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Isospin mixing effects in the low-energy K̄ N-π� interaction
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New strong coupled-channels K̄N -π� potential, reproducing all existing experimental data and suitable
for using in an accurate few-body calculations, is constructed. Isospin breaking effects of direct inclusion of
the Coulomb interaction and using of physical masses in calculations are investigated. The 1s level shift and
width of kaonic hydrogen, consistent with the scattering data, was obtained and the corresponding exact strong
K−p scattering length was calculated. One- and two-pole form of �(1405) resonance was considered.
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I. INTRODUCTION

Kaonic atoms and, especially, the possibility of the for-
mation of kaonic nuclear clusters has recently attracted much
interest. For investigation of these systems it is necessary to
know the basic K̄N interaction, which is strongly connected
with π� and other channels.

Different theoretical models were used for constructing
the antikaon-nucleon interaction. All these models can be
separated in two groups: “stand-alone” potentials having the
only aim to fit two-body data and potentials to be used in future
(few- or many-body) calculations.

The first group comprises potentials based on chiral
Lagrangians. The method, quite popular these days, consists
of constructing a potential which gives amplitudes equivalent
to those derived from an effective chiral Lagrangian. Such
potentials have many channels, including energetically closed
near K̄N threshold ones. The most recent example is a
model constructed in Refs. [1,2]. It is good in reproducing
the antikaon-nucleon experimental data; however, due to its
unwieldy the potential cannot be used in few- or many-body
calculations.

However, effective potentials used in approximate few-
body calculations are too simple for proper describing of all
properties of the K̄N system. In most cases a one-channel
(effective) optical potential is used. For example, the K̄N

potential, used in Ref. [3] for calculating deeply bound kaonic
nuclear states, is an energy-independent optical potential. It
was constructed in such a way that it corresponds to the elastic
part of a coupled-channels phenomenological K̄N -π�-π�

potential. However, already the original coupled-channels
potential is too simple. One more example is a recent work [4],
where a potential for further use in a few-body calculation was
derived. It is once more an effective energy-dependent optical
potential by construction: it reproduces the elastic part of an
effective chiral coupled-channels model.

Two-body optical potentials could be equivalent in a certain
sense to the original coupled-channels ones. For separable
potentials it is possible to construct exact optical potential,
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but even an exact optical potential properly describes only the
elastic part of the whole system. Moreover, introducing such
“good” effective optical potentials into N > 2 equations does
not guarantee proper description of all inelastic effects taking
place in a few- or many-body system.

The inelastic effects are especially important for the
antikaon-nuclear systems, because K̄N interaction is strongly
coupled to the π� channel through �(1405) resonance. How-
ever, the nature of the resonance is a separate question. A usual
assumption is that �(1405) is a resonance in π� and a quasi-
bound state in the K̄N channel. There is also an assumption
suggested by a chiral model that the bump, which is usually
understood as �(1405) resonance, is an effect of two poles (see
e.g. Refs. [5,6]). Some challenge to the two-pole model was put
forth by the recent experiment at COSY-Jülich [7], but accord-
ing to a subsequent theoretical paper [8] it seems to be possible
to reproduce the experiment on the basis of the two-pole
model.

Other sources of experimental data about K̄N interaction
are also nonprecise, old, or controversial. The data on cross
sections of elastic and inelastic scattering with K−p in the
initial state are rather old with quite large errors, while
threshold branching ratios of K−p scattering were measured
more accurately.

Another source of knowledge about K̄N is the kaonic
hydrogen atom. Several experiments were performed for
measuring 1s level shift caused by the strong K̄N interaction.
The two recent ones are KEK [9] and DEAR [10] results.
The more recent DEAR value of the 1s level shift and width
significantly differs from the older KEK result; it has smaller
errors but is inconsistent with the K−p scattering data as was
shown in Refs. [1,2].

Moreover, there is a problem common for both experimen-
tal papers: they present a K−p scattering length following
from the measurements as an “experimental value.” However,
aK−p values in Refs. [9] and [10] were obtained using the
Deser-Trueman (DT) formula [11], while in many papers
(among them in Ref. [12] for several one-channel model
potentials) it was shown that the approximate formula has
poor accuracy, in particular for the K̄N interaction. There
are several papers introducing different corrections to DT;
these days the most popular is a formula from Ref. [13].
Undoubtedly, the corrected formula [13] has the same ad-
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vantage as original DT [11] one: it is a model-independent
relation between scattering length and atomic level shift and
width. Its accuracy can be checked within a potential model
where exact calculations are feasible.

Since the measured value is the 1s level shift and width
(and not the K−p scattering length) we decided to construct
a phenomenological coupled-channels potential, reproducing
kaonic hydrogen’s level shift and width without intermediate
reference to aK−p. It is clear that for reproducing the level
shift of kaonic hydrogen it is necessary to include Coulomb
interaction into equations directly, which breaks isospin
symmetry. As far as we know, the only attempt to do the same
was performed in Ref. [14]. The authors used their own method
for calculating kaonic atomic state with separable chiral-based
strong part of the potential and tried to reproduce DEAR
data. However, the resulting potential [14] provides a too-large
width � of the 1s kaonic hydrogen level in comparison with
DEAR values; moreover, there are problems with reproducing
�(1405) resonance. The first version of our K̄N -π� potential
reproducing the 1s level shift instead of the K−p scattering
length with direct inclusion of the Coulomb interaction, and
the corresponding three-body K̄NN -π�N calculation using
the obtained potential, was presented in Ref. [15].

There is one more approximation which is widely used
in theoretical models, namely neglecting the mass difference
in isomultiplets. However, the difference of masses between
proton and neutron and K− and K̄0 is a physical fact. In
addition, the effect of taking the mass difference into account
is especially important in the near-threshold K̄N region
which is our main concern. Using the physical masses in the
calculations is one more isospin symmetry breaking effect,
taken into account in the paper.

Thus, our aim is to construct a phenomenological coupled-
channels K̄N -π� potential, which within the limits of the
possible simultaneously reproduces all experimental data: the
level shift and width of kaonic hydrogen 1s level (KEK or
DEAR values), K−p threshold branching ratios, elastic and
inelastic K−p scattering, and �(1405) resonance in one- or
two-pole form. We directly include such isospin breaking
effects as Coulomb interaction and using the physical masses
of particles in the calculations. The corresponding T matrix
should be suitable for using in an accurate few-body (for
example, a three-body coupled-channels Faddeev) calculation.

II. FORMULATION OF THE PROBLEM

Our nonrelativistic Hamiltonian has the form

H = H 0 + V c + V s, (1)

with H 0 being the kinetic energy plus the threshold energy
of particle pairs, V c and V s denote their Coulomb and strong
interaction, respectively. The transition matrix for the problem
defined by this Hamiltonian can be written as

Tba = T c
ba + T sc

ba , (2)

where T c
ba is the pure Coulomb transition matrix, while T sc

ba

is the so-called Coulomb-modified strong transition matrix,

defined as

T sc
ba = 〈

�
c(−)
b |V s |�(+)

a

〉
. (3)

Here |�c(±)
b 〉 is a Coulomb scattering state labeled by the final-

state index b, while |�(+)
a 〉 denotes the total scattering state,

corresponding to the initial state labeled a and satisfying the
Lippmann-Schwinger equation

|�(+)
a 〉 = ∣∣�c(+)

a

〉 + Gc(E + iε)V s |�(+)
a 〉 (4)

with the Coulomb Green’s function

Gc(z) = (z − H 0 − V c)−1. (5)

For a separable strong potential taken as V s = |g〉λ〈g| the T sc
ba

matrix (3) has the form

T sc
ba = 〈

�
c(−)
b

∣∣g〉
(λ−1 − 〈g|Gc(E + iε)|g〉)−1

〈
g
∣∣�c(+)

a

〉
. (6)

For sufficiently simple form factors |g〉 the matrix elements of
the Coulomb Green’s function 〈g|Gc(E + iε)|g〉 together with
the overlaps 〈g|�c(±)

a 〉 in Eq. (6) can be calculated analytically
(see e.g. Refs. [16–18]). The poles of the total Tba(z) matrix
in this case are determined by the equation

λ−1 − 〈g|Gc(z)|g〉 = 0, (7)

since it can be shown that the poles of the pure Coulomb T c
ba

matrix are canceled out from Eq. (2).
The nonrelativistic description of transitions allowing for

change of particle composition is achieved by enlarging the
Hilbert space by adding to it a discrete “particle composition”
index. In this case the operators and wave functions become
matrices and vectors with respect to this index. The details
of the matrix formulation of Eqs. (3)–(7) are described in the
appendix.

III. DETAILS OF THE CALCULATION AND THE INPUT

In momentum representation the strong interaction matrix
(A16) can be written as:

V s
Ii ,Ij

(kIi
, kIj

) = δI (Ii ),I (Ij ) gIi
(kIi

)λIi ,Ij
gIj

(kIj
), (8)

with gIi
(kIi

) = 〈�kIi
|gIi

〉, �kIi
being the relative momentum of

the particles in Ii . We use the h̄ = c = 1 system of units, our
plane waves are normalized as 〈�k|�k′〉 = δ(�k − �k′). In this case
the scattering amplitude fba is connected with Tba by:

fba = −(2π )2√µaµb Tba, (9)

where µa (µb) is the reduced mass of the particles in the initial
(final) state.

We tried to reproduce simultaneously the following exper-
imental data (A–D).

A. �(1405) resonance

Mass M� and width �� of the �(1405) resonance accord-
ing to the Particle Data Group [19] are:

MPDG
� = 1406.5 ± 4.0 MeV, �PDG

� = 50.0 ± 2.0 MeV.

(10)
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Unlike with PDG, our �(1405) is not a clear I = 0 state but
a mixture of I = 0 and I = 1 states. Having in mind existing
assumptions, we used two versions of �(1405)’s “nature”:
one- and two-pole ones. For the one-pole form of �(1405) we
used Yamaguchi form factors:

g
1pole
Ii

(kIi
) = 1

(kIi
)2 + (βIi

)2
, i = 1, . . . , 5. (11)

We assumed �(1405) as a resonance in π� and a quasibound
state in K̄N channel. So, calculation of (A21) was done at
physical sheet for K̄N and nonphysical sheet for π� channel.

For the two-pole case we assumed that there are two
resonances in the π� channel. One of them, as before,
originates from a bound state in the K̄N channel and the
other one from a resonance in the π� channel (with K̄N -π�

coupling switched off). It is known that in a one-channel case
a one-term separable potential with Yamaguchi form factors
(11) and real strength parameters cannot describe a resonance.
So to have a resonance in the uncoupled π� channel, for
the two-pole �(1405) case we used π� form factors in the
following form:

g
2pole
Ii

(
kIi

) = 1(
kIi

)2 + (
βIi

)2 + s
(
βIi

)2

[(
kIi

)2 + (
βIi

)2
]2 ,

i = 3, 4, 5. (12)

By this for the two-pole case we introduced one more
parameter s. For the K̄N channel here we used Yamaguchi
form factors:

g
2pole
Ii

(
kIi

) = 1(
kIi

)2 + (
βIi

)2 , i = 1, 2. (13)

Both poles are once more situated at physical sheet for K̄N

and nonphysical sheet for the π� channel.

B. Kaonic hydrogen data

The K−p atomic 1s level shift �E1s and width �1s

measured in the KEK experiment [9]

�EKEK
1s = −323 ± 63 ± 11 eV,

�KEK
1s = 407 ± 208 ± 100 eV (14)

and in the DEAR Collaboration experiment [10]

�EDEAR
1s = −197 ± 37 ± 6 eV,

�DEAR
1s = 249 ± 111 ± 30 eV (15)

differ from each other. We tried to reproduce both these values
within the 1σ interval.

We stress that in our approach there is no intermediate
reference to K−p scattering length when reproducing the
level shift and the width. Of course, after finding a set of
potential parameters we can calculate a strong scattering
length which exactly corresponds to the obtained 1s level shift
�E1s and width �1s . Due to the isospin symmetry breaking,
the formula for the aK−p differs from the commonly used
1
2 (aK̄N,I=0 + aK̄N,I=1) since our T matrix has nondiagonal
elements between the I = 0 and I = 1 states.

We mention here that energies of atomic (kaonic hydrogen
1s level) and nuclear [one- and two-pole �(1405)] states
are obtained from the same system of equations (A21). The
second remark concerns the origin of the resonances. All
our resonances are poles on the corresponding sheet of the
complete problem. Since our formula (A21) was obtained by
solving dynamical equations, the resonances can be rightly
called dynamically generated ones.

C. Scattering data

Elastic and inelastic total cross sections with K−p in the
initial state were measured in Refs. [20–24] (we did not take
into consideration data from Ref. [25] with huge error bars). It
is interesting that there are no comments about nonexistence
of the total elastic cross sections (except Refs. [1] and [2])
due to the singularity of the pure Coulomb transition matrix
T c

ba in (2), while the “total elastic” cross sections are plotted
by almost every author of K̄N interaction models. Having
Coulomb interaction directly included into the calculations,
we could not ignore the problem. We defined the “total elastic”
K−p cross section following the experimental works [20,25]
as the differential cross section integrated over the region
−1 � cos θ � 0.966 instead of −1 � cos θ � 1.

D. Threshold branching ratios

Three threshold branching ratios of K−p scattering were
measured rather accurately [26,27]. One of them is

γ = �(K−p → π+�−)

�(K−p → π−�+)
= 2.36 ± 0.04. (16)

We oriented on the medium value

γ = 2.36. (17)

The other two ratios Rc and Rn, containing K−p → π0� cross
sections,

Rc = �(K−p → π+�−, π−�+)

�(K−p → all inelastic channels)
= 0.664 ± 0.011,

(18)

Rn = �(K−p → π0�)

�(K−p → neutral states)
= 0.189 ± 0.015, (19)

could not be used in a straightforward way because we did
not include the π0� channel directly into our calculations.
However, the effect of the channel was effectively taken into
account by allowing the λ1

K̄N,K̄N
parameter to have nonzero

imaginary part (it significantly improved the agreement with
the experimental cross sections). It is easy to find from the
measured K−p threshold branching ratios γ,Rc, and Rn that
the relative weight of the π0� channel at K−p threshold
among all possible inelastic channels is approximately equal
to 6%. So, the introduced imaginary part only slightly breaks
unitarity, in contrast to what happens when a one-channel
complex K̄N potential is used, approximately accounting for
the main inelastic π� channel.
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From existing Rc and Rn we constructed a new threshold
branching ratio

Rπ� = �(K−p → π+�−) + �(K−p → π−�+)

�(K−p → π+�−) + �(K−p → π−�+) + �(K−p → π0�0)
. (20)

From definitions of Rc and Rn [Eqs. (18) and (19)] using
experimental data we obtained for the Rπ� an “experimental”
value

Rπ� = Rc

1 − Rn(1 − Rc)
= 0.709 ± 0.011. (21)

We tried to reproduce the medium value

Rπ� = 0.709. (22)

The formulas (A20) and (A21) allow us to find parameters
λIi ,Ij

, βIi
(and s) of our potentials in both one-pole and two-

pole cases, which reproduce these experimental quantities. All
our parameters, except λ1

K̄N,K̄N
, are real.

IV. RESULTS AND DISCUSSION

We started the calculations with inclusion of the Coulomb
interaction and using physical masses in both K̄N and π�

channels. In Fig. 1 we show the role of the two isospin
breaking effects (Coulomb interaction and physical masses
using) separately in K̄N and π� channels on the example of
some cross sections. The isospin-conserving strong interaction
is the same for all cases; the one-pole �(1405) form version of
the potential was used. It can be seen that while the inclusion
of these effects in K̄N changes both the elastic and inelastic
cross-sections considerably, especially in the low-energy
region, they have practically no influence on the cross
sections, being included in the π� sector [four lines in the
K−p → π−�+ (effects in π�) are almost indistinguishable,
the same property have all other cross sections with K−p in
the initial state]. This is understandable, since both corrections
are important close to the corresponding thresholds, and the
energy region of our interest lies close to K̄N threshold(s)
(one or two) and far from π� thresholds. Due to this we
kept the Coulomb potential in K−p subsystem and physical

FIG. 1. Demonstration of isospin-breaking effects included in K̄N [plots (a)–(c)] and π� [plot (d)] channels on several cross sections:
Coulomb interaction and physical masses using are switched on (solid line), Coulomb is switched on and masses are switched off (dashed),
Coulomb is off and masses are on (dotted), and Coulomb and masses are off (dashed-dotted) for the corresponding channel. The one-pole
version of �(1405) was used.
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FIG. 2. Comparison of the obtained theoretical cross sections obtained with one-pole �(1405) (solid line) and two-pole �(1405) resonance
form (dashed line) with experimental data [20–24].
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masses in K̄NI=0, K̄NI=1(K−p, K̄0n) channels, while in
π� channels we used isospin averaged masses without the
Coulomb interaction.

In the case of averaged masses without Coulomb in π�

the π�I=2(I5) channel is dynamically decoupled from the
other four channels. So, we can work in particle space of four
dimensions, corresponding to K̄NI=0, K̄NI=1 (or K−p, K̄0n),
π�I=0, and π�I=1 channels.

We succeeded in obtaining parameters of the potentials
with one- and two-pole �(1405) structure. The best set of the
obtained parameters for the one-pole �(1405) is:

β
1pole
K̄N

= 3.4 fm−1

β
1pole
π� = 1.9 fm−1 (23)

�1pole(I) =

⎛
⎜⎝

−1.31 0 0.62 0
0 1.76 − i0.24 0 1.90
0.62 0 0.18 0
0 1.90 0 1.24

⎞
⎟⎠ ;

for the two-pole �(1405) it is:

β
2pole
K̄N

= 3.2 fm−1

β
2pole
π� = 1.0 fm−1

(24)
s = −0.87

�2pole(I) =

⎛
⎜⎝

−1.06 0 0.40 0
0 0.97 − i0.11 0 1.13
0.40 0 −0.01 0
0 1.13 0 0.61

⎞
⎟⎠ .

Here we assumed isospin independence of the range parame-
ters:

βI1 = βI2 ≡ βK̄N, (25)

βI3 = βI4 ≡ βπ�. (26)

Our results for the cross sections with best set of the
obtained parameters with one-pole and two-pole �(1405)
are presented in Fig. 2: the elastic K−p → K−p cross
section and inelastic K−p → K̄0n,K−p → π+�−,K−p →
π−�+, and K−p → π0�0 cross sections are compared
with existing experimental data [20–24]. It shows that both
versions of the potential are equally good in describing the
experimental data within the experimental errors. Due to this
fact, unfortunately, it is not possible to give preference to one
of the �(1405) versions.

Other physical characteristics of the obtained one-pole and
two-pole potentials are shown in Table I: pole positions z1 and
z2 (obviously, z2 exists in a two-pole variant of the potential
only), 1s kaonic hydrogen level shift �E1s , and width �1s .
Threshold branching ratios γ (17) and Rπ� (22) are reproduced
exactly in both cases. Having a complete set of potential
parameters makes it possible to calculate the strong K−p

scattering length corresponding to the given �E1s and �1s

exactly. The aK−p for both potentials are also shown in Table I.
The first pole positions z1 for both versions of the potential

have close real parts and the same imaginary ones, however, all
three numbers differ from the PDG data for mass and width of
�(1405) resonance (10). The characteristics of the two poles

TABLE I. Physical characteristics of the obtained one-pole and
two-pole potentials: pole positions z1 and z2, level shift �E1s and
width �1s of kaonic hydrogen, and corresponding exact strong
scattering length aK−p . Threshold branching ratios (17) and (22) are
reproduced exactly.

One-pole �(1405) Two-pole �(1405)

z1 (MeV) 1409 − i32 1412 − i32
z2 (MeV) – 1380 − i105
�E1s (eV) −396 −407
�1s (eV) 370 476
aK−p (fm) −1.07 + i0.59 −1.08 + i0.76

z1 and z2 in the two-pole �(1405) version are the same as in
Ref. [6]: one of them has less mass and larger width, while the
other is heavier with narrower width. However, the positions
of z1 and z2 differ from those in Ref. [6].

We also plotted the pole trajectories when the nondiagonal
elements of the � of Eq. (A18), connecting the K̄N and π�

channels, were gradually reduced to zero from their original
values; see Fig. 3. Other constants of the potentials remained
unchanged. The figure shows that for both potential versions
the higher-lying poles move to the real axis, providing real
bound states with surprisingly small binding energies of 1–2
MeV. These limiting binding energies are smaller than those
found in Ref. [4]. The second pole for the two-pole version
moves downward under the π� threshold on an unphysical
sheet.

It is not absolutely clear how to relate the obtained potentials
to the shape of the �(1405) resonance. The experimental shape
of the resonance is deduced from missing mass experiments
since direct π� data are not available. However, their relation
to the pole structure of the two-body T matrix is not trivial
and needs further investigation. Examples of this interpretation
ambiguity are shown in Fig. 4, where elastic π� cross sections

FIG. 3. Pole trajectories when the coupling between the K̄N

and π� channels is switched off for the one-pole �(1405) variant
(triangles) and the two-pole variant (circles and squares). The dark
symbol denotes the original position of the corresponding pole.
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FIG. 4. The calculated π� elastic cross sections in different charge channels: (a) π0�0 (proportional to purely I = 0) cross sections given
by the one-pole and two-pole �(1405) potentials and (b) three charge channel cross sections for the one-pole potential. The vertical line marks
the medium PDG mass MPDG

� = 1406.5 MeV of the resonance [19].

in different charge channels are plotted. It can be seen that
from the shapes of these curves it would be hard to deduce
unambiguously the resonance parameters, given in Table I.

Another example is given in Fig. 5, where real and imagi-
nary parts of the elastic K−p amplitude for the two versions
of the potential are depicted. At the the resonance positions
real parts of fK−p→K−p have zeros (situated at different, in
respect to the medium PDG value, sides), while imaginary
parts have their maxima (at slightly lower energies). The
Coulomb singularities are seen almost at the K−p threshold.

We plotted also the obtained parameters of kaonic hydrogen
(�1s , |�E1s |), shown in Table I, together with the experimental
1σ regions of KEK and DEAR results; see Fig. 6. It is seen

FIG. 5. Manifestation of �(1405) resonance in K−p → K−p

amplitude below the threshold for both versions of the potential. One-
pole �(1405): real (solid line) and imaginary (dashed line) parts of
fK−p→K−p . Two-pole �(1405): real (dash-dotted line) and imaginary
(dotted line) parts of the amplitude. The vertical lines marks the
medium PDG mass MPDG

� = 1406.5 MeV of the resonance [19],
K−p, and K̄0n thresholds.

that obtained �E for the one-pole version is situated inside
the KEK region, while for the two-pole variant it is slightly
outside. Both values are close to each other, they definitely
prefer the largest values of KEK |�E|. All our attempts to
move the shift values to the DEAR region led to drastic wors-
ening of the agreement with the experimental cross sections.
From this fact we do the same conclusion as did authors of
Ref. [2]: the DEAR data on kaonic hydrogen measurements
are inconsistent with the existing scattering data.

As for the widths, both are situated inside KEK 1σ limits,
while the one-pole potential gives �1s also inside DEAR,
closely to its highest possible value. The important fact is
that the obtained theoretical values of �1s for the two versions
of potentials differ largely. But, unfortunately, the accuracy

FIG. 6. DEAR and KEK 1σ confidence region of kaonic hydro-
gen 1s level shift |�E| (absolute value) and width �. The obtained
theoretical results for the one-pole (solid circle) and two-pole (empty
circle) variants of the potential are shown. The results of other
theoretical models are also depicted: [1] (solid square), [2] (empty
sqare), and [14] (empty triangle).
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TABLE II. Isospin conserving acons (fm) and nonconserving
anonc (fm) constituents of the total a (fm) K−p scattering length
for one-pole and two-pole versions of the potential.

One-pole �(1405) Two-pole �(1405)

acons
K−p

−1.0561+i0.6977 −0.9949+i0.8648

anonc
K−p

0.0139+i0.1077 0.0851+i0.1048

aK−p −1.07+i0.59 −1.08+i0.76

of KEK results does not allow us to make a unique selection
between them.

For comparison we plotted also the results of other theoret-
ical models (Refs. [1,2], and [14]). The first two (�1s , |�E1s |)
values were obtained from the K−p scattering lengths using
corrected DT formula [13], while the last one was calculated
directly. The chiral potential [2], aiming to reproduce mainly
the K−p scattering data, has a result (corresponding to the
best aK−p value in the full approach) which is impressively
close to ours, though the correctness of it is limited by the
corrected DT formula accuracy. The previous potential of the
same authors (version “u”) has a different (�1s , |�E1s |) value;
however, it is also situated inside the 1σ KEK region. The
result of Ref. [14] is far from all other theoretical values and
outside both experimental regions. The reason could be their
attempt to fit DEAR values simultaneously with the scattering
data, which turned out to be unsuccessful. It is an additional
demonstration of inconsistency of the DEAR results with the
existing scattering data.

We see that both versions of our potential reproduce
experimental cross sections equally well; by construction they
exactly reproduce threshold branching ratios γ and Rπ� . The
obtained values of the kaonic hydrogen level shift �E1s

in both versions of �(1405) resonance are close to each
other. However, there is rather large, more than 100 eV,
difference between the K−p widths �1s . Having in mind a
forthcoming experiment, SIDDHARTA [28], we hope that the
new experimental value will be close to one of our numbers,
allowing one to make a conclusion about the structure of
�(1405) resonance.

The combined effect of the inclusion of the Coulomb
interaction and using physical masses of the particles can be
illustrated by showing the isospin conserving and noncon-

TABLE III. Kaonic hydrogen 1s level shift �E (eV) and width
� (eV), corresponding to the obtained scattering length: exact
(this work), derived from Deser-Trueman formula [11], and from
corrected Deser formula [13].

One-pole �(1405) Two-pole �(1405)

�Eexact
1s −396 −407

�exact
1s 370 476

�EDT
1s [11] −441 −445

�DT
1s [11] 486 626

�EMRR
1s [13] −395 −411

�MRR
1s [13] 338 434

TABLE IV. One-pole potential: norms N of the strong z1 =
(1409.0 − i32.0) MeV and Coulomb zc = (1431.9 − i1.9 × 10−4)
MeV resonances.

z1 zc

N(K̄N)I=0 1.288 − i0.0792 0.500014 − i0.000013
N(K̄N)I=1 0.0008 − i0.0020 0.499986 + i0.000012
N(π�)I=0 −0.2885 + i0.0810 ∼10−7

N(π�)I=1 −0.0001 + i0.0002 ∼10−7

N0 0.9993 + i0.0018 0.500014 − i0.000012
N1 0.0007 − i0.0018 0.499986 + i0.000012

NK−p 0.681 − i0.061 0.999994 + i2.8 × 10−6

NK̄0n 0.608 − i0.020 ∼10−6

Nπ−�+ −0.101 + i0.031 ∼10−7

Nπ0�0 −0.096 + i0.027 ∼10−7

Nπ+�− −0.092 + i0.023 ∼10−7

serving parts of the K−p scattering length; see Table II. The
constituents are defined as

acons
K−p ≡ 1

2

(
a00

K̄N
+ a11

K̄N

)
, (27)

anonc
K−p ≡ a01

K̄N
= a10

K̄N
, (28)

where aII ′
K̄N

denotes the elastic strong (Coulomb is switched
off) K̄N on-shell amplitude with initial (final) pair isospin
I ′(I ) at the K−p threshold. The total scattering length, also
shown in Table II, is

aK−p = acons
K−p − anonc

K−p. (29)

It is seen that real parts of nonconserving scattering lengths
change the final results only slightly, especially in the one-pole
case, where anonc

K−p is 1% of aK−p (it is 8% for the two-pole
variant). In contrast, the imaginary parts change isospin
conserving scattering lengths essentially, the share of isospin
nonconserving part is 18% for the one-pole and 14% for
the two-pole case. Thus, isospin breaking effects, taken into
account in our calculations, are important, especially for the
strong K−p scattering length.

The differences of the exact K−p level shifts and widths,
obtained from our potentials, from results provided by
approximate formulas are demonstrated in Table III. The
approximate DT [11] and corrected DT [13] values for the
shift and width were obtained using our exact scattering length
given in Table I. It is seen that the DT formula [11] gives
a very inaccurate result for both characteristics of kaonic
atom: the absolute value of the level shift and the width
are overestimated. The same result was obtained with several
model one-channel complex K̄N potentials in Ref. [12]. The
widely used corrected Deser formula [13] gives a rather
accurate result for the shift but underestimates the width of
1s level by 9–10%.

To see another effect of isospin nonconservation, we
calculated the norms of our resonant states, which are
strictly speaking non-normalizable; however, a regularization
procedure and a generalized norm can be defined for them (see
Ref. [29] and references therein). In our multichannel case the
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TABLE V. Two-pole potential: norms N of the strong z1 = (1411.9 − i32.0) MeV, z2 =
(1380.0 − i105.0) MeV, and Coulomb zc = (1431.9 − i2.4 × 10−4) MeV resonances.

z1 z2 zc

N(K̄N)I=0 1.587 − i0.4101 −0.7302 + i0.5856 0.500016 − i0.000018
N(K̄N)I=1 0.0003 − i0.0037 0.0003 + i0.0004 0.499984 + i0.000017
N(π�)I=0 −0.5872 + i0.4134 1.730 − i0.5859 ∼10−6

N(π�)I=1 0.0002 + i0.0004 −0.0001 − i0.0001 ∼10−7

N0 0.999565 + i0.003251 0.999837 − i0.000330 0.500016 − i0.000017
N1 0.000435 − i0.003251 0.000163 + i0.000330 0.499984 + i0.000017

NK−p 0.838 − i0.253 −0.367 + i0.312 0.999992 + i3.5 × 10−6

NK̄0n 0.749 − i0.160 −0.363 + i0.274 ∼10−6

Nπ−�+ −0.200 + i0.152 0.577 − i0.209 ∼10−7

Nπ0�0 −0.196 + i0.138 0.577 − i0.195 ∼10−7

Nπ+�− −0.192 + i0.124 0.576 − i0.182 ∼10−7

norm of a resonance wave function � can be written as

N = ||�|| =
∑

i

||�Pi
|| =

∑
i

||�Ii
||, (30)

where partial norms NPi
(NIi

) are

NPi
≡ ||�Pi

|| =
∫

�2
Pi

(�k)d�k. (31)

Note the square in Eq. (31) instead of the modulus squared,
due to which the norms are complex. The details of calculating
these norms in momentum representation can be found in Ref.
[29]. In spite of the fact that the unique physical interpretation
of complex norms is not completely clear yet, the total wave
function � can be normalized as N = ||�|| = 1 and in this
case the partial norms NPi

(NIi
) can serve as a measure of

contribution of different particle channels to �. The partial
norms of our nuclear and Coulomb resonances in both P and
I representations are shown in Tables IV and V.

We define the I = 0 and I = 1 norms as

N0 ≡ N(K̄N)I=0
+ N(π�)I=0 and

N1 ≡ N(K̄N)I=1
+ N(π�)I=1 . (32)

From the tables it is seen that the nuclear resonances are
predominantly in the I = 0 channel, as expected. The I = 1
admixture shows up in the fourth digit. It is also noteworthy
that in the two-pole case one of the resonances seems to be
composed mainly from the K̄N pair, while the other one is
from the π�. As for the Coulomb level, again as supposed,
it is essentially a K−p state. The isospin mixing manifests
itself as a small deviation of NK−p from unity [or N(K̄N)I=0

and N(K̄N)I=1
from 0.5]. We see that in contrast to the strong

scattering length case, isospin breaking effects play a minor
role for the resonance wave functions.

V. CONCLUSIONS

To conclude, we constructed a new phenomenological
strong isospin-dependent K̄N -π� potential and investigated
the role of isospin breaking effects, such as direct inclusion
of the Coulomb interaction and using physical masses in

the calculations. The effects turned out to be important for
reproducing the 1s kaonic level shift and width and for
obtaining the correct K−p strong scattering length. We found
two “best” sets of potential parameters for one-pole and
two-pole structures of the �(1405) resonance which describe
all experimental data: the level shift and width of the kaonic
hydrogen 1s level within the 1σ KEK confidence region,
K−p threshold branching ratios γ and Rπ� , elastic and
inelastic K−p cross sections, and the �(1405) resonance
shape. Attempts to move the obtained (�,�E) values toward
the DEAR 1σ region led to drastic worsening of K−p cross
sections, so we came to the same conclusions as those in
Ref. [2] that DEAR results are inconsistent with K−p

scattering data.
Our one- and two-pole “best” sets of parameters are of

the same quality in describing existing experimental data.
The only significant difference between one- and two-pole
variants of the potential is between the kaonic hydrogen widths
�1s . However, even 106 eV are not sufficient for making
conclusions about structure of the �(1405) resonance due to
much larger experimental errors of the KEK measurement.
More precise experimental data on the K−p atom, for example,
from the forthcoming SIDDHARTA experiment [28], could
choose one of the variants of �(1405) structure. More precise
data on K−p cross sections are also highly desirable.

The K̄N -π� T matrices corresponding to the obtained
potentials are suitable and will be used in a new three-body
coupled-channels Faddeev calculation.
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APPENDIX

The state vector |�〉 is an element of both configuration and
particle space. In particle space we can use either the particle
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pair basis P with elements |Pi〉, i = 1 . . . 5:

[|Pi〉] = (|K−p〉, |K̄0n〉, |π−�+〉, |π0�0〉, |π+�−〉) (A1)

or, equivalently, the isospin basis I with |Ii〉, i = 1 . . . 5:

[|Ii〉] = (|K̄N〉I=0, |K̄N〉I=1, |π�〉I=0, |π�〉I=1, |π�〉I=2).

(A2)

Here I is a two-particle isospin. The two bases are connected
by an orthogonal matrix composed of the corresponding
Clebsch-Gordan coefficients:

|Ii〉 =
∑

j

|Pj 〉〈P|I〉ji (A3)

with

〈P|I〉 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1/
√

2 1/
√

2 0 0 0

1/
√

2 1/
√

2 0 0 0

0 0 1/
√

3 −1/
√

2 1/
√

6

0 0 −1/
√

3 0
√

2/3

0 0 1/
√

3 1/
√

2 1/
√

6

⎞
⎟⎟⎟⎟⎟⎟⎠

,

〈I|P〉 = 〈P|I〉T. (A4)

The projections

〈Pi |�〉 = �Pi
and 〈Ii |�〉 = �Ii

(A5)

are state vectors in “ordinary” space. We can define column
vectors

�(P) = {�Pi
} and �(I) = {�Ii

}. (A6)

Obviously

�Ii
=

∑
j

〈I|P〉ij�Pj
or �(I) = 〈I|P〉� (P). (A7)

Correspondingly, operators in this case are matrices in particle
space with indices according to the chosen representation:

O(I) = [OIiIj
] or O(P) = [OPiPj

] (A8)

and the matrix elements OIiIj
(OPiPj

) are operators in usual
configuration space. Again

OIiIj
=

∑
st

〈I|P〉isOPsPt
〈P|I〉tj or O(I) = 〈I|P〉 O(P)〈P|I〉.

(A9)

Here and in what follows the single and double underlining
denotes vectors and matrices in particle space, respectively.

Our basic operators are H 0, V c, and V s , and [having
in mind Eqs. (4)–(7)] Gc(z). To define our multichannel
problem, we have to specify these operators in particle space.
The operators H 0, V c, and Gc(z) do not change the particle
composition, therefore they can be conveniently defined in P

representation, where they are diagonal. Thus

H 0(P)ij = δPi ,Pj
H 0

Pi
= δPi ,Pj

(
p̂2

2µPi

+ Eth
Pi

)
, (A10)

where µPi
and Eth

Pi
are the reduced mass and threshold energy

for the particle pair Pi , respectively, p̂ is an operator of
relative momentum. The Coulomb potential acts obviously
only between charged particle pairs, therefore its matrix
elements are

V c(P)ij = δPi ,Pj
V c

Pi
(A11)

with

V c
K−p = V c

π−�+ = V c
π+�− = vc and V c

K̄0n
= V c

π0�0 = 0.

(A12)

Here vc = −e2/r is an ordinary Coulomb potential between
two particles with charges +1 and −1. Similarly, the corre-
sponding Green’s function matrix has the form

Gc(P)ij = δPi ,Pj
Gc

Pi
(z) (A13)

with

Gc
Pi

(z) = (
z − H 0

Pi
− V c

Pi

)−1
. (A14)

The strong interaction V s , responsible for the transitions
between different particle channels, is supposed to conserve
the two-particle isospin I (Ii), therefore it is convenient to
define it in I representation. We have chosen a separable form:

V s(I)ij = δI (Ii ),I (Ij )|gIi
〉λIi ,Ij

〈gIj
|, (A15)

which can be conveniently rewritten as

V s(I) = |g〉�〈g| (A16)

with

|g(I)〉ij = δIi ,Ij
|gIi

〉 (A17)

and

�(I) =

⎛
⎜⎜⎜⎜⎜⎝

λ0
K̄N,K̄N

0 λ0
K̄N,π�

0 0
0 λ1

K̄N,K̄N
0 λ1

K̄N,π�
0

λ0
π�,K̄N

0 λ0
π�,π� 0 0

0 λ1
π�,K̄N

0 λ1
π�,π� 0

0 0 0 0 λ2
π�,π�

⎞
⎟⎟⎟⎟⎟⎠

(A18)

(here we moved I (Ii) = I (Ij ) indices of the matrix elements
to the right-up positions for a convenience). To complete the
description of the matrix-vector analog of Eqs. (3)–(7), the
initial (final) states |�c

b〉 have to be specified. For a given initial
(final) particle pair labeled by Pi the particle space vector can
be conveniently defined in P representation:∣∣�c

Pi
(P)j

〉 = δPi ,Pj

∣∣�c
Pi

〉
(A19)

with |�c
Pi

〉 being an ordinary configuration space state vector
(with the Coulomb interaction taken into account, if it exists
for that pair).

Now all operators and states are defined, and we are in
a position to write down the particle space matrix analog of
Eq. (6):

T sc
ba = 〈

�c(−)
b

∣∣g 〉
(�−1 − 〈g|Gc(E + iε)|g〉)−1

〈
g
∣∣�c(+)

a

〉
.

(A20)
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In the described matrix formulation of the problem the position
of the bound states and resonances instead of Eq. (7) is
determined by

Det(�−1 − 〈g|Gc(z)|g〉) = 0. (A21)

However, for writing out Eq. (A20) and (A21) in components
it is necessary to use the same representation (I or P) for all
vectors and matrices. Since we are interested in obtaining
parameters of the strong interaction V s which is given in
I, we performed our calculations in this representation and
transformed vectors and matrices defined in P into I, using
formulas (A4), (A7), and (A9). As a nontrivial example, Gc(I)

is not a diagonal matrix as Gc(P) is (A13) but has the form:

Gc(I) =

⎛
⎜⎜⎜⎜⎜⎝

Gc
K̄N

(I) 0 0 0

0 0 0
0 0
0 0
0 0 Gc

π�(I)

⎞
⎟⎟⎟⎟⎟⎠

(A22)

with

Gc
K̄N

(I) =
[ 1

2

(
Gc

K−p + Gc
K̄0n

) − 1
2

(
Gc

K−p − Gc
K̄0n

)
− 1

2

(
Gc

K−p − Gc
K̄0n

)
1
2

(
Gc

K−p + Gc
K̄0n

)
]

(A23)

and

Gc
π�(I) =

⎡
⎢⎢⎣

1
3

(
Gc

π−�+ + Gc
π0�0 + Gc

π+�−
) − 1√

6

(
Gc

π−�+ − Gc
π+�−

)
1

3
√

2

(
Gc

π−�+ − 2Gc
π0�0 + Gc

π+�−
)

− 1√
6

(
Gc

π−�+ − Gc
π+�−

)
1
2

(
Gc

π−�+ + Gc
π+�−

) − 1
2
√

3

(
Gc

π−�+ − Gc
π+�−

)
1

3
√

2

(
Gc

π−�+ − 2Gc
π0�0 + Gc

π+�−
) − 1

2
√

3

(
Gc

π−�+ − Gc
π+�−

)
1
6

(
Gc

π−�+ + 4Gc
π0�0 + Gc

π+�−
)

⎤
⎥⎥⎦ (A24)

It can be seen that Gc(I) has matrix elements connecting states
with unequal isospins. They are proportional to difference of
Gc components in dissimilar particle pair channels Pi . This
isospin nonconservation has two independent sources. First,
Gc of charged particles differs from Gc = G0 of neutral pairs,

and, second, due to the mass difference of the isomultiplet
members, the particle pairs Pi have different reduced masses
and threshold energies and, thus, according to Eq. (A10),
different H 0-s and G0-s. Neglecting these two effects in the
π� sector leads to a diagonal submatrix Gc

π�(I).
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