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New method for extracting neutron structure functions from nuclear data
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We propose a new method for extracting neutron structure functions from inclusive structure functions of nuclei,
which employs an iterative procedure of solving integral convolution equations. Unlike earlier approaches, the
new method is applicable to both spin-averaged and spin-dependent structure functions. We test the reliability of
the method on unpolarized F2 and polarized g1 structure functions of the deuteron in both the nucleon resonance
and deep inelastic regions. The new method is able to reproduce known input functions of almost arbitrary shape
to very good accuracy with only several iterations.
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I. INTRODUCTION

Understanding the detailed structure of the nucleon re-
mains one of the central problems of the strong nuclear
interactions. This is particularly challenging in the so-called
transition region at momentum scales ∼1 GeV, where neither
perturbative quantum chromodynamics (QCD) nor effective
hadronic theories provide adequate descriptions of physical
observables.

Over the past few years, one of the fascinating developments
in the study of this transition has been the phenomenon
of quark-hadron duality in inclusive electron-nucleon (and
nucleus) scattering. Here the structure functions in the region
dominated by low-lying resonant excitations of the nucleon
are found to closely resemble, on average, the deep inelastic
structure functions describing the high-energy cross section
[1]. Since QCD at high energy and momentum transfers can
be treated perturbatively but is highly nonperturbative at low
energies where hadronic degrees of freedom are prominent,
this duality provides an intimate link between the two
regimes.

Recent experiments have sought to quantify quark-hadron
duality by determining its flavor, spin, and nuclear dependence,
while theoretical endeavors have attempted to understand its
dynamical origin from a more fundamental basis (for a review,
see Ref. [2]). In particular, even from simple quark model
arguments, one expects intriguingly different behaviors of
duality for the proton and for the neutron [3].

While duality for the proton has been tested to rather good
accuracy in recent measurements, for both unpolarized and
polarized scattering [4,5], there is almost a complete absence
of analogous empirical information on the neutron. This lack of
knowledge has prevented the various theoretical models from
being adequately tested and has impeded progress in unrav-
eling the microscopic origin of the duality phenomenon. The
difficulty with obtaining data on neutron structure functions

is, of course, the absence of free neutron targets. As a result,
one often makes use of light nuclei such as deuterium [6] or
3He [7] as effective neutron targets, assuming that the nuclear
corrections are negligible.

Even when nuclear effects are considered, there exist
practical difficulties with extracting information on the neutron
from nuclear data. Some attempts have been made to obtain
the spin-averaged Fn

2 structure function from proton and
deuterium data in the deep inelastic scattering region, where
the exchanged four-momentum transfer squared Q2 is large
(∼5 GeV2 or greater). A common approach has made use of
the so-called smearing factor method [8], in which one makes
an initial guess for Fn

2 and then iterates the solution to eliminate
the dependence of the extracted neutron structure function on
the starting point.

In practice, the smearing factor method has only been
applied to the unpolarized F2 structure function and only in
deep inelastic kinematics [9]. The robustness of this procedure
is guaranteed only for functions that do not change sign; for
spin-dependent structure functions, which can have several
zeros, the usual prescription is inadequate. Furthermore, in the
nucleon resonance region, where nontrivial resonant structure
exists, it is not a priori clear whether it is even possible
to extract resonance structure that has been smeared out by
nucleon Fermi motion.

In this paper, we propose a new method in which the
nuclear effects are parametrized via an additive correction
to the free nucleon structure functions. In contrast to the
more common multiplicative method, which is problematic
for structure functions with zeros, the new method can be used
for functions of almost arbitrary shape, which allows access
to neutron structure in both the deep inelastic and resonance
regions. By iterating the solution, the dependence on the initial
guess for the neutron structure function is eliminated, and in
practice, a reliable extraction can be achieved after only several
iterations.
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In Sec. II, we present the formalism for computing nuclear
structure functions at finite Q2 within the nuclear impulse
approximation. Although the formalism is general and can be
applied to any nucleus, we focus on the specific case of the
deuteron to illustrate the features of the new extraction method.
In Sec. III, we present the details of the new method and discuss
other methods that have been used to extract neutron structure
functions from nuclear data, including the smearing factor
method, and a direct method of inverting integral equations
which has previously been used in Refs. [10,11]. Our results
are presented in Sec. IV for spin-averaged and spin-dependent
structure functions, in both the resonance and deep inelastic
regions. Using known input functions constructed from res-
onance and leading twist structure function parametrizations,
we demonstrate the accuracy of the extraction method and
provide a detailed discussion of its convergence to the exact
results as a function of the number of iterations and the
first guess in the iteration. Finally, in Sec. V, we summarize
our results and preview future applications of the new
method.

II. NUCLEAR STRUCTURE FUNCTIONS

The usual framework for computing structure functions
of nuclei at large x is the relativistic nuclear impulse
approximation, in which the lepton probe scatters from the
nucleus incoherently via the scattering from its bound proton
and neutron constituents. In this approximation, the nuclear
structure functions can be written as convolutions of the bound
nucleon structure functions and nucleon light-cone momentum
distributions in the nucleus [12–19].

In particular, for the spin-averaged F2 structure function of
a nucleus A, we have

FA
2 (x,Q2) = (

f
p/A

0 ⊗ F
p

2

)
(x,Q2) + (

f
n/A

0 ⊗ Fn
2

)
(x,Q2),

(1)

where x = Q2/2MAν is the Bjorken scaling variable (per
nucleon), MA is the nuclear mass, ν is the energy transfer,
and the symbol ⊗ denotes the convolution

(
f

N/A

0 ⊗ FN
2

)
(x,Q2) ≡

∫ MA/M

x

dyf
N/A

0 (y,γ )FN
2

(
x

y
,Q2

)
,

(2)

with M the nucleon mass. The function f
N/A

0 is the light-
cone momentum distribution of nucleons N in the nucleus
and is a function of the light-cone momentum fraction y of
the nucleus carried by protons (N = p) or neutrons (N =
n), and of the virtual photon “velocity” γ in the target rest
frame, γ = |q|/q0 = (1 + 4M2x2/Q2)1/2. For moderate Q2

values Q2 ∼ 1–10 GeV2, γ ranges between unity and ≈2. As
discussed in Refs. [18,19], taking the full Q2 dependence of the
smearing function into account is vital for discussing nuclear
structure functions at large-x or resonance kinematics.

For the spin-dependent nuclear gA
1 and gA

2 structure func-
tions, one has a set of coupled equations involving both the

nucleon gN
1 and gN

2 structure functions [18],

xgA
i (x,Q2) = (

f
p/A

ij ⊗ xg
p

j

)
(x,Q2)

+ (
f

n/A

ij ⊗ xgn
j

)
(x,Q2), i, j = 1, 2, (3)

where f
N/A

ij are the spin-dependent nucleon light-cone mo-
mentum distribution functions in the nucleus, and a sum over
repeated indices j is implied. In contrast to FA

2 , which receives
contributions only from the nucleon FN

2 structure function, the
spin-dependent structure functions at finite Q2 involve also
nondiagonal contributions f

N/A

12 and f
N/A

21 . (Note that both
the transverse FA

T and longitudinal FA
L structure functions

individually receive nondiagonal contributions, whereas FA
2

does not [16].) In the Bjorken limit, the distribution f
N/A

12
vanishes, and the expression for the g1 structure function
becomes diagonal. Equations (1) and (3) can be viewed as
equations in the single independent variable x for fixed values
of Q2. In the following, for ease of notation, we suppress the
dependence of the structure functions on Q2.

The light-cone momentum distribution functions in
Eqs. (1) and (3) (also referred to as smearing functions) can
in general be calculated from nuclear spectral functions which
account for the ground state wave function of the nucleus
and the excitation spectrum of the spectator nuclear system,
including the continuum spectrum. Since the characteristic
energies and momenta of the bound nucleons are small
compared to the nucleon mass M , the unpolarized distribution
f0 and the spin-dependent diagonal distributions f11 and f22

are sharply peaked about y = 1.
In this analysis, we will focus on the case of the deuteron, for

which the smearing functions have recently been evaluated in
the weak binding approximation [16,18], including the finite-
Q2 corrections encoded through the dependence on γ . Note
that in the isospin symmetric limit, the proton and neutron
distributions in the deuteron are identical, f p/d = f n/d ≡ f ,
and in the following discussion we will omit the superscripts
on these distributions.

The unpolarized f0 distribution function is given in terms
of the deuteron wave function ψd (p) by [16,17]

f0(y, γ ) =
∫

d3p

(2π )3
|ψd (p)|2

(
1 + γpz

M

) 1

γ 2

×
[

1 + γ 2 − 1

y2

(
1 + 2ε

M
+ p2

2M2

(
1 − 3p̂2

z

))]

× δ

(
y − 1 − ε + γpz

M

)
, (4)

where ε = εd − p2/(2M), with εd = −2.2 MeV the deuteron
binding energy. The analogous spin-dependent light-cone
distributions fij are given explicitly in Ref. [18]. For γ = 1,
the f0 distribution is normalized to the number of protons
or neutrons in the deuteron, while f11 is normalized to the
nucleon polarization in the deuteron,∫ MA/M

0
dy f0(y, 1) = 1, (5)∫ MA/M

0
dy f11(y, 1) = 1 − 3

2
ωd, (6)
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FIG. 1. (Color online) Nucleon distribution functions in the
deuteron for γ = 1, 1.5, and 2: (a) f0(y, γ ) distribution for the F d

2

structure function, (b) f11(y, γ ) distribution for the xgd
1 structure

function.

where ωd is the deuteron D-state probability. For the Paris
deuteron wave function [20] used here, ωd = 5.8%. At finite
Q2, or γ > 1, these normalization conditions are no longer
satisfied, and the distributions do not have probabilistic
interpretations.

In Fig. 1, we show the f0(y, γ ) distribution for the unpo-
larized Fd

2 structure function [16] and the diagonal f11(y, γ )
distribution for the polarized xgd

1 structure function [18], for
γ = 1, 1.5, and 2, using the deuteron wave function obtained
from the Paris nucleon-nucleon potential [20]. For γ = 1,
the (Q2-independent) distributions are peaked sharply around
y = 1, and they decrease rapidly with increasing |y − 1|, so
that by |y − 1| > 0.4 they become almost negligible. For larger
γ , the distributions become broader, with a larger width and
smaller height at the peak. For γ = 2, the height of the peak
is approximately half that for γ = 1.

The shapes of the unpolarized and polarized distributions
are very similar, with ≈0.5% differences between f0 and
f11 at the peak for γ = 1, and <∼2.5% for γ = 2. While the
spin-averaged function f0 is constrained to be positive, the
spin-dependent f11 function, which involves a difference of
distributions of nucleons with spins aligned and antialigned
with that of the deuteron, need not be positive. For values of

y < 0.8, the f11(y, γ = 1) distribution in fact becomes slightly
negative, as is (barely) visible in Fig. 1, although the smearing
functions here are close to zero.

Before proceeding to the discussion of extraction methods
using these distributions, we should note that while the
impulse approximation (scattering from individual nucleons
in the nucleus) provides the main contribution to nuclear
deep inelastic scattering, in realistic calculations of nuclear
structure functions, other effects are also known to play a
role. These include nuclear shadowing and meson exchange
currents at small x, final state interactions of the produced
hadronic state, relativistic effects, and off-shell corrections to
the bound nucleon structure functions [16]. Some of these
may be formulated within generalized convolutions, either as
two-dimensional convolutions with off-shell structure func-
tions [12,13,15], or in terms of exchanged-meson smearing
functions [21], and the techniques discussed here may be
applicable. Others, such as relativistic corrections, go beyond
the convolution approximation [12], and must be included as
additive corrections to the convolution. Explicit calculations of
final state interactions in the quasielastic region have suggested
that rescattering effects decrease with increasing Q2 [22],
and in addition they partly cancel in inclusive inelastic cross
sections when summed over several exclusive channels [23].

In the present analysis, we do not attempt to provide a
complete description of nuclear structure functions; instead,
we wish to study the usefulness of the new method of un-
smearing nucleon structure functions within the conventional
convolution framework. Once we establish the methodology
of the new method, additional effects beyond the convolution
approximation can be considered in actual data analyses.

III. EXTRACTION METHODS

Having outlined the formalism for computing structure
functions of nuclei in terms of those of nucleons, in this
section we review several methods for extracting neutron
structure functions from nuclear (in practice, deuterium) data,
including the new “additive” method proposed in this paper. To
extract the neutron structure function from proton and nuclear
data at a given Q2, one first convolutes (or “smears”) the
proton structure function Fp, where F = F2 or xg1,2, with the
appropriate smearing function,

F̃p(x) ≡ (f ⊗ Fp)(x), (7)

where f = f0 for the unpolarized F2 structure function, and
f = fij for the polarized g1,2 structure functions. Subtracting
the smeared proton F̃p from the nuclear structure function,
one obtains an effective smeared neutron structure function

F̃n(x) = Fd (x) − F̃p(x), (8)

and then solves the equation

F̃n(x) = (f ⊗ Fn)(x) (9)

for Fn(x). Note that for a fixed Q2, γ is a function of x alone,
so in practice the smearing functions acquire an x dependence.
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A. Direct solution

Equation (9) is a system of so-called Volterra integral
equations of the first kind, which take the general form

g(x) =
∫ ymax

x

dyK(x, y) z(y), (10)

where g(x) and K(x, y) (the kernel) are known functions and
z is unknown. The general theory of Volterra equations is quite
extensive; see, for example, Ref. [24]. Most Volterra equations
have no closed-form solution, but numerical solutions for first-
kind equations are quite simple. Dividing the interval 0 < y <

ymax into a grid of width h by ya = ah, with a = 0, 1, . . . , N ,
and using a quadrature method such as the trapezoidal rule or
Simpson’s rule, one can approximate the integral in Eq. (10)
by a discrete sum

ga =
N∑

b=a

Kab zb, (11)

reducing the numerical solution to a problem of matrix
inversion: z = K−1g. In fact, because of the variable lower
limit of integration y = x, the matrix K is upper-triangular, and
the inversion is almost trivial. This method has been utilized
in Refs. [10,11] in a similar application. The method fails,
though, if K is singular.

Letting t = x/y and v = x/ymax, Eq. (9) can be expressed
in the form of Eq. (10):

F̃n(ymaxv) =
∫ 1

v

dt f
(ymaxv

t
, γ

) ymaxv

t2
Fn(t), (12)

in which case the kernel is a sum of terms K(v, t) =
(ymaxv/t2)f (ymaxv/t, γ ). The diagonal K(v, v) ∝ f (ymax)
corresponds to the diagonal elements Kbb in the discretized
equation (11). However, for any value of γ, f (ymax) is
extremely small for strong physical reasons: a single nucleon
has a vanishing probability of carrying the entire momentum of
the nucleus. Thus the matrix K has very small values along the
diagonal and is very close to singular, so this solution method
fails.

A standard approach to solving Volterra equations with a
kernel vanishing identically along the diagonal is to either
integrate Eq. (12) by parts or to differentiate with respect
to x. The first technique gives an integral equation for the
primitive of Fn(x) with kernel ∂K(x, t)/∂t , while the second
has kernel ∂K(x, t)/∂x and left-hand-side dF̃n(x)/dx. These
approaches are still problematic, however, because derivatives
of the smearing functions are still very small at y = ymax;
also, taking derivatives of functions derived from fits to
data introduces substantial errors. Furthermore, the solution
depends on knowing F̃n(x) at all values of x, while in practice,
only data up to x = 1 are available. It is clear that a direct
solution to Eq. (9) is impractical for the particular forms of
smearing functions used in this model.

B. Multiplicative solution

The most widely used method for extracting spin-averaged
structure functions is the smearing-factor or multiplicative

method [8]. This is an iterative solution method based on the
ansatz that the right-hand side of Eq. (9) can be written as
a product of the neutron structure function and a “smearing
factor” Sn(x),

F̃n(x) = Sn(x)Fn(x). (13)

From a first guess Fn(0)(x), one obtains S(0)(x) by smearing
Fn(0)(x) and dividing by Fn(0)(x). Dividing F̃n(x) by Sn(0)

gives Fn(1)(x), so the result after one iteration is

Fn(1)(x) = F̃n(x)
Fn(0)(x)

(f ⊗ Fn(0))(x)
. (14)

One can see from the form of Eq. (14) that this method is
problematic if the smeared structure function has zeros in the
range of x of interest. The spin-averaged nuclear structure
functions are positive-definite for 0 < x < 1, so this problem
does not arise, and the multiplicative method converges quite
rapidly for essentially any reasonable choice of Fn(0)(x).
Even for spin-dependent structure functions, which may have
several zeros, the multiplicative method works fine as long as
the zeros of the smeared Fn(0)(x) are very close to the zeros of
F̃n(x). Since the smearing functions are close to δ functions,
this amounts to requiring that the zeros of the neutron structure
function be very close to the zeros of the nuclear structure
function. But experimental errors could easily obscure the true
location of the zeros of the nuclear structure function, making a
direct application of this method to experimental data difficult.

C. Additive extraction method

Instead of assuming a multiplicative smearing factor, one
can exploit the fact that the smearing function f is sharply
peaked about y = 1 to formally write

f (y, γ ) = N δ(y − 1) + δf (y, γ ), (15)

where N = ∫ MA/M

0 dy f (y, γ ) is the normalization of the
smearing function, which for γ = 1 is either unity for the
unpolarized F2 structure function, or equal to the effective
nucleon polarization in the nucleus for the spin-dependent g1

structure function. The correction δf gives the finite width of
the smearing function. The smeared neutron structure function
in Eq. (9) can then be written

F̃n(x) = N Fn(x) + (δf ⊗ Fn)(x). (16)

The convolution term in Eq. (16) can thus be treated as a
perturbation, and the equation solved iteratively. Starting from
a first guess Fn(0)(x), one has, after one iteration,

Fn(1)(x) = Fn(0)(x) + 1

N [F̃n(x) − (f ⊗ Fn(0))(x)]. (17)

Here, there is no danger of divergences due to zeros in the
input, as the only division is by N , which is nonzero for all
smearing functions f (y, γ ).

When F = xg1, Eq. (9) is a system of two equations,
whose solution is slightly more involved. One notes that
the function f11 is the most sharply peaked of the smearing
functions [18] and hence gives the largest contribution to xgd

1 .
Assuming that the f12 contribution is zero, one can apply
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Eq. (17) to xgd
1 to obtain g

n(1)
1 (x), which is substituted into the

expression for xgd
2 . Subtracting this contribution f21 ⊗ xg

n(1)
1

from xgd
2 and applying Eq. (17) to the resulting expression

then gives g
n(1)
2 (x). The new value g

n(1)
2 (x) is then inserted into

the xgd
1 equation, and the recursive procedure repeated until

convergence is achieved.

D. Analysis of convergence

As we will show in Sec. IV below, the convergence of
the additive method is quite fast and nearly independent
of the initial guess. The reason for this is essentially the
sharply peaked shape of the smearing function. This can
be illustrated by examining the propagation of the error
on the true function Ftrue(x) with each iteration i. Starting
from a first guess, F (0)(x), for the true function, we define
F (0)(x) = Ftrue(x) + ε(0)(x), where ε(0)(x) is the difference
between the first guess and the true result. Tracking this error
after i = 1 iteration gives

ε(1)(x) = ε(0)(x) − 1

N (f ⊗ ε(0))(x). (18)

Note that if f (y) ∼ δ(y − 1), the error for x < 1 vanishes even
after one iteration. In fact, since f (y) is sharply peaked at y =
1 (for the unpolarized and diagonal polarized distributions),
ε(1)(x) is expected to be quite small for x <∼ 0.8, regardless of
F (0).

More specifically, the iteration procedure will converge if
for successive iterations |ε(i+1)(x)| < |ε(i)(x)|. Defining σ to
be the width over which the smearing function f (y) � 0, from
Eq. (4) it follows that σ ∼ γpchar/M � 1, where pchar is the
characteristic nucleon momentum scale in the deuteron. Then
using the generalized mean value theorem for integrals, the
correction term in Eq. (18) can be written as

1

N (f ⊗ ε)(x) = ε(x/y∗), (19)

where y∗ = 1 + c is a point within the integration interval,
with |c| < σ/2. If ε(x) is a sufficiently smooth function of x,
one can expand the right-hand side of Eq. (19) in a series in c,

ε(x/(1 + c)) = ε(x) − cx ε′(x) + O(c2), (20)

so that the error after one iteration is ε(1)(x) ≈ cxε(0)′ (x). This
then leads to the estimate∣∣∣∣ε(1)

ε(0)

∣∣∣∣ ≈ cx

∣∣∣∣∣ε
(0)′

ε(0)

∣∣∣∣∣ <
σ

2

∣∣∣∣∣ε
(0)′

ε(0)

∣∣∣∣∣ . (21)

so that the ratio of errors ε(1)/ε(0) is proportional to the
width of the smearing function, as long as the width is small.
Furthermore, because the i = 1 error is given by the derivative
of ε(0), convergence is fastest when the error is smoothest,
which will typically be away from resonance peaks.

IV. RESULTS

In this section, we present numerical results that illustrate
the features of the extraction methods discussed in Sec. III.

0 0.2 0.4 0.6 0.8 1
x

0

0.1

0.2

0.3

0.4

F
2 (

x,
Q

2 )

p 
d / 2
n (input)
n (i = 1)

FIG. 2. (Color online) Extraction of the neutron F n
2 structure

function at Q2 = 10 GeV2 from F
p

2 (dashed) and F d
2 (dot-dashed)

data simulated from the MRST parametrization [25] and the smearing
function f0(γ, y) [16] using the additive method. The extracted F n

2

structure function after i = 1 iteration (solid) is almost indistinguish-
able from the input (dotted).

We discuss first the unpolarized Fn
2 structure function, before

considering the more challenging case of the polarized gn
1

structure function.

A. Unpolarized structure functions

Most previous extractions of the Fn
2 structure function have

been performed in the deep inelastic region, where the structure
functions are smooth and monotonic (beyond x ∼ 0.3). Before
applying our extraction procedure to the more challenging
resonance region, we first test the method on the more familiar
case of DIS kinematics. For the input proton and neutron
structure functions, we use the MRST parametrization [25]
at Q2 = 10 GeV2, and simulate the deuteron Fd

2 “data” using
the finite-Q2 smearing function f0(y, γ ) from Ref. [16].

The resulting extracted neutron Fn
2 structure function is

shown in Fig. 2 using the additive method. Starting from
an initial guess of F

n(0)
2 = 0, the extracted curve is almost

indistinguishable from the input Fn
2 after just a single iteration.

The main reason for this fast convergence is the fact that
the nucleons in the deuteron are weakly bound and have
small average momentum, which leads to a smearing function
f0(y, γ ) that is sharply peaked around y = 1. Although the
precise height and width of the peak may vary slightly for
different deuteron wave functions, the rapid convergence is a
relatively model-independent feature of the extraction.

While the extraction of Fn
2 in the deep inelastic region is

straightforward, obtaining Fn
2 in the nucleon resonance region,

where the cross section is dominated by resonance peaks, is
more problematic. In fact, to our knowledge, such an extraction
has not yet been undertaken in any quantitative analysis. Even
in a system as dilute as the deuteron, the structure of nucleon
resonances is significantly smeared out by the Fermi motion of
the nucleons, so that for Q2 ∼ 1 GeV2 or higher, essentially
only the � region exhibits any clear resonance structure. In
heavier nuclei there is very little resonance structure evident at
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FIG. 3. (Color online) Extraction of the neutron F n
2 structure

function at Q2 = 1 GeV2 in the resonance region using the MAID
parametrization [27] for the input and a first guess F

n(0)
2 = 0.

The convergence of the procedure is illustrated by the results for
i = 1, 2, 5, and 30 iterations.

all [26]. It is not clear a priori therefore to what extent neutron
resonance data can be extracted from data in which the neutron
information is strongly smeared.

To test the effectiveness of the additive extraction method in
the resonance region, we use as input structure functions from
the MAID unitary isobar model [27], which is constructed
to parametrize meson electroproduction data at low W . The
convergence of the iteration procedure in the resonance region
is illustrated in Fig. 3, where we attempt to extract the
input Fn

2 at Q2 = 1 GeV2 with an increasing number of
iterations. Taking as a first guess F

n(0)
2 = 0, after i = 1 or

2 iterations, the prominent resonant structures are clearly
visible, although the amplitudes of the resonance peaks is still
underestimated. After i = 5 iterations, the extracted function
is very close to the true result and would in most cases lie
within experimental uncertainties. Repeating the procedure
i = 30 times reproduces the complete resonance structures
almost exactly.

The multiplicative method can also be used to extract Fn
2

in the resonance region, as illustrated in Fig. 4. The starting
point for the iteration here is taken to be F

n(0)
2 = F

p

2 , and
after i = 5 iterations, the result is in good agreement with
the input function, only slightly underestimating the peaks
of the resonances. As in the additive method, almost perfect
agreement can be achieved eventually with further iterations.
Note that a direct comparison of the convergence of the
additive and multiplicative methods from Fig. 4 is not possible,
since the starting points F

n(0)
2 are different. Here we merely

illustrate the fact that both methods can converge to the true
result within a relatively small number of iterations.

To examine the sensitivity of the extraction to the initial
guess F

n(0)
2 , in Fig. 5 we show the result after i = 2 iterations

for initial guesses F
n(0)
2 = 0 and F

n(0)
2 = F

p

2 , using the MAID
fit [27] at Q2 = 1 GeV2 as input. Since the amplitudes of the
resonances are significantly larger for the proton than for the
neutron, the F

p

2 initial guess results in larger amplitudes for
the extracted neutron Fn

2 for the same number of iterations.

0.4 0.6 0.8 1
x

0

0.04
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0.16

F
2n  (

x,
Q

2 )

input
i = 2 (add.)
i = 2 (mult.)
i = 5 (add.)
i = 5 (mult.)

FIG. 4. (Color online) Comparison of the convergence of the
additive and multiplicative methods for extraction F n

2 for i = 2
and 5 iterations. The starting point for the additive method was
F

n(0)
2 = 0, while for the multiplicative method F

n(0)
2 = F

p

2 . The input
structure functions were taken from the MAID parametrization [27]
at Q2 = 1 GeV2.

On the other hand, because the proton and neutron resonance
transitions to the � are expected to be equal (since the
transitions are isovector), the proton initial guess enables the �

peak to be reproduced extremely well, in contrast to the
zero first guess, which requires more iterations to produce
the observed structure. Of course, with a sufficient number
of iterations, the input Fn

2 can be reproduced accurately
regardless of the initial guess F

n(0)
2 .

In all of the above extractions, the full γ - or Q2-dependent
nucleon smearing function f0(y, γ ) has been used when
computing the deuteron structure function. While using a
γ -independent smearing function may be a reasonable ap-
proximation in the deep inelastic region where γ values are
typically close to unity, applying the γ = 1 smearing function

0.4 0.6 0.8 1
x

0

0.05

0.1

0.15

0.2

0.25

F
2 (

x,
Q

2 )

n
i = 2 , n(0) = 0
i = 2 , n(0) = p
p

FIG. 5. (Color online) Extracted neutron F n
2 structure function

using the additive method with i = 2 iterations, starting with initial
guesses F

n(0)
2 = 0 [labeled “n(0) = 0”] and F

n(0)
2 = F

p

2 [labeled
“n(0) = p”]. The input neutron (n) and proton (p) structure functions
are taken from the MAID parametrization [27] at Q2 = 1 GeV2.
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FIG. 6. (Color online) Extracted neutron F n
2 structure function

using the additive method after i = 10 iterations with the full
γ -dependent smearing function and with the γ = 1 approximation,
compared with the input neutron structure function from the MAID
parametrization [27] at Q2 = 1 GeV2.

to low-Q2, large-x data can lead to errors in the extracted Fn
2 ,

especially in the resonance region [28].
The importance of using the correct smearing function is

illustrated in Fig. 6, where we show the extracted neutron Fn
2

structure function after i = 10 iterations. The result using the
full, γ -dependent smearing function is very close to the input.
On the other hand, with the Q2-independent, γ = 1 smearing
function, the iteration does not converge to the correct solution.
In particular, while a resonance bump is visible in the � region,
it has the incorrect strength; the second resonance region
displays a trough where there should be a peak; and the third
resonance region appears to have no structure at all. Increasing
the number of iterations for the γ -dependent smearing function
leads to ever closer convergence to the input Fn

2 . For the γ = 1
smearing function, the result does not change qualitatively
with further iterations; however, significant noise develops
over much of the x range.

These features arise from the mismatch between the
smearing functions used to compute the deuteron Fd

2 and
those used to perform the extraction. Of course, had the
deuteron structure function been simulated with the γ = 1
smearing function, the extraction with the same function
would return the same input Fn

2 as in Fig. 6. However, this
comparison demonstrates the sensitivity of the extraction to
the Q2 dependence of the smearing function, and highlights
the importance of using a smearing function with the correct
Q2 dependence when analyzing actual data [29].

B. Polarized structure functions

At finite Q2, the complete expressions for the gd
1 and gd

2
nuclear structure functions in Eq. (3) represent a coupled set
of equations involving contributions from both the gN

1 and gN
2

structure functions of the nucleon [18]. While the diagonal
f11 and f22 smearing functions dominate for most kinematics,
the off-diagonal f12 and f21 contributions could be important

0.4 0.6 0.8 1
x

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

xg
1,

2d  (
x,

Q
2 )

g
1

g
1

(f
11

only)
g

2
g

2
(f

22
only)

FIG. 7. (Color online) Deuteron xgd
1 and xgd

2 structure functions
simulated from the MAID parametrization of the proton and neutron
g1,2 at Q2 = 1 GeV2 and the smearing functions fij , i, j = 1, 2, from
Ref. [18]. The full results for xgd

1 and xgd
2 are compared with the

diagonal approximations using f11 only and f22 only, respectively.

at low values of Q2. Furthermore, the gN
1 contribution to gd

2
survives even in the Bjorken limit.

As described in Sec. III C above, one can solve such a
system of equations by simultaneously iterating both gn

1 and
gn

2 , given known (or simulated) proton and deuteron data.
Such a procedure will necessarily be slower and require more
iterations, but it is stable and will in principle converge to the
correct solutions.

In practice, however, for the kinematics discussed here,
namely, Q2 ∼ 1–10 GeV2, the off-diagonal contributions are
rather small. This can be seen in Fig. 7, where we show the xgd

1
and xgd

2 structure functions simulated from the MAID g
p,n

1,2

parametrizations [27] at Q2 = 1 GeV2, using the smearing
functions fij (y, γ ), i, j = 1, 2, from Ref. [18]. The results
with the diagonal terms only (f11 for gd

1 and f22 for gd
2 ) are

very close to the full results, which include both diagonal
and off-diagonal contributions. With the precision achievable
in current and near-term future experiments, the diagonal
approximation to the gd

1,2 structure functions should therefore
provide a reliable framework in which to extract neutron
structure functions, and in the following analysis we consider
only the diagonal contributions. Furthermore, since the shape
of g2 is qualitatively similar to that of g1 (generally g2 has
the opposite sign than that of g1), we shall focus on the g1

structure function as representative of the effects of extracting
spin-dependent neutron structure functions in the resonance
region.

As we saw in the previous section, both the additive and
multiplicative methods yield reliable results for extracted
neutron structure functions, in both the deep inelastic and
resonance regions, as long as the structure functions are free
of zeros. For polarized scattering, the g1 and g2 structure
functions are no longer positive-definite, so taking ratios of
smeared to unsmeared functions can in principle lead to
singularities during the extraction.

This does not necessarily render the multiplicative method
completely impractical for extracting polarized structure
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FIG. 8. (Color online) Extraction of the neutron xgn
1 structure

function from proton xg
p

1 and deuteron xgd
1 “data” simulated from

the leading twist parametrization [30] at Q2 = 10 GeV2 and the
smearing function f11(γ, y) [16]. The input and extracted xgn

1

functions, for both the additive and multiplicative methods, are almost
indistinguishable.

functions, however. Numerically, for a given iteration in which
the structure function is close to (but not exactly at) its zero,
the smearing factor Sn will be very large. For the next step
in the iteration, this large contribution will be damped by the
corresponding small value of the structure function, making the
result finite. On the other hand, precisely how (and whether)
this cancellation occurs in practice will be determined by the
shapes of the input structure functions and smearing functions,
and a priori it is not clear whether an extracted nonpositive
definite structure function will be well behaved for a particular
extraction.

To illustrate the extraction of spin-dependent structure
functions, we first consider the g1 structure function in the DIS
region in Fig. 8. The input proton xg

p

1 and neutron xgn
1 data

are taken from the leading twist parametrization in Ref. [30]
at Q2 = 10 GeV2, with the deuteron xgd

1 simulated using the
smearing function f11(y, γ ) from Ref. [18]. With a starting
point of xg

n(0)
1 = 0, the extracted neutron structure function

after a single iteration using the additive method is essentially
indistinguishable from the input. As for the unpolarized F2

structure function in the DIS region in Fig. 2, this feature
reflects the narrow width of the smearing function f11(y, γ )
around y = 1.

For the multiplicative method, the initial guess is taken to
be xg

n(0)
1 = xg

p

1 , and after one iteration, the extracted neutron
structure function is also very close to the input. In particular,
even though the ratio of smeared to unsmeared gn

1 structure
functions is singular at x ≈ 0.5, the extracted function is
nevertheless continuous in this region. The marginally slower
convergence here compared with the additive case reflects the
different starting inputs for gn

1 , which for the multiplicative
method is farther from the true result than for the additive.

While both the additive and multiplicative methods appear
to be effective in extracting the spin-dependent neutron
structure function in the DIS region, their utility in the
nucleon resonance region, where the xg1 exhibits considerably

0.4 0.6 0.8 1
x

-0.06

-0.04

-0.02

0

xg
1n  (

x,
Q

2 )

input
i = 2 (add.)
i = 2 (mult.)
i = 5 (add.)
i = 5 (mult.)

FIG. 9. (Color online) Comparison of the convergence of the
additive and multiplicative methods for extraction xgn

1 for i = 2 and 5
iterations. The starting point for the additive method was xg

n(0)
1 = 0,

while for the multiplicative method xg
n(0)
1 = xg

p

1 . The input structure
functions were taken from the MAID fit [27] at Q2 = 1 GeV2.

more structure, is compared in Fig. 9 using the MAID
parametrization [27] at Q2 = 1 GeV2. The most striking
feature of the extracted neutron xgn

1 is the discontinuities near
the zeros of the input function for the multiplicative method,
which arise from the singularities in the smearing factor Sn.
On the other hand, no such singularities appear for the additive
method, and the extracted functions are smooth and continuous
over the entire range of x.

The convergence of the extraction for the additive method
is illustrated in Fig. 10, where after only five iterations the
extracted xgn

1 displays all the prominent features of the � peak
and the higher resonance regions. After i = 30 iterations, the
input function is reproduced almost exactly.

The sensitivity of the extraction to the initial guess for xgn
1

is illustrated in Fig. 11, where the results after i = 2 iterations
are compared for starting values xg

n(0)
1 = 0 and xg

n(0)
1 = xg

p

1 .
As in the case of the unpolarized F2 structure function, the
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-0.04
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xg
1n  (

x,
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2 )

input
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i = 5
i = 30

FIG. 10. (Color online) Convergence of the extracted neutron
xgn

1 structure function for i = 1, 2, 5, and 30 iterations, using the
MAID resonance fit [27] at Q2 = 1 GeV2 as input, with a first guess
xg

n(0)
1 = 0.
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FIG. 11. (Color online) Extracted neutron xgn
1 structure function

using the additive method with i = 2 iterations, starting with initial
guesses xg

n(0)
1 = 0 [labeled “n(0) = 0”] and xg

n(0)
1 = xg

p

1 [labeled
“n(0) = p”]. The input neutron and proton structure functions are
taken from the MAID fit [27] at Q2 = 1 GeV2.

xg
p

1 initial guess gives amplitudes that are larger than for
the zero initial guess after the same number of iterations.
Since the input proton and neutron structure functions are
similar in the � region, the iteration of xgn

1 converges on the
� peak more rapidly for the xg

p

1 starting point than for the zero
first guess. On the other hand, because the second resonance
peak for the proton is significantly larger than for the neutron,
convergence on this is faster for the xg

n(0)
1 = 0 starting value.

Again, with a sufficient number of iterations, the input xgn
1 can

be accurately reproduced independently of the starting point.
The importance of using the correct Q2 dependence in the

smearing function f11(y, γ ) is highlighted in Fig. 12, where
the extracted xgn

1 neutron structure function is shown after i =
10 iterations. While the full, γ -dependent smearing function
yields an almost exact reconstruction of the input structure
function, the result using the γ = 1 smearing function bears

0.4 0.6 0.8 1
x

-0.06

-0.04

-0.02
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xg
1n  (
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Q

2 )

input
i = 10
i = 10  (γ =1)

FIG. 12. (Color online) Extracted neutron xgn
1 structure function

using the additive method after i = 10 iterations with the full
γ -dependent smearing function and with the γ = 1 approximation,
compared with the input neutron structure function from the MAID
parametrization [27] at Q2 = 1 GeV2.

FIG. 13. (Color online) Extraction of the neutron xgn
1 structure

function from proton xg
p

1 and deuteron xgd
1 “data” simulated from

the leading twist parametrization [30] at Q2 = 10 GeV2 and the
smearing function f11(γ, y) [16]. The error bars are derived from
the uncertainties on the structure functions given in Ref. [30]. The
input xgn

1 structure function is given as reference, with uncertainties
indicated by the shaded band.

little resemblance to the true xgn
1 . Most notably, the height of

the � peak is significantly underestimated, and the position of
the second resonance peak does not correspond to the correct
value. As for the Fn

2 structure function in Fig. 6, these features
arise from the mismatch between the smearing functions used
to compute the deuteron xgd

1 and those used to perform the
extraction of xgn

1 . They clearly demonstrate that it is vital to
use the correct Q2 dependence in the smearing function when
analyzing data in the nucleon resonance region, especially at
low Q2 and large x [31].

Analysis of actual gd
1 (and Fd

2 ) data to extract the free
neutron structure functions will be discussed in a forthcoming
publication [29]. However, one can anticipate how the neutron
xgn

1 structure function can be extracted from actual proton and
deuteron data, together with error bars, by a simple illustration.

In Fig. 13, we show the proton and deuteron structure
functions simulated from the leading twist parametrization
[30] at Q2 = 10 GeV2, with the error bars derived from the
uncertainties on the xg

p

1 and xgn
1 structure functions given

in Ref. [30]. The deuteron structure function was simulated
by varying each point of the proton and neutron input by a
Gaussian of width given by the error bar, which were then
smeared with the momentum distribution f11 and added to get
a “trial” xgd

1 . This procedure was repeated for 50 trials, after
which the average and standard deviation of each point was
taken to obtain the xgd

1 curves and error bars.
To extract xgn

1 , one can assume that the only errors that
contribute are those from the deuteron. In practice, errors on
xgd

1 are much larger than those on xg
p

1 , and smearing xg
p

1
renders the proton errors negligible compared to the deuteron
errors. As before, each point of xgd

1 was varied by the error
bars, from which the smeared xg

p

1 was then subtracted with
no errors, and the extraction performed to obtain a trial xgn

1 .
This was repeated for 50 trials and the average and standard
deviation computed as before.
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The extracted neutron data points in Fig. 13 are found to be
in excellent agreement with the input xgn

1 structure function.
The errors on the extracted neutron function after one iteration
are of the same order of magnitude as those on the deuteron.
Note that the extracted error bars are considerably smaller than
the original error bars, indicated by the shaded band around
the input xgn

1 , which is mostly due to the fact that, as a sum
of smeared functions, the simulated xgd

1 has artificially small
errors. For real data, errors on the deuteron and proton structure
functions are given, and neglecting the errors on xg

p

1 with
respect to xgd

1 is a very reasonable assumption.

V. CONCLUSIONS

In this paper, we have presented a new method that allows
the reliable extraction of neutron structure functions, both
spin-averaged and spin-dependent, over a wide range of
Q2. We have compared the new (additive) method with the
existing (multiplicative) extraction method, and found that
the performance of both methods is very similar for the
extraction of Fn

2 , while the additive method is free of the
singularities that develop when attempting to extract xgn

1 using
the multiplicative method. Moreover, the speed of convergence
of the additive method is nearly independent of the initial
guess, and in most cases a reliable extraction is achieved
after i = 5 iterations. Finally, the extraction of xgn

1 including
error bars, shown in Fig. 13, illustrates both that errors on
the extracted function can be reliably estimated and that
the performance of the method is not overly sensitive to
perturbations in the input.

The tests of the additive method on models of resonance-
region structure functions show that the general shape of the
curve is reproduced after only one iteration, but that further
iterations are necessary to accurately extract the magnitude
of the resonance peaks. The dependence of the method on
the initial guess is evident in the sense that the regions where
convergence is slowest are the regions where the initial guess
is farthest from the actual magnitude of the resonance peaks.
Thus, one can reduce the number of iterations needed with an

educated guess about the shape of the neutron function. For
example, since the isovector transition to the � gives identical
proton and neutron structure functions for the resonant part
of the �, a good first guess for the neutron would always
be the proton structure function in the � region. To ensure
that the extracted neutron structure function is in fact correct
in the context of the smearing-function model, one can smear
the extracted structure function and add to the smeared proton
structure function to compare with the deuteron data.

Despite extensive experiments on light nuclear targets, the
neutron remains something of a mystery. The same observables
which can be directly measured for the proton must be inferred
for the neutron, because its instability outside of the nucleus
makes neutron targets impossible. Previously, the low statistics
and large errors from experiments designed to measure
neutron observables limited the accuracy of measured neutron
structure functions far more than using a simplified model
of the nucleus to perform the extraction. The situation has
changed with recent experiments at Jefferson Lab (JLab), and
now accounting for nuclear corrections in neutron structure
function extraction procedures is essential to obtaining an
accurate representation of the neutron structure functions,
especially in the resonance region. In particular, we have
shown that ignoring finite-Q2 corrections to nuclear structure
functions leads to an extracted neutron structure function
which may bear little resemblance to the true shape. To assess
quark-hadron duality for the neutron to the same extent that
it has been verified for the proton, detailed knowledge of all
neutron structure functions in all kinematic regimes is needed.
The method presented in this paper, when applied to the most
recent JLab data, will be a first step in that direction.
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