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Isospin mixing effects in the low-energy K N-m X interaction
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New strong coupled-channels K N-7 X potential, reproducing all existing experimental data and suitable
for using in an accurate few-body calculations, is constructed. Isospin breaking effects of direct inclusion of
the Coulomb interaction and using of physical masses in calculations are investigated. The 1s level shift and
width of kaonic hydrogen, consistent with the scattering data, was obtained and the corresponding exact strong
K~ p scattering length was calculated. One- and two-pole form of A(1405) resonance was considered.
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I. INTRODUCTION

Kaonic atoms and, especially, the possibility of the for-
mation of kaonic nuclear clusters has recently attracted much
interest. For investigation of these systems it is necessary to
know the basic KN interaction, which is strongly connected
with 7 X and other channels.

Different theoretical models were used for constructing
the antikaon-nucleon interaction. All these models can be
separated in two groups: ‘“stand-alone” potentials having the
only aim to fit two-body data and potentials to be used in future
(few- or many-body) calculations.

The first group comprises potentials based on chiral
Lagrangians. The method, quite popular these days, consists
of constructing a potential which gives amplitudes equivalent
to those derived from an effective chiral Lagrangian. Such
potentials have many channels, including energetically closed
near KN threshold ones. The most recent example is a
model constructed in Refs. [1,2]. It is good in reproducing
the antikaon-nucleon experimental data; however, due to its
unwieldy the potential cannot be used in few- or many-body
calculations.

However, effective potentials used in approximate few-
body calculations are too simple for proper describing of all
properties of the KN system. In most cases a one-channel
(effective) optical potential is used. For example, the KN
potential, used in Ref. [3] for calculating deeply bound kaonic
nuclear states, is an energy-independent optical potential. It
was constructed in such a way that it corresponds to the elastic
part of a coupled-channels phenomenological K N-w X-w A
potential. However, already the original coupled-channels
potential is too simple. One more example is a recent work [4],
where a potential for further use in a few-body calculation was
derived. It is once more an effective energy-dependent optical
potential by construction: it reproduces the elastic part of an
effective chiral coupled-channels model.

Two-body optical potentials could be equivalent in a certain
sense to the original coupled-channels ones. For separable
potentials it is possible to construct exact optical potential,
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but even an exact optical potential properly describes only the
elastic part of the whole system. Moreover, introducing such
“good” effective optical potentials into N > 2 equations does
not guarantee proper description of all inelastic effects taking
place in a few- or many-body system.

The inelastic effects are especially important for the
antikaon-nuclear systems, because K N interaction is strongly
coupled to the 7 ¥ channel through A(1405) resonance. How-
ever, the nature of the resonance is a separate question. A usual
assumption is that A(1405) is a resonance in 7 X and a quasi-
bound state in the KN channel. There is also an assumption
suggested by a chiral model that the bump, which is usually
understood as A (1405) resonance, is an effect of two poles (see
e.g. Refs. [5,6]). Some challenge to the two-pole model was put
forth by the recent experiment at COSY-Jiilich [7], but accord-
ing to a subsequent theoretical paper [8] it seems to be possible
to reproduce the experiment on the basis of the two-pole
model.

Other sources of experimental data about K N interaction
are also nonprecise, old, or controversial. The data on cross
sections of elastic and inelastic scattering with K~ p in the
initial state are rather old with quite large errors, while
threshold branching ratios of K~ p scattering were measured
more accurately.

Another source of knowledge about KN is the kaonic
hydrogen atom. Several experiments were performed for
measuring s level shift caused by the strong K N interaction.
The two recent ones are KEK [9] and DEAR [10] results.
The more recent DEAR value of the 1s level shift and width
significantly differs from the older KEK result; it has smaller
errors but is inconsistent with the K ~ p scattering data as was
shown in Refs. [1,2].

Moreover, there is a problem common for both experimen-
tal papers: they present a K~ p scattering length following
from the measurements as an “experimental value.” However,
ak-p values in Refs. [9] and [10] were obtained using the
Deser-Trueman (DT) formula [11], while in many papers
(among them in Ref. [12] for several one-channel model
potentials) it was shown that the approximate formula has
poor accuracy, in particular for the KN interaction. There
are several papers introducing different corrections to DT;
these days the most popular is a formula from Ref. [13].
Undoubtedly, the corrected formula [13] has the same ad-
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vantage as original DT [11] one: it is a model-independent
relation between scattering length and atomic level shift and
width. Its accuracy can be checked within a potential model
where exact calculations are feasible.

Since the measured value is the s level shift and width
(and not the K~ p scattering length) we decided to construct
a phenomenological coupled-channels potential, reproducing
kaonic hydrogen’s level shift and width without intermediate
reference to ag-,. It is clear that for reproducing the level
shift of kaonic hydrogen it is necessary to include Coulomb
interaction into equations directly, which breaks isospin
symmetry. As far as we know, the only attempt to do the same
was performed in Ref. [14]. The authors used their own method
for calculating kaonic atomic state with separable chiral-based
strong part of the potential and tried to reproduce DEAR
data. However, the resulting potential [14] provides a too-large
width T" of the 1s kaonic hydrogen level in comparison with
DEAR values; moreover, there are problems with reproducing
A(1405) resonance. The first version of our K N-7 X potential
reproducing the 1s level shift instead of the K~ p scattering
length with direct inclusion of the Coulomb interaction, and
the corresponding three-body K NN-m £ N calculation using
the obtained potential, was presented in Ref. [15].

There is one more approximation which is widely used
in theoretical models, namely neglecting the mass difference
in isomultiplets. However, the difference of masses between
proton and neutron and K~ and K° is a physical fact. In
addition, the effect of taking the mass difference into account
is especially important in the near-threshold KN region
which is our main concern. Using the physical masses in the
calculations is one more isospin symmetry breaking effect,
taken into account in the paper.

Thus, our aim is to construct a phenomenological coupled-
channels K N-7 ¥ potential, which within the limits of the
possible simultaneously reproduces all experimental data: the
level shift and width of kaonic hydrogen 1s level (KEK or
DEAR values), K~ p threshold branching ratios, elastic and
inelastic K~ p scattering, and A(1405) resonance in one- or
two-pole form. We directly include such isospin breaking
effects as Coulomb interaction and using the physical masses
of particles in the calculations. The corresponding 7 matrix
should be suitable for using in an accurate few-body (for
example, a three-body coupled-channels Faddeev) calculation.

II. FORMULATION OF THE PROBLEM
Our nonrelativistic Hamiltonian has the form
H=H"+V 4 V", (1)

with H® being the kinetic energy plus the threshold energy
of particle pairs, V¢ and V* denote their Coulomb and strong
interaction, respectively. The transition matrix for the problem
defined by this Hamiltonian can be written as

Tha = Tpy + Tpys 2

where T, is the pure Coulomb transition matrix, while 7,°
is the so-called Coulomb-modified strong transition matrix,
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defined as
Ths = (@) 1V 1w (). 3)

Here |CI>Z(i)) is a Coulomb scattering state labeled by the final-
state index b, while |\IJL§+)) denotes the total scattering state,
corresponding to the initial state labeled a and satisfying the
Lippmann-Schwinger equation

W) = |05H) + GY(E + ie) VWD) 4)
with the Coulomb Green’s function
G‘(@)=(—-H" —Vv)™ (5)

For a separable strong potential taken as V* = [g)A(g| the T);¢
matrix (3) has the form

Tt = (@;7]g) " — (8IGS(E +ie)g) ' (g|@<P).  (6)

For sufficiently simple form factors |g) the matrix elements of
the Coulomb Green’s function (g|G°(E + ie)|g) together with
the overlaps (g|®<®) in Eq. (6) can be calculated analytically
(see e.g. Refs. [16—18]). The poles of the total Tp,(z) matrix
in this case are determined by the equation

A= (glG (2)lg) = 0, (7)

since it can be shown that the poles of the pure Coulomb T,
matrix are canceled out from Eq. (2).

The nonrelativistic description of transitions allowing for
change of particle composition is achieved by enlarging the
Hilbert space by adding to it a discrete “particle composition”
index. In this case the operators and wave functions become
matrices and vectors with respect to this index. The details
of the matrix formulation of Egs. (3)—(7) are described in the
appendix.

III. DETAILS OF THE CALCULATION AND THE INPUT

In momentum representation the strong interaction matrix
(A16) can be written as:

Vi g, (ks k) = 81y 8 kAt g1, (k). ®)

with gy, (ky,) = <E]Ii lg1,), l%L being the relative momentum of
the particles in ;. Weuse theh = c =1 system of units, our
plane waves are normalized as <12|1?> =8k — k). In this case
the scattering amplitude f}, is connected with 7, by:

fra = =)/ Iatth Toas 9)

where p, (up) is the reduced mass of the particles in the initial
(final) state.

We tried to reproduce simultaneously the following exper-
imental data (A-D).

A. A(1405) resonance

Mass M, and width I", of the A(1405) resonance accord-
ing to the Particle Data Group [19] are:

MPPS = 1406.5 + 4.0 MeV, TFPS =50.0+2.0 MeV.
(10)
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Unlike with PDG, our A(1405) is not a clear I = 0 state but
a mixture of / = 0 and I = 1 states. Having in mind existing
assumptions, we used two versions of A(1405)’s “nature”:
one- and two-pole ones. For the one-pole form of A(1405) we
used Yamaguchi form factors:

1
(k1,2 + (B1)*

We assumed A(1405) as a resonance in 7 X and a quasibound
state in KN channel. So, calculation of (A21) was done at
physical sheet for K N and nonphysical sheet for 7 ¥ channel.

For the two-pole case we assumed that there are two
resonances in the w X channel. One of them, as before,
originates from a bound state in the KN channel and the
other one from a resonance in the 7 ¥ channel (with KN-7 X
coupling switched off). It is known that in a one-channel case
a one-term separable potential with Yamaguchi form factors
(11) and real strength parameters cannot describe a resonance.
So to have a resonance in the uncoupled 7 ¥ channel, for
the two-pole A(1405) case we used 7 X form factors in the
following form:

g]ipole (k]li ) —

87" (ky,) = i=1,...,5. (11

1 I S(IB]L')
(o) + (B)" (k) + (1)"]
i=23,4,5. (12)

2

By this for the two-pole case we introduced one more
parameter s. For the K N channel here we used Yamaguchi
form factors:

2pole(k i) _ 1 i=1,2. (13)

' - (kﬂi)z + (IBHI’)Z’

Both poles are once more situated at physical sheet for KN
and nonphysical sheet for the 7 ¥ channel.

B. Kaonic hydrogen data

The K~ p atomic ls level shift AE;; and width Ty
measured in the KEK experiment [9]

AEREK = 323 £ 63+ 11eV,
KEK — 407 4208 4+ 100 eV (14)
and in the DEAR Collaboration experiment [10]
AEDEAR = 197 £37+6eV,
[PEAR =249 + 111 £30eV (15)

differ from each other. We tried to reproduce both these values
within the 1o interval.

We stress that in our approach there is no intermediate
reference to K~ p scattering length when reproducing the
level shift and the width. Of course, after finding a set of
potential parameters we can calculate a strong scattering
length which exactly corresponds to the obtained 1s level shift
AE;; and width I'j5. Due to the isospin symmetry breaking,
the formula for the ag-, differs from the commonly used
%(a,gN, 1=0 + agn j=1) since our T matrix has nondiagonal
elements between the / = 0 and / = 1 states.
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We mention here that energies of atomic (kaonic hydrogen
Is level) and nuclear [one- and two-pole A(1405)] states
are obtained from the same system of equations (A21). The
second remark concerns the origin of the resonances. All
our resonances are poles on the corresponding sheet of the
complete problem. Since our formula (A21) was obtained by
solving dynamical equations, the resonances can be rightly
called dynamically generated ones.

C. Scattering data

Elastic and inelastic total cross sections with K~ p in the
initial state were measured in Refs. [20-24] (we did not take
into consideration data from Ref. [25] with huge error bars). It
is interesting that there are no comments about nonexistence
of the total elastic cross sections (except Refs. [1] and [2])
due to the singularity of the pure Coulomb transition matrix
T, in (2), while the “total elastic” cross sections are plotted
by almost every author of KN interaction models. Having
Coulomb interaction directly included into the calculations,
we could not ignore the problem. We defined the “total elastic”
K~ p cross section following the experimental works [20,25]
as the differential cross section integrated over the region
—1< cos <0.966 instead of —1 < cos6 < 1.

D. Threshold branching ratios

Three threshold branching ratios of K~ p scattering were
measured rather accurately [26,27]. One of them is

(K p— at¥7)

= =2.36 £0.04. 16
Y“T&-p—> 3 (16)

‘We oriented on the medium value
y = 2.36. (17)

The other two ratios R, and R,,, containing K~ p — 7OA cross
sections,
K~ p—>atT—,n~ L")

R. — = 0.664 +0.011,
“7 I'(K—p — all inelastic channels)

(18)
I'(K~p — n°A)
I'(K~ p — neutral states)

R, = = 0.189 £ 0.015, (19)
could not be used in a straightforward way because we did
not include the w°A channel directly into our calculations.
However, the effect of the channel was effectively taken into
account by allowing the )\}g v gy Parameter to have nonzero
imaginary part (it signiﬁcantl’y improved the agreement with
the experimental cross sections). It is easy to find from the
measured K~ p threshold branching ratios y, R., and R, that
the relative weight of the 7°A channel at K~ p threshold
among all possible inelastic channels is approximately equal
to 6%. So, the introduced imaginary part only slightly breaks
unitarity, in contrast to what happens when a one-channel
complex K N potential is used, approximately accounting for
the main inelastic 7 ¥ channel.
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From existing R, and R, we constructed a new threshold
branching ratio

K p—>atE)+T (K p—> a3t

PHYSICAL REVIEW C 79, 035202 (2009)

Rrr):

From definitions of R. and R, [Egs. (18) and (19)] using
experimental data we obtained for the R,y an “experimental”
value

R.
Ryy = ———— =0.709 £ 0.011. 21
) l—Rn(l—Rc) ( )
We tried to reproduce the medium value
R.x =0.709. (22)

The formulas (A20) and (A21) allow us to find parameters
A1, Br, (and s) of our potentials in both one-pole and two-
pole cases, which reproduce these experimental quantities. All

our parameters, except )‘}% N.g N> ATe real.

IV. RESULTS AND DISCUSSION

We started the calculations with inclusion of the Coulomb
interaction and using physical masses in both KN and 7%

300 T T T T

@ K p->Kp

50 100 150 200 _ 250 @00
Plab(MeV)

80 T T T T

o (mb)

50 100 150 200 250 @00

Pap (MeV)

- NK~p—>atE)+TKp—->aSH+T(Kp— 7050’

(20)

channels. In Fig. 1 we show the role of the two isospin
breaking effects (Coulomb interaction and physical masses
using) separately in K N and 7 £ channels on the example of
some cross sections. The isospin-conserving strong interaction
is the same for all cases; the one-pole A (1405) form version of
the potential was used. It can be seen that while the inclusion
of these effects in KN changes both the elastic and inelastic
cross-sections considerably, especially in the low-energy
region, they have practically no influence on the cross
sections, being included in the X sector [four lines in the
K~ p — m~ X7 (effects in £ ) are almost indistinguishable,
the same property have all other cross sections with K~ p in
the initial state]. This is understandable, since both corrections
are important close to the corresponding thresholds, and the
energy region of our interest lies close to KN threshold(s)
(one or two) and far from 7% thresholds. Due to this we
kept the Coulomb potential in K~ p subsystem and physical

60 . . . :
50 p.
— 40
o
E
=30
o
20
10
0 n 1 L 1 N L N 1
50 100 150 200 250 300
Pap (MeV)
80 . . . T
=
E
=]

50 100 150 200 250 @00

Plap (MeV)

FIG. 1. Demonstration of isospin-breaking effects included in K N [plots (a)=(c)] and =¥ [plot (d)] channels on several cross sections:
Coulomb interaction and physical masses using are switched on (solid line), Coulomb is switched on and masses are switched off (dashed),
Coulomb is off and masses are on (dotted), and Coulomb and masses are off (dashed-dotted) for the corresponding channel. The one-pole

version of A(1405) was used.
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FIG. 2. Comparison of the obtained theoretical cross sections obtained with one-pole A(1405) (solid line) and two-pole A (1405) resonance
form (dashed line) with experimental data [20-24].
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masses in KN;—o, KN;—(K~p, K1) channels, while in
¥ channels we used isospin averaged masses without the
Coulomb interaction.

In the case of averaged masses without Coulomb in 7%
the wX;_»(I5) channel is dynamically decoupled from the
other four channels. So, we can work in particle space of four
dimensions, corresponding to K N;—y, K N;—; (or K~ p, K'n),
7T ¥ 7—0, and 7w X;—; channels.

We succeeded in obtaining parameters of the potentials
with one- and two-pole A(1405) structure. The best set of the
obtained parameters for the one-pole A(1405) is:

BN = 3.4 fm™!
B — 1.9 fm™! (23)
—1.31 0 0.62 0
0 1.76 —i0.24 0 1.90
1pole _ .
é D= 0.62 0 0.18 0 ’
0 1.90 0 1.24
for the two-pole A(1405) it is:
BENC =32 fm™!
B = 1.0 fm™!
(24)
s = —0.87
—1.06 0 0.40 0
0 0.97 —i0.11 0 1.13
2pole _
ATED = {49 0 —001 0
0 1.13 0 0.61

Here we assumed isospin independence of the range parame-
ters:

IB]II = 18]12 = ﬂK_N7 (25)
B, = B, = Brx. (26)

Our results for the cross sections with best set of the
obtained parameters with one-pole and two-pole A(1405)
are presented in Fig. 2: the elastic K~p — K~ p cross
sectionandinelastic K~ p — K%, K " p - n*S~, K p —
7~ %F, and K~ p — 7989 cross sections are compared
with existing experimental data [20-24]. It shows that both
versions of the potential are equally good in describing the
experimental data within the experimental errors. Due to this
fact, unfortunately, it is not possible to give preference to one
of the A(1405) versions.

Other physical characteristics of the obtained one-pole and
two-pole potentials are shown in Table I: pole positions z; and
2 (obviously, z, exists in a two-pole variant of the potential
only), 1s kaonic hydrogen level shift AE,, and width ;.
Threshold branching ratios y (17) and R, x (22) are reproduced
exactly in both cases. Having a complete set of potential
parameters makes it possible to calculate the strong K~ p
scattering length corresponding to the given AE;; and T
exactly. The ag-, for both potentials are also shown in Table I.

The first pole positions z; for both versions of the potential
have close real parts and the same imaginary ones, however, all
three numbers differ from the PDG data for mass and width of
A(1405) resonance (10). The characteristics of the two poles
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TABLE 1. Physical characteristics of the obtained one-pole and
two-pole potentials: pole positions z; and z,, level shift AE, and
width I'j; of kaonic hydrogen, and corresponding exact strong
scattering length ag- ,. Threshold branching ratios (17) and (22) are
reproduced exactly.

One-pole A(1405) Two-pole A(1405)

21 (MeV) 1409 — i32 1412 — i32
2> (MeV) - 1380 — i 105
AE; (eV) —396 —407

Ty, (eV) 370 476
ax-p (fm) —1.07 +i0.59 —~1.08 +i0.76

71 and z; in the two-pole A(1405) version are the same as in
Ref. [6]: one of them has less mass and larger width, while the
other is heavier with narrower width. However, the positions
of z; and z; differ from those in Ref. [6].

We also plotted the pole trajectories when the nondiagonal
elements of the A of Eq. (A18), connecting the KN and 7 ¥
channels, were gradually reduced to zero from their original
values; see Fig. 3. Other constants of the potentials remained
unchanged. The figure shows that for both potential versions
the higher-lying poles move to the real axis, providing real
bound states with surprisingly small binding energies of 1-2
MeV. These limiting binding energies are smaller than those
found in Ref. [4]. The second pole for the two-pole version
moves downward under the w ¥ threshold on an unphysical
sheet.

Itis not absolutely clear how to relate the obtained potentials
to the shape of the A(1405) resonance. The experimental shape
of the resonance is deduced from missing mass experiments
since direct 7w X data are not available. However, their relation
to the pole structure of the two-body 7' matrix is not trivial
and needs further investigation. Examples of this interpretation
ambiguity are shown in Fig. 4, where elastic 7 X cross sections

Imz,, (MeV)
3
1

T
¥
L

-100

120 b

T 3-"‘?
1200 1250 1300 1350 1400 1450
Re z,, (MeV)

FIG. 3. Pole trajectories when the coupling between the KN
and 7 X channels is switched oft for the one-pole A(1405) variant
(triangles) and the two-pole variant (circles and squares). The dark
symbol denotes the original position of the corresponding pole.
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_____ 0 5.0 0 a ™~
TE->nEX Pl x
_______ 3 ¥ / \
- T -1
o
£
b 20f
10+ s |
A(1405) —
0 1 1 1 : L
1340 1360 1380 1400 1420
Zq (MeV)

FIG. 4. The calculated 7 X elastic cross sections in different charge channels: (a) 7°X° (proportional to purely / = 0) cross sections given
by the one-pole and two-pole A(1405) potentials and (b) three charge channel cross sections for the one-pole potential. The vertical line marks

the medium PDG mass MEPC = 1406.5 MeV of the resonance [19].

in different charge channels are plotted. It can be seen that
from the shapes of these curves it would be hard to deduce
unambiguously the resonance parameters, given in Table 1.
Another example is given in Fig. 5, where real and imagi-
nary parts of the elastic K~ p amplitude for the two versions
of the potential are depicted. At the the resonance positions
real parts of fx-,. k-, have zeros (situated at different, in
respect to the medium PDG value, sides), while imaginary
parts have their maxima (at slightly lower energies). The
Coulomb singularities are seen almost at the K~ p threshold.
We plotted also the obtained parameters of kaonic hydrogen
(T'15, |AEjs]), shown in Table I, together with the experimental
1o regions of KEK and DEAR results; see Fig. 6. It is seen

E
Q_
T e 0
< 0= =
Ea 1-pole A(1405):
Re(f), ----- Im(f)
2-pole A(1405):
-——-Re(f), - Im(f}
i ) " | | ¢ | i
1340 1360 1380 1400 1420 1440
z,; (MeV)

FIG. 5. Manifestation of A(1405) resonance in K~ p — K™ p
amplitude below the threshold for both versions of the potential. One-
pole A(1405): real (solid line) and imaginary (dashed line) parts of
Sfx-p—k-p- Two-pole A(1405): real (dash-dotted line) and imaginary
(dotted line) parts of the amplitude. The vertical lines marks the
medium PDG mass MEPS = 1406.5 MeV of the resonance [19],
K~ p, and K°n thresholds.

that obtained AE for the one-pole version is situated inside
the KEK region, while for the two-pole variant it is slightly
outside. Both values are close to each other, they definitely
prefer the largest values of KEK |AE|. All our attempts to
move the shift values to the DEAR region led to drastic wors-
ening of the agreement with the experimental cross sections.
From this fact we do the same conclusion as did authors of
Ref. [2]: the DEAR data on kaonic hydrogen measurements
are inconsistent with the existing scattering data.

As for the widths, both are situated inside KEK 1o limits,
while the one-pole potential gives I'j; also inside DEAR,
closely to its highest possible value. The important fact is
that the obtained theoretical values of I'j; for the two versions
of potentials differ largely. But, unfortunately, the accuracy

800I""l""l""i""l""l"'

700 - ¥ S RSN |
600 |

500

400

L, (eV)

300

200

j00 | ] BRI ]

200

P L.
250 300
AE | (eV)

350

400

Oll i
150

FIG. 6. DEAR and KEK 1o confidence region of kaonic hydro-
gen ls level shift |AE| (absolute value) and width I". The obtained
theoretical results for the one-pole (solid circle) and two-pole (empty
circle) variants of the potential are shown. The results of other
theoretical models are also depicted: [1] (solid square), [2] (empty
sqare), and [14] (empty triangle).
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TABLE II. Isospin conserving a®™ (fm) and nonconserving
a™" (fm) constituents of the total a (fm) K~ p scattering length
for one-pole and two-pole versions of the potential.

PHYSICAL REVIEW C 79, 035202 (2009)

TABLE IV. One-pole potential: norms N of the strong z; =
(1409.0 — i32.0) MeV and Coulomb z, = (1431.9 —i1.9 x 107%)
MeV resonances.

One-pole A(1405) Two-pole A(1405) 2 Ze
a%’i‘; —1.0561+i0.6977 —0.9949+i0.8648 Nkwmy— 1.288 —i0.0792 0.500014 — i0.000013
e 0.0139+i0.1077 0.0851+i0.1048 (RN 0603355_ ‘ (‘)60(());?0 0.499986 +Oi 0.000012
o . _ . TE)1=0 —U. =+ 10. ~10~
ax-, 1.07+i0.59 1.08+i0.76 o 0.0001 1 0.0002 107
No 0.9993 +i0.0018 0.500014 — i0.000012
of KEK results does not allow us to make a unique selection M 0.0007 —i0.0018 0.499986 +:0.000012
between them. Ny 0.681 — i0.061 0.999994 4 2.8 x 106
For comparison we plotted also the results of other theoret- Nio, 0.608 — i0.020 ~10-6
ical models (Refs. [1,2], and [14]). The first two (I'yy, |[AE5]) Nyog+ —0.101 4+ i0.031 ~10~7
values were obtained from the K~ p scattering lengths using Nos0 —0.096 +i0.027 ~10~7
corrected DT formula [13], while the last one was calculated Ntz —0.092 +i0.023 ~1077

directly. The chiral potential [2], aiming to reproduce mainly
the K~ p scattering data, has a result (corresponding to the
best ag-, value in the full approach) which is impressively
close to ours, though the correctness of it is limited by the
corrected DT formula accuracy. The previous potential of the
same authors (version “u”) has a different (I'y, | A E4|) value;
however, it is also situated inside the 1o KEK region. The
result of Ref. [14] is far from all other theoretical values and
outside both experimental regions. The reason could be their
attempt to fit DEAR values simultaneously with the scattering
data, which turned out to be unsuccessful. It is an additional
demonstration of inconsistency of the DEAR results with the
existing scattering data.

We see that both versions of our potential reproduce
experimental cross sections equally well; by construction they
exactly reproduce threshold branching ratios y and R,s. The
obtained values of the kaonic hydrogen level shift AE
in both versions of A(1405) resonance are close to each
other. However, there is rather large, more than 100 eV,
difference between the K~ p widths I'j;. Having in mind a
forthcoming experiment, SIDDHARTA [28], we hope that the
new experimental value will be close to one of our numbers,
allowing one to make a conclusion about the structure of
A(1405) resonance.

The combined effect of the inclusion of the Coulomb
interaction and using physical masses of the particles can be
illustrated by showing the isospin conserving and noncon-

TABLE III. Kaonic hydrogen 1s level shift AE (eV) and width
I' (eV), corresponding to the obtained scattering length: exact
(this work), derived from Deser-Trueman formula [11], and from
corrected Deser formula [13].

One-pole A(1405) Two-pole A(1405)

AES —396 —407
et 370 476
AEPT[11] —441 —445
rpr (1] 486 626
AEMRR [13] —395 —411
MRR []3] 338 434

serving parts of the K~ p scattering length; see Table II. The
constituents are defined as

cons _— 1,00 11

Ak-p = i(aKN +aKN)’ 27
nonc __ 01 __ 10

Ak-p = 9gN = 9 N> (28)

where af! denotes the elastic strong (Coulomb is switched
off) KN on-shell amplitude with initial (final) pair isospin
I'(I) at the K~ p threshold. The total scattering length, also
shown in Table II, is

— cons nonc
ag-p =dg-, — dg—p- 29)

It is seen that real parts of nonconserving scattering lengths
change the final results only slightly, especially in the one-pole
case, where a“K"E‘; is 1% of akx-, (it is 8% for the two-pole
variant). In contrast, the imaginary parts change isospin
conserving scattering lengths essentially, the share of isospin
nonconserving part is 18% for the one-pole and 14% for
the two-pole case. Thus, isospin breaking effects, taken into
account in our calculations, are important, especially for the
strong K ~ p scattering length.

The differences of the exact K~ p level shifts and widths,
obtained from our potentials, from results provided by
approximate formulas are demonstrated in Table III. The
approximate DT [11] and corrected DT [13] values for the
shift and width were obtained using our exact scattering length
given in Table I. It is seen that the DT formula [11] gives
a very inaccurate result for both characteristics of kaonic
atom: the absolute value of the level shift and the width
are overestimated. The same result was obtained with several
model one-channel complex K N potentials in Ref. [12]. The
widely used corrected Deser formula [13] gives a rather
accurate result for the shift but underestimates the width of
1s level by 9-10%.

To see another effect of isospin nonconservation, we
calculated the norms of our resonant states, which are
strictly speaking non-normalizable; however, a regularization
procedure and a generalized norm can be defined for them (see
Ref. [29] and references therein). In our multichannel case the
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TABLE V. Two-pole potential: norms N of the strong z; = (1411.9 —i32.0) MeV, z, =
(1380.0 — i105.0) MeV, and Coulomb z, = (1431.9 — i2.4 x 10~*) MeV resonances.

Ze

0.500016 — i0.000018
0.499984 +i0.000017
~1076
~1077

0.500016 — :0.000017
0.499984 +i0.000017

0.999992 +i3.5 x 107°
~1076
~1077
~1077
~1077

21 22

Mth:o 1.587 —i0.4101 —0.7302 4 i0.5856

RN)j—i 0.0003 — i{0.0037 0.0003 + i0.0004

)10 —0.5872 +i0.4134 1.730 — i0.5859

(TE)r=1 0.0002 + i0.0004 —0.0001 — i0.0001
No 0.999565 + i0.003251 0.999837 — i0.000330
M 0.000435 — i0.003251 0.000163 + i0.000330
NK—I, 0.838 —i0.253 —0.367 +i0.312
Nxo, 0.749 —i0.160 —0.363 +i0.274
Ny-s+ —0.200 +i0.152 0.577 —i0.209
Noxo —0.196 +i0.138 0.577 —i0.195
Ny+s- —0.192 +i0.124 0.576 —i0.182

norm of a resonance wave function ¥ can be written as

N =Wl =) 1l =) W]l (30)
where partial norms Np, (V) are

N, = 1%, || = f W (k)dk. (31)

Note the square in Eq. (31) instead of the modulus squared,
due to which the norms are complex. The details of calculating
these norms in momentum representation can be found in Ref.
[29]. In spite of the fact that the unique physical interpretation
of complex norms is not completely clear yet, the total wave
function ¥ can be normalized as N = ||¥|| = 1 and in this
case the partial norms Ap,(NV,) can serve as a measure of
contribution of different particle channels to W. The partial
norms of our nuclear and Coulomb resonances in both P and
I representations are shown in Tables IV and V.
We define the / = 0 and I = 1 norms as

% = MRN)I:O + MFE)I:O and
N = '/\[(KN)I:I + MTF D)=+ (32)

From the tables it is seen that the nuclear resonances are
predominantly in the / = O channel, as expected. The I =1
admixture shows up in the fourth digit. It is also noteworthy
that in the two-pole case one of the resonances seems to be
composed mainly from the KN pair, while the other one is
from the w X. As for the Coulomb level, again as supposed,
it is essentially a K~ p state. The isospin mixing manifests
itself as a small deviation of Nk-, from unity [or Nz ny,_,
and N(gyy,_, from 0.5]. We see that in contrast to the strong
scattering length case, isospin breaking effects play a minor
role for the resonance wave functions.

V. CONCLUSIONS

To conclude, we constructed a new phenomenological
strong isospin-dependent K N-7 ¥ potential and investigated
the role of isospin breaking effects, such as direct inclusion
of the Coulomb interaction and using physical masses in

the calculations. The effects turned out to be important for
reproducing the ls kaonic level shift and width and for
obtaining the correct K ~ p strong scattering length. We found
two “best” sets of potential parameters for one-pole and
two-pole structures of the A(1405) resonance which describe
all experimental data: the level shift and width of the kaonic
hydrogen 1s level within the 1o KEK confidence region,
K~ p threshold branching ratios y and Ry, elastic and
inelastic K~ p cross sections, and the A(1405) resonance
shape. Attempts to move the obtained (I', AE) values toward
the DEAR 1o region led to drastic worsening of K~ p cross
sections, so we came to the same conclusions as those in
Ref. [2] that DEAR results are inconsistent with K~ p
scattering data.

Our one- and two-pole “best” sets of parameters are of
the same quality in describing existing experimental data.
The only significant difference between one- and two-pole
variants of the potential is between the kaonic hydrogen widths
I';;. However, even 106 eV are not sufficient for making
conclusions about structure of the A(1405) resonance due to
much larger experimental errors of the KEK measurement.
More precise experimental data on the K ~ p atom, for example,
from the forthcoming SIDDHARTA experiment [28], could
choose one of the variants of A(1405) structure. More precise
data on K~ p cross sections are also highly desirable.

The KN-7X T matrices corresponding to the obtained
potentials are suitable and will be used in a new three-body
coupled-channels Faddeev calculation.
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APPENDIX

The state vector | V) is an element of both configuration and
particle space. In particle space we can use either the particle
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pair basis P with elements |P;),i = 1...5:
[P:)] = (1K™ p). |K'n), |x~£F), [7°%°), 7 TE7)) (AD)
or, equivalently, the isospin basis I with |I;),i = 1...5:

[1T:)] = (IKN) =0, IKN) =1, [T E) 10, [T E) =1, |7 ) 1=2)
(A2)
Here 1 is a two-particle isospin. The two bases are connected

by an orthogonal matrix composed of the corresponding
Clebsch-Gordan coefficients:

L) =[PP ;i (A3)
J
with
—1/¥2 142 0 0 0
1/V2  1/32 0 0 0
(PII) = | O 0 1/V3 —1/V2 16|,
0 0 —1/V3 0 V273
0 0  1/V3 V2 16
(IIP) = (PT)". (A4)

The projections
(Pi|W) = Wp, and ([;|W) = Wy, (AS5)

are state vectors in “ordinary” space. We can define column

vectors
Y(P) = {Wp} and W(I) = {Vy}. (A6)

Obviously

Wy = Z(MM”W or
J

V(@) = {AP)¥@). (A7)

Correspondingly, operators in this case are matrices in particle
space with indices according to the chosen representation:

O =[0yy] or O)=[Opp] (A8)

and the matrix elements Oy, (Op,p;) are operators in usual
configuration space. Again

Ou1, = Y (IIP);; Op,, (PI),; or O(I) = (I[P) O(P)(PIL).

(A9)

Here and in what follows the single and double underlining
denotes vectors and matrices in particle space, respectively.

Our basic operators are H 0 ve, and V¥, and [having
in mind Egs. (4)—(7)] G°(z). To define our multichannel
problem, we have to specify these operators in particle space.
The operators H 0. ve, and G°(z) do not change the particle
composition, therefore they can be conveniently defined in P
representation, where they are diagonal. Thus

~2
p
H(P);; = Sp,.p, H), = 8p, p, <2u + Eﬁij) , (A10)
B;

PHYSICAL REVIEW C 79, 035202 (2009)

where up, and Eﬁ!‘_ are the reduced mass and threshold energy
for the particle };air P;, respectively, p is an operator of
relative momentum. The Coulomb potential acts obviously
only between charged particle pairs, therefore its matrix
elements are

VE®)i; = dp,p; Ve, (AT1)
with
Vi-p = Vi-g+ = Vieg- =0 and Vg, = Vi =0.
(A12)
Here v¢ = —e?/r is an ordinary Coulomb potential between

two particles with charges +1 and —1. Similarly, the corre-
sponding Green’s function matrix has the form

G(P);; = dp,.p,Gp,(2) (A13)

with

Go (@)= (z—HY — V). (Al4)

The strong interaction V¥, responsible for the transitions
between different particle channels, is supposed to conserve
the two-particle isospin /(I;), therefore it is convenient to
define it in I representation. We have chosen a separable form:

ViDij = S1ay.1a;)181) A1, (81, 1 (A15)
which can be conveniently rewritten as
V(D = Ig)Alg] (A16)
with
lgM)ij = dr,.1;181) (A17)
and
0 0
)‘RNJ?N | 0 )‘IEN,nz . 0 0
0 )‘IEN KN 0 )‘kN,m: 0
A(H) = )"2): KN 0 )“22 1)) 0 0
- ' 1 ’ 1
0 Arx kN 0 Arsoas 0
0 0 0 0 )‘%E,ni‘
(A18)

(here we moved I(I;) = I(I;) indices of the matrix elements
to the right-up positions for a convenience). To complete the
description of the matrix-vector analog of Egs. (3)-(7), the
initial (final) states |®}) have to be specified. For a given initial
(final) particle pair labeled by IP; the particle space vector can
be conveniently defined in P representation:

|q>ﬁ”, (P)]> = SPHP/' |(Dﬁ’,>

with |®f, ) being an ordinary configuration space state vector
(with the Coulomb interaction taken into account, if it exists
for that pair).

Now all operators and states are defined, and we are in
a position to write down the particle space matrix analog of
Eq. (6):

Tpy = (@57 |8 JA™" — (gIG(E +ie)gh) ™" (3|2 7).
(A20)

(A19)
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In the described matrix formulation of the problem the position
of the bound states and resonances instead of Eq. (7) is
determined by

PHYSICAL REVIEW C 79, 035202 (2009)

is not a diagonal matrix as G°(P) is (A13) but has the form:

G% (M 000

000
_ ¢ G = A22
Det(A~" — (g]G*(2)lg)) = 0. (A21) go=1292 (A22)
0 0 Gix(D
However, for writing out Eq. (A20) and (A21) in components th
it is necessary to use the same representation (I or PP) for all wit
vectors and matrices. Singe we are interestejd ir.1 ob.tainir.lg GS () = %(Gj;, » T G%OH) —%(G%, T G%o,,)
parameters of the strong interaction V° which is given in KNYY ™ —%(G;, - G% ) %(G;, + G%, )
I, we performed our calculations in this representation and ! ’ ’ ' (A23)
transformed vectors and matrices defined in PP into I, using
formulas (A4), (A7), and (A9). As a nontrivial example, G(I) and
|
1 c c c 1 c 1 c c c
i(Gn—z+ + GJTOEO + Gn+z—) _Tg( Tzt T Gn+z—) ﬁ( Tzt T 2Gn020 + Gn+z—)
c 1 c ¢ 1 c ¢ 1 ¢ c
GnZ(H) = _76( -zt T Gn*Z*) E(GN*ZW + GJT*Z*) _m(Gn*EJr - Gn*E*) (A24)
1 c c c 1 c c 1 c c c
sz(er - ZGnvzo + Gn+>:f) _ﬁg(er - Gn*Z’) E(Grz+ + 4Gn020 + GrﬁE*)

It can be seen that G°(I) has matrix elements connecting states
with unequal isospins. They are proportional to difference of
G° components in dissimilar particle pair channels P;. This
isospin nonconservation has two independent sources. First,
G°¢ of charged particles differs from G¢ = G° of neutral pairs,

and, second, due to the mass difference of the isomultiplet
members, the particle pairs P; have different reduced masses
and threshold energies and, thus, according to Eq. (A10),
different H-s and G°-s. Neglecting these two effects in the
7 % sector leads to a diagonal submatrix G¢ 5 (I).

[1] B. Borasoy, R. NiBler, and W. Weise, Phys. Rev. Lett. 94, 213401
(2005); Eur. Phys. J. A 25, 79 (2005).
[2] B. Borasoy, U.-G. Meifiner, and R. Nifler, Phys. Rev. C 74,
055201 (20006).
[3] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002);
T. Yamazaki and Y. Akaishi, Phys. Lett. B535, 70 (2002).
[4] T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).
[5] J. A. Oller and U.-G. MeiBner, Phys. Lett. B500, 263 (2001); D.
Jido et al., Nucl. Phys. A725, 181 (2003).
[6] V. K. Magas, E. Oset, and A. Ramos, Phys. Rev. Lett. 95, 052301
(2005).
[7] I. Zychor et al., Phys. Lett. B660, 167 (2008).
[8] L. S. Geng and E. Oset, Eur. Phys. J. A 34, 405 (2007).
[9] M. Iwasaki et al., Phys. Rev. Lett. 78, 3067 (1997); T. M. Ito
et al., Phys. Rev. C 58, 2366 (1998).
[10] G. Beer et al., Phys. Rev. Lett. 94, 212302 (2005).
[11] S. Deser et al., Phys. Rev. 96, 774 (1954); T. L. Trueman, Nucl.
Phys. 26, 57 (1961).
[12] J. Révai and N. V. Shevchenko, Few-Body Syst. 42, 83 (2008).
[13] U.-G. MeiBner, U. Raha, and A. Rusetsky, Eur. Phys. J. C 35,
349 (2004).

[14] A. Cieply and J. Smejkal, Eur. Phys. J. A 34, 237 (2007).

[15] N. V. Shevchenko and J. Révai, Few-Body Syst. 44, 187 (2008).

[16] Z. Bajzer, Z. Phys. A: Hadrons Nucl. 278, 97 (1976).

[17] A. Deloff and J. Law, Phys. Rev. C 21, 2048 (1980).

[18] W. Schweiger, W. Plessas, L. P. Kok, and H. van Haeringen,
Phys. Rev. C 27, 515 (1983).

[19] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1
(2008).

[20] M. Sakitt et al., Phys. Rev. 139, B719 (1965).

[21] J. K. Kim, Phys. Rev. Lett. 14, 29 (1965); Columbia University
Report, Nevis, 149 (1966); Phys. Rev. Lett. 19, 1074 (1967).

[22] W. Kittel, G. Otter, and I. Wacek, Phys. Lett. 21, 349 (1966).

[23] J. Ciborowski et al., J. Phys. G 8, 13 (1982).

[24] D. Evans et al., J. Phys. G 9, 885 (1983).

[25] W. E. Humphrey and R. R. Ross, Phys. Rev. 127, 1305 (1962).

[26] D. N. Tovee et al., Nucl. Phys. B33, 493 (1971).

[27] R. J. Nowak et al., Nucl. Phys. B139, 61 (1978).

[28] M. Cargnelli (SIDDHARTA Collaboration), Acta Phys. Slov.
55, 7 (2005).

[29] E. Hernindez and A. Mondragén, Phys. Rev. C 29, 722
(1984).

035202-11



