1 − ξ ), and x3 = 1 − η. For φ in
Eq. (18) we use the expression in Eq. (12). We calculate qM (x)
in the following way [54]:

qM (x) = 1

4

∫
dk⊥

x(1 − x)
M0(x, k⊥)|	π (x, k⊥)|2, (20a)

where

M2
0 (x, k⊥) = k2

⊥ + m2
q

x(1 − x)
, (20b)

	π (x, k⊥) = Ne
−k2

(2�π )2 , (20c)

and

k2 = (
k2
⊥
/

4 + (x − 1/2)2m2
q

)/
x(1 − x). (20d)

qB(x) is calculated using the core distributions. To calculate
nMB(x) we use [17,28,30]

nMB(y) = g2
NMB

16π2

1

y2(1 − y)

∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB

)∣∣2(
M2

MB − m2
N

)2

× [(mB − ymN )2 + k2
⊥], (21a)
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for pseudoscalar meson-baryon octet intermediate states, and

nMB(y) = g2
NMB

16π2

1

6m2
By4(1 − y)

∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB

)∣∣2(
M2

MB − m2
N

)2

× [(mB + ymN )2 + k2
⊥]2[(mB − ymN )2 + k2

⊥],

(21b)

for pseudoscalar meson-baryon decuplet intermediate states.
We have evaluated the splitting functions for vector meson-
baryon octet pairs as

nMB(y) = 1

64π2m2
M

1

y4(1 − y)2

∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB

)∣∣2(
M2

MB − m2
N

)2

× (
f 2

NMB

(
4m4

My2((1 − y)2(mB − mNy)2

+ (1 + y)2k2
⊥) + 4

(
(1 − y)

(
m2

B − m2
Ny

) + k2
⊥
)2

× (
(1 − y)2(mB − mNy)2

+ 8m2
My((1 − y)2(mB − mN )2(8mBmNy

+m2
N (5 − y)y − m2

B(1 − 5y)
)

+ (1 − y)(10mBmN (1 − y)y

−m2
N (5 − y)y(1 − 2y) + m2

B(2 − y)(1 − 5y)
)
k2

⊥
− (1 − (6 − y)y)k4

⊥
))) + fNMBgNMB

× (4m4
M (1 − y)y3(mB − mNy)

+ 4(1 − y)y
(
(1 − y)

(
m2

B − m2
Ny

) − k2
⊥
)

× (mBmN (1 − y)2(mB − mNy)

− (mB + 2mBy − mN (2 + y))k2
⊥
)

+ 4m2
M (1 − y)y2(−9(mB − mN )

× (1 − y)(mB − mNy)2 − 2(mN (5 − 4y)

+mB(4 − 5y)k2
⊥
))) + g2

NMB

(
m4

My4

+ 2m2
my2

(
(1 − y)2 + (

4m2
B − 9mBmNy + 4m2

Ny2
)

+ (4 − y(1 − 4y))k2
⊥
) + y2(m2

Bm2
N (1 − y)4

+ 2
(
2m2

B − 3mBmN + 2m2
N

)
(1 − y)2y2 + y4

)))
(22a)

and vector meson-baryon decuplet pairs as

nMB(y) = f 2
NMB

48π2

1

y(1 − y)

×
∫ ∞

0
dk2

⊥

∣∣�MB

(
M2

MB

)∣∣2(
M2

MB − m2
N

)2

1

6m2
By3(1 − y)2

× (
m4

B(y − 1)4
(
m2

B + 3m2
Ny2

+m2
B(y − 1)2(3 + y(−2 + 3y)

))
k2

⊥
+ (

m2
Ny2 + m2

B

(
3 + 4(y − 1)y

))
k2

⊥ + k6
⊥

+m4
My4

(
3m2

B + m2
Ny2 + k2

⊥
)

+ 2m2
My2

(
m2

B(y − 1)2
(
m + B2− 6mBmN + m2

Ny2
)

+ (
m + B2 − 6mBmN + m2

ny
2
)

+ (
m2

Ny2 + m2
B(y2 − 1)

)
k2

⊥ + k4
⊥
))

. (22b)

In Eqs. (20) and (21), �(M2
MB) is the vertex form factor,

which is parametrized by the exponential function of the
invariant mass, MMB , of the intermediate baryon-meson state:

�
(
M2

MB

) = e
− (M2

MB
−m2

N
)

�2
MB , (23)

with �MB as free parameters, which are determined by
fitting experimental data. Putting all these pieces together
and using all possible intermediate baryon-meson states one
could calculate the physical quark distributions in the proton
and the neutron. In the current work we use pseudoscalar
mesons, vector mesons, baryon octet and decuplet intermediate
states. These initial distributions are calculated at some
initial low value of Q2

0. To be able to compare our results
with experiments, we evolve these initial distributions using
Dokshitzer, Gribov, Lipatov, Altarelli and Parisi (DGLAP)
equations [55–57] to some final high Q2. The DGLAP
equations are

dqi(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y

⎡
⎣ 2f∑

j=1

qj (y, t)Pqiqj

(
x

y

)

+G(y, t)PqiG

(
x

y

)⎤
⎦ , (24a)

dG(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y

⎡
⎣ 2f∑

j=1

qj (y, t)PGqj

(
x

y

)

+G(y, t)PGG

(
x

y

) ⎤
⎦ , (24b)

for singlet distributions, and

dqNS(x, t)

dt
= α(t)

2π

∫ 1

x

dy

y
qNS(y, t)P NS

(
x

y

)
, (24c)

for nonsinglet distributions. In Eq. (24) α is the QCD running
coupling constant, q and G are the quark and gluon distribution
functions, P ’s are the splitting functions, f is the number of
flavors, t is defined as [56]

t = ln
(
Q2

/
Q2

0

)
, (24d)

and α(t) in the leading logarithmic approximation is of the
form

α(0)

α(t)
= 1 + bα(0)t, (24e)

where b is a constant [56]. Having the distribution functions
one can calculate the nucleon structure functions from

2F1 = F2/x =
f∑
i

e2
i [qi(x) + q̄i(x)], (25)

where ei is the charge of the ith quark.

IV. RESULTS AND DISCUSSION

In Table I we present the parameters, in energy units
of GeV, that have been used in Eqs. (13), (12), (16), and
(17) to calculate quark distribution functions and the proton
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TABLE I. Parameters used in Sets 1, 2, and 3. Here mu, md, βQ,
and βq are all in GeV, and µp and µn are in nuclear magneton units.
Set 1 and Set 3 represent our diquark-quark models; Set 2 represents
parameters used by Schlumpf [43,44].

mu md βQ βq n1 n2 n3 µp µn

Set 1 0.250 0.210 0.25 0.45 2.8 2.8 2.6 2.82 −1.61
Set 2 0.263 0.263 0.607 0.607 3.5 3.5 3.5 2.81 −1.66
Set 3 0.250 0.210 0.25 0.45 2.8 2.8 2.6 2.79 −1.68

and neutron structure functions. Set 1 represents the spin-0
diquark distribution for the core nucleon. Set 2 comprises
the parameters used by Schlumpf [43] and represents a
symmetrical distribution of quarks inside the nucleon. Set 3 is
a superposition of spin-0 and spin-1 diquark wave functions.
In our calculations we have used three other sets, identified as
Set 1g, Set 2g, and Set 3g. These sets are identical to Set 1,
Set 2, and Set 3 in all respects except for the presence of gluons
in the initial distributions before the introduction of the meson
cloud. We use the work done by Barone and collaborators [58]
to build up a gluon distribution inside the nucleon. In this
approach one starts with the bare nucleon and builds the gluon
distribution in small increments of Q2 (the details of which
are presented in the Appendix). In Fig. 1 we show the gradual
change in the Set 3 u-quark distribution from bare nucleon to
the final state of Q2 = 0.5 GeV2. The total number of gluons
at this stage turns out to be about six and they carry around
27% of the nucleon’s momentum. We should add that the
motivation for introducing gluons is to make it possible for the
quark model to reproduce the F2 structure function that agrees
with observation [59].

For the cutoff parameters we have used a universal value
of 0.880 GeV for all vertices. This numerical value is well
within the acceptable range as shown in the introduction. For

the coupling constants we choose [17,60]
g2

pπ0p

4π
= 13.6 and

g2
p�++π−

4π
= 10.85 GeV−2. Other coupling constants are related

to these two through the quark model [30,60,61].

FIG. 1. xu-core distributions for Set 3 at different Q2 values, as
gluons are built up inside the nucleon.

FIG. 2. Initial xu-valence distributions for Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark),
Set 3, PS (no initial gluons and no vector mesons; only pseudoscalar
mesons), Set 3g, PS (no vector mesons; only pseudoscalar mesons),
and CTEQ6M.

Starting at the initial momentum transferred the quark
distributions are evolved using the code by Miyama and
Kumano [62] to final momentum transferred and compared
with NMC [63,64] and ZEUS [65–67] results and the
CTEQ6M fit [68]. The code uses the M̄S renormalization
scheme and calculates Q2 evolution to the next-to-leading
order (NLO) of running coupling constant using brute-force
numerical integration. Some of the input parameters are the
initial and final momentum transferred squared, the QCD scale
parameter, and the number of flavors, which can be three
or four. Table II presents the initial momentum transferred
squared and QCD scale parameter for our work, NMC, ZEUS,
and CTEQ6M. The NMC data are reproduced using Eq. (2) in
Ref. [64]. The ZEUS data are reproduced using the ZEUS-S
QCD NLO fit [65,66]. To generate the CTEQ6M results we
have used their �5f , where 5f means five flavors. However,
our value is more in line with �4f , as is shown in Table II.
All initial distributions are evolved to the final momentum
transferred of 70 GeV2. In Figs. 2 and 3 we present our initial
xu-valence and xd-valence quark distributions for the three
models and compare them with the corresponding CTEQ6M
distributions [68]. A few points need to be made here. In our
previous work we established the fact that the introduction
of the gluons improves the distributions considerably [2].
Our current result shows that the addition of vector mesons
to the meson cloud modifies the distributions significantly.
For example, this can be observed in Fig. 2, by comparing

TABLE II. Initial momentum transferred squared and QCD scale
parameter for this work, NMC [62,63], ZEUS [64,65], CTEQ6M
four-flavor, and CTEQ6M five-flavor [67].

This work NMC ZEUS CTEQ6M-4f CTEQ6M-5f

Q2
0 (GeV2) 0.50 20.0 7.0 1.69 1.69

� (GeV) 0.318 0.250 0.255 0.326 0.226
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FIG. 3. Initial xd-valence distributions for Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark),
Set 3, PS (no initial gluons and no vector mesons; only pseudoscalar
mesons), Set 3g, PS (no vector mesons; only pseudoscalar mesons),
and CTEQ6M.

FIG. 4. Sea quark asymmetry resulting from the meson cloud for
Set 3g (spin-0 and spin-1 diquark) and CTEQ6M.

FIG. 5. Strange quark asymmetry resulting from the meson cloud
for Set 3g (spin-0 and spin-1 diquark).

FIG. 6. Evolved xu-valence distributions for Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark),
Set 3g, PS (no vector mesons; only pseudoscalar mesons), CTEQ6M,
and ZEUS.

Set 3g and Set 3g PS with CTEQ6M. Also, the Set 2g u-valence
distribution is lower than those of the diquark models from
x � 0.3 to x ∼ 0.7. The same is true, to a lesser degree, for
d-valence distributions in the range x � 0.2 to x ∼ 0.5. This is
why the structure function calculated using Set 2 undershoots
observation for the aforementioned range of x to a higher
degree and therefore the nucleon with no diquark is not as
suitable a model as one with a diquark for our purpose.
In Fig. 4 we present the sea quark asymmetry generated
by pseudoscalar and vector mesons and their corresponding
baryons. Our results show that the meson cloud does indeed
play a role as a source of sea quark asymmetry. However, the
CTEQ6M data peak at much lower x. One point has to be made
about the strange quarks: In the CETQ6M fit, the strange quark
distribution is assumed to be the same as the antistrange quark
distribution. However, in reality we know that that is not the

FIG. 7. Evolved xd-valence distributions for Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark),
Set 3g, PS (no vector mesons; only pseudoscalar mesons), CTEQ6M,
and ZEUS.
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FIG. 8. Evolved sea quark distributions for Set 3g (spin-0 and
spin-1 diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark),
Set 3g, PS (no vector mesons; only pseudoscalar mesons), CTEQ6M,
and ZEUS.

case and our results in Fig. 5 do indeed show the strange quark
asymmetry. Of course, the net strangeness inside the nucleon
is zero and in our case

∫ 1
0 [s(x) − s̄(x)]dx ∼ 10−4 ∼ 0. We

evolve the initial distributions to Q2
f = 70 GeV2. Having seen

the important role of the gluons in the distribution functions,
from now on we will consider only those data sets. The results
for xu valence and xd valence are shown in Figs. 6 and 7.
As expected, there is a shift to lower x for the distributions.
Also, the differences between our models and CTEQ6M and
ZEUS have been reduced noticeably, particularly for Set 3g.
For x � 0.5, there is a rather good agreement between both
diquark models and the ZEUS result. Figures 8 and 9 compare
the sea quark and gluon distributions of our models with ZEUS
and CTEQ6M. For the sea quark distribution, the addition
of the vector mesons has resulted in our distributions, for

FIG. 9. Evolved gluon distributions for Set 3g (spin-0 and spin-1
diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), Set 3g,
PS (no vector mesons; only pseudoscalar mesons), CTEQ6M, and
ZEUS.

FIG. 10. F2 structure function for the proton. The curves are the
results of our models Set 3g (spin-0 and spin-1 diquark), Set 1g
(only spin-0 diquark), Set 2g (no diquark), and Set 3g, PS (no vector
mesons; only pseudoscalar mesons). Circles and triangles are NMC
and ZEUS fits, respectively, at Q2 = 70 GeV2. The curve with the
open square symbol is the CTEQ6M fit.

x � 0.04, from being slightly less than CTEQ6M and ZEUS to
being slightly more. For x � 0.02, all three models overshoot
observation. For gluons, our models are consistently less than
CTEQ6M and ZEUS data. For x � 0.05, Set 3g is closest
to the CTEQ6M and ZEUS whereas Set 2g has the largest
difference.

We use the final quark distributions to calculate the F2

structure functions for the proton and the neutron. Figures 10
and 11 show the structure functions F2 for the proton and
the neutron, respectively. In both cases the three models
are within the ZEUS error bar range all the way down to
x ∼ 0.02. Between x = 0.02 and x = 0.1 our F2p has a better
agreement with data compared with F2n. Also, in the same

FIG. 11. F2 structure function for the neutron. The curves are
the results of our models Set 3g (spin-0 and spin-1 diquark), Set 1g
(only spin-0 diquark), Set 2g (no diquark), and Set 3g, PS (no vector
mesons; only pseudoscalar mesons). Circles and triangles are NMC
and ZEUS fits, respectively, at Q2 = 70 GeV2. The curve with the
open square symbol is the CTEQ6M fit.
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FIG. 12. Difference in proton and neutron F2 structure functions.
The curves are the results of our models Set 3g (spin-0 and spin-1
diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), and Set
3g, PS (no vector mesons; only pseudoscalar mesons). Circles and
triangles are NMC and ZEUS fits, respectively, at Q2 = 70 GeV2.
The curve with the open square symbol is the CTEQ6M fit.

range, inclusion of the vector mesons improves the agreement
of our models with observation. For x > 0.1, the situation is
reversed. For x � 0.02, our results diverge from data rather
significantly, indicating that the model is not suitable for
that range. Figures 12 and 13 show F2p − F2n and F2n/F2p,
respectively. These two graphs demonstrate clearly not only
that the diquark models are indeed in better agreement with
observation than the case in which there is no diquark but also
that inclusion of vector mesons (Set 3g) has led to an excellent
agreement with observation for x < 0.2.

In the quark model, the Gottfried sum rule (GSR) [69] can
be written as∫ 1

0

dx

x
[F2p(x,Q2) − F2n(x,Q2)] = 1

3
. (26)

NMC [70,71] results show deviations from the right-hand
side of Eq. (26):∫ 1

0

dx

x
[F2p(x, 4 GeV2) − F2n(x, 4 GeV2)]

= 0.240 ± 0.0034 ± 0.021. (27)

This deviation can be attributed to the flavor asymmetry of
the nucleon sea. In Table III, we present GSR results for our
models, NMC, ZEUS, and CTEQ6M at Q2 = 70 GeV2. For
NMC and ZEUS calculations we have used their parametriza-
tions and integrated over x from zero to one. Therefore, one
can conclude that the contribution of pseudoscalar mesons

TABLE III. GSR results for this work, NMC [62], ZEUS [64,65],
and CTEQ6M five-flavor [67] at Q2 = 70 GeV2.

Set
3g

Set
2g

Set
1g

Set 3g,
PS

NMC ZEUS CTEQ6M-
5f

GSR 0.207 0.209 0.219 0.265 0.212 0.232 0.236

FIG. 13. Ratio of the neutron to proton F2 structure functions.
The curves are the results of our models Set 3g (spin-0 and spin-1
diquark), Set 1g (only spin-0 diquark), Set 2g (no diquark), and Set
3g, PS (no vector mesons; only pseudoscalar mesons). Circles and
triangles are NMC and ZEUS fits, respectively, at Q2 = 70 GeV2.
The curve with the open square symbol is the CTEQ6M fit.

and vector mesons is necessary and sufficient to reproduce the
observed flavor asymmetry.

V. SUMMARY

We used a quark-diquark model for the bare nucleon.
We considered two different diquark distributions, one with
only spin-0 diquarks and the other a superposition of spin-0
and spin-1 diquarks. Using a perturbative QCD approach we
generated gluons in the core nucleon before the addition of the
meson cloud. It turned out that the addition of vector mesons to
the meson cloud led to a better agreement between our models
and NMC and ZEUS results for the proton and the neutron
F2 structure functions for the lower values of x. However,
at higher x values the pseudoscalar meson cloud is in better
agreement with observation. For the difference and the ratio
of the proton and neutron structure functions the introduction
of the vector mesons to the meson cloud leads to excellent
agreement with observation for x < 0.2. We have shown that
the meson cloud model is a source of sea quark asymmetry
and one needs both pseudoscalar mesons and vector mesons to
account fully for the Gottfried sum rule violation. Therefore,
the introduction of gluons made it possible for our model
to not only account for the GSR violation but also have a
reasonable agreement with experimental observation of F2

structure functions.

APPENDIX

Following the work done by Barone and collaborators [58],
one can consider a transition v(x) → q(x) + g(x), where v(x)
is the initial valence quark distribution in the quark model
and g(x) is the gluon distribution generated in the process.
Knowing v(x), one can calculate q(x) and g(x) in the following
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way:

q
(
x,Q2

1

) = v(x)

[
1 −

∫ 1

0
dyG(1 − y,Q2

1, 0)

]

+
∫ 1

x

dy

y
G

(
1 − y,Q2

1, 0
) [

v

(
x

y

)
− yv(x)

]
,

(A1)

g̃
(
x,Q2

1, 0
) =

∫ 1

x

dy

y
v

(
x

y

)
G

(
y,Q2

1, 0
)
, (A2)

where G(x,Q2
1, 0) is the flux of gluons generated from the

target quark,

G
(
x,Q2

1, 0
) = 4

3

∫ Q2
1

0
d2�k αs(�k2)

2π
V

( − k2
g

)

×
(
[1 + (1 − x)2]�k2 + x4m2

f

)
x
[�k2 + (1 − x)µ2

G + x2m2
f

]2 , (A3)

with the gluon’s virtuality given by

− k2
g =

�k2 + x2m2
f

(1 − x)
, (A4)

V (�k) as the vertex function related to the charge form factor
of the nucleon,

V (�k) = 1 − Fcharge(3�k2), (A5)

mf as the mass of the quark with flavor f , and µG as the
effective mass of gluons, introduces so that the color forces do
not propagate beyond the confinement radius and is taken to
be about 145 MeV.

To perform the next step of evolution from Q2
1 to Q2

2 (Q2
2 >

Q2
1), one repeats this procedure by replacing v(x) → q(x,Q2

1)
and G(x,Q2

1, 0) → G(x,Q2
2,Q

2
1), which leads to the new

gluon distribution

g
(
x,Q2

2

) = g̃
(
x,Q2

2,Q
2
1

) + g̃
(
x,Q2

1, 0
)
, (A6)

and obviously these along with Eq. (A1) will lead to q(x,Q2
2).

This procedure can be repeated in small steps until one reaches
the desired final Q2, which in our case is 0.5 GeV2. At this
momentum transfer we introduce the meson cloud and evolve
the distributions to the final momentum transfer.
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