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Resonance energy of the K̄ N N-πY N system
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The resonance energies of strange dibaryons are investigated with the use of the K̄NN -πYN coupled-channels
Faddeev equation. It is found that the pole positions of the predicted three-body amplitudes are significantly
modified when the three-body coupled-channels dynamics is approximated, as is done in the literature, by the
effective two-body K̄N interactions.
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I. INTRODUCTION

Since the deeply bound kaonic nuclear states were predicted
[1–3], the few-nucleon systems with strangeness have attracted
increasing interest. It is generally believed that those states
can be generated by an attractive interaction between a kaon
and a nucleon in the isospin I = 0 channel. It has been
suggested that the kaon-nucleon interaction may even modify
the spatial distribution of nucleons in nuclei. Among the deeply
bound kaonic states, the resonances in the K̄NN -πYN (Y =
�,�) system (strange dibaryon resonance) are particularly
interesting because the three-hadron dynamics involved can
be handled accurately with the use of the well-established
Faddeev equation. This also means that the study of this strange
dibaryon system will provide us with information on the nature
of the K̄N -π� interaction and the basic mechanism of the
kaon-nucleus interactions.

The FINUDA Collaboration [4] reported a signature of
the K̄NN -πYN coupled-channels resonance below the π�N

threshold. The reported resonance has a binding energy
B ∼ 115 MeV and a width � ∼ 67 MeV. However the
interpretation of the signal is still open to discussion [5].
More information on the K̄NN -πYN resonance is expected
to become available from Spring-8 and J-PARC in the near
future. The first theoretical prediction of the resonance energy
was given in Ref. [2]. Using a variational approach and a
phenomenological K̄N -π� potential, it was found that the
binding energy and the width of the K̄NN -πYN system are
(B,�) ∼ (48, 60) MeV. The calculation in Ref. [6], which used
a K̄N interaction generated from a chiral unitary model, gave
(B,�) ∼ (20, 40 ∼ 70) MeV. In both of these earlier works,
the three-body K̄NN -πYN coupled-channels problem was
handled with the use of effective K̄N interactions obtained by
truncating the Fock space into K̄NN . Meanwhile, the three-
body dynamics can be fully taken into account with the use of
the Faddeev formulation, and a study based on the Fad-
deev formulation was presented by the present authors [7]
and by Shevchenko et al. [8]. Reference [7], which em-
ployed the K̄N -π� interaction based on the leading order
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chiral Lagrangian, gave (B,�) ∼ (60 ∼ 95, 45 ∼ 80) MeV,
while Ref. [8], which adopted a phenomenological K̄N

interaction, reported (B,�) ∼ (50 ∼ 70, 100) MeV. Thus, at
present, theoretical predictions on the resonance energy spread
over a rather wide range [2,6–11].

A major uncertainty in theoretically estimating the reso-
nance energy of the K̄NN -πYN system is that an accurate
description of the K̄N interaction including its off-shell
behavior is still missing; this is particularly true for the energy
region below the K̄N threshold. Taking a reverse viewpoint,
we may hope that there is a possibility to constrain K̄N

dynamics from the study of the K̄NN -πYN resonance. To
achieve this goal, however, it is crucial to treat the three-body
dynamics as accurately as possible in a theoretical calculation
for a given K̄N model.

In most of the existing theoretical work, the resonance
energy is predicted to lie below the K̄NN threshold and
above the π�N threshold; thus the relevant state is a
continuum (localized) state in the π�N (K̄NN ) Fock space.
In this circumstance it is an inviting idea to work in the
K̄NN subspace by eliminating the π�N states [2,6,12],
and many analyses in the literature adopt this “effective
potential approach” and introduce effective K̄N interactions to
subsumethe effects of the eliminated channel. One thing to be
emphasized here is that, when the Fock space is truncated,
the resulting effective interaction in a subspace in general
becomes a many-body operator, but that this fundamental
feature is ignored in the existing effective potential treatments,
which only consider effective two-body K̄N interactions.
In this connection, it seems worth noting that the Faddeev
approach [7,8], which fully takes account of coupled-channels
three-body dynamics, tends to give a binding energy deeper
than that of the approximate effective potential approach.

In this article we present a detailed examination of
the nature of the approximations involved in the existing
effective potential approach calculations. (For convenience,
the approximate effective potential approach in question will
be simply referred to as EPA). It turns out (see below) that,
starting from the full coupled-channels Faddeev equations,
we can simulate the EPA by introducing certain simplifying
assumptions regarding the two-body t matrix embedded in
the three-body system. This allows us to scrutinize the nature
of approximations involved in the EPA in relation to the full
Faddeev calculation [7] and to assess the validity (or limitation)
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of the EPA. For this assessment, we focus here on comparison
of the resonance positions obtained with the EPA and with the
full calculation.

A comment is in order here concerning methods used to
determine the resonance energy. In the present article we
determine the resonance energy from the position of a pole
in the scattering amplitude, as explained in detail in Ref. [7].
Recently, it has been suggested [13] that a pole in the complex
energy plane may not adequately characterize a resonance.
According to Ref. [13], as the strength of the K̄N interaction
is artificially increased, the trajectory of the pole moves below
the π� threshold, but keeping a finite width (signature for a
virtual state; see, however, Ref. [14]). We address here this
question as well and show that the problem of a pole moving
to a virtual state for the three-body amplitude is an artifact of
the approximation used in the EPA.

In Sec. II, we briefly explain the method we use for solving
the Faddeev equation for the coupled K̄NN ⊕ πYN (Y =
�,�) system, and we elucidate what approximations are
involved in going from the full Faddeev formulation to the
EPA. Section III is devoted to the explanation of how the
K̄N -πY interactions used in our calculations are derived from
the chiral Lagrangian. The numerical results on the predicted
resonance energies are presented in Sec. IV, and Sec. V gives
a summary.

II. COUPLED-CHANNEL APPROACH FOR K̄ N N-πY N
SYSTEM

A. AGS equation and resonance pole

The Faddeev equation for a three-particle system with
separable two-body interactions can be cast into the Alt-
Grassberger-Sandhas (AGS) equation [15],

Xi,j ( �pi, �pj ,W )

= (1 − δi,j )Zi,j ( �pi, �pj ,W )

+
∑
n�=i

∫
d �pnZi,n( �pi, �pn,W )τn(W )Xn,j ( �pn, �pj ,W ), (1)

where W is the total scattering energy and Xi,j ( �pi, �pj ,W )
with i, j = 1, 2, 3 are the scattering amplitudes. The channel i

(j ) is characterized by the spectator particle i (j ). For example,
i = 1 represents a quasi two-body channel in which the particle
1 is the spectator of the last interaction between particles 2 and
3. The momentum of the spectator particle i and the relative
momentum for channel i are denoted by �pi and �qi , respectively.

The driving term Zi,j ( �pi, �pj ,W ) of the AGS equation
is given by the particle exchange interaction illustrated in
Fig. 1(a) and can be written as

Zi,j ( �pi, �pj ,W )

= g∗
i (�qi)gj (�qj )

W − Ei( �pi) − Ej ( �pj ) − Ek(− �pi − �pj ) + iε
. (2)

Here we used the two-body interaction for channel i of the
following form

〈�q ′
i |vi |�qi〉 = γigi(�q ′

i)gi(�qi). (3)

FIG. 1. Graphical representation of (a) one-particle-exchange
interaction Zi,j ( �pi, �pj , W ) and (b) two-body t matrix τi(W ). The
relative momentum of the interacting particles is denoted by �qi for
the spectator particle i.

The “isobar” propagator τi , illustrated in Fig. 1(b), is given by

(τi(W ))−1 = 1/γi −
∫

d �qi

|gi(�qi)|2
W − Ei( �pi) − Ejk( �pi, �qi) + iε

.

(4)

Here Ejk( �pi, �qi) =
√

(Ej (�qi) + Ek(�qi))2 + �p2
i is the energy

of the interacting particles (j and k) expressed in terms of
the relative momentum �qi and the momentum of the spectator
particle �pi . The isobar propagator τi , which is a part of the
two-body t matrix within the three-particle system is further
examined in the next section.

In this work we investigate a strange dibaryon resonance
with angular momentum Jπ = 0− and isospin I = 1/2. The
main Fock-space components of the resonance are K̄NN

and π�N states that couple with each other through the
I = 0 K̄N -π� interaction. We also take into account the
π�N component, which couples with the main K̄N -π� com-
ponents through the I = 1K̄N -πY interaction. The AGS equa-
tion then becomes coupled-channels equations involving the
channels K̄NN (K̄NI=0, K̄NI=1, NNI=1), π�N (πNI=1/2,
πNI=3/2, π�I=0, π�I=1), and π�N (πNI=1/2, π�I=1). We
assume that all the orbital angular momenta are s waves.
After isospin-angular momentum projection and the antisym-
metrization of the two nucleons, Eq. (1) becomes the following
coupled integral equation [16,17],

Xα,β (p′, p,W )

= C1
α,βZα,β (p′, p,W )

+
∑
γ,δ

∫
dqq2C2

α,γ Zα,γ (p′, q,W )τγ,δ(W )Xδ,β(q, p,W ).

(5)

Here α, β are specified by the Fock space of the three
particles and the quantum number of the interacting pair. The
coefficients C

1,2
α,β are the spin-isospin recoupling coefficients

given in Ref. [7].
The energy of the strange dibaryon resonance is determined

by searching for a pole in the scattering amplitude X. To this
end, the amplitude is analytically continued to the unphysical
sheet by choosing an appropriate path of momentum inte-
gration, and then a pole in the amplitude is located using
the eigenvalue of the kernel Zτ in the above equation (see
Refs. [7,18–22]).
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B. Approximate treatment of three-body dynamics

In the AGS equation, the three-particle dynamics is incorpo-
rated in the particle exchange mechanism Z and the propagator
τ . The former is the three-body interaction and the latter is
determined by the two-body t matrix in the presence of a
spectator particle. We first examine how the two-body t matrix
in the three-body system differs from that in a free space. The
t matrix of K̄N -π� scattering in the three-particle system
is described by the following KNN -πY� coupled-channels
equation,

tα,β(W ) = vα,β +
∑

γ

vα,γ G
γN

0 (W )tγ,β(W ), (6)

where α, β, γ = K̄N and π�, and the Green function is

GαN
0 (W )

= 1

W − EN ( �pN ) −
√

(EMα
(�q) + EBα

(�q))2 + �p2
N + iε

. (7)

Here �pN is the momentum of the spectator nucleon and �q is
the relative momentum of meson (Mα) and baryon (Bα) in
the center of mass system of the channel α. The spectator
momentum shifts the effective scattering energy from W −
mN to W − EN (p) and modifies the on-shell momentum of the
π�N scattering state. One therefore expects that the motion of
the spectator plays an important role in calculating the binding
energy and width of the resonance.

The isobar propagator τα,β (W ) in Eq. (5) is related to the
above t matrix as

〈�qα|tα,β(W )|�qβ〉 = gα(�qα)τα,β (W )gβ(�qβ). (8)

Note that τα,β (W ) depends on the momentum of the spectator
nucleon through the three-body Green function in Eq. (7).
Clearly, the effects of the spectator motion on τα,β(W ) depend
on the momentum distribution of the spectator nucleon, which
can be determined only by solving three-body dynamics.

As mentioned, in the EPA the three-body problem is treated
within the K̄NN Fock space. To make contact with the EPA,
we rewrite Eq. (6) by eliminating the π�N state, which results
in the introduction of the effective interaction veff . Thus

tK̄N-K̄N (W )

= veff(W, �pN ) + veff(W, �pN )GK̄NN
0 (W )tK̄N-K̄N (W ). (9)

The effective interaction veff is defined by

veff(W, �pN ) = vK̄N-K̄N + vK̄N-π�Gπ�N
0 (W )

× (1 + t̄π�−π�(W )Gπ�N
0 (W ))vπ�−K̄N , (10)

t̄π�−π�(W ) = vπ�−π� + vπ�−π�Gπ�N
0 (W )t̄π�−π�(W ).

(11)

Note that t̄ involves only rescattering through the π� inter-
action. Solving the above set of equations is still equivalent
to solving the original Faddeev equation. The difficulty of
treating the three-body continuum (π�N ) is hidden in the
effective potential veff , which is a three-body interaction that
depends on the momentum of the spectator nucleon through
the Green function.

A drastic simplification of veff can be achieved by ne-
glecting the momentum dependence of the spectator or,
more explicitly, by approximating the π�N Green function,
Gπ�N

0 (W ), in Eqs. (10) and (11) with

Gπ�N
0,approx(W ) = 1

W − mN − Eπ (�q) − E�(�q) + iε
. (12)

This approximate treatment of the three-body dynamics
represents the EPA as derived from the Faddeev formalism.

III. MODEL OF K̄ N INTERACTION

We use here the models developed in our previous work [7]
for describing the πN, K̄N -π�-π�, and NN interactions.
Here we briefly explain the K̄N -π� interaction in the I =
0 s-wave channel, which plays a crucial role in our study
of the strange dibaryons. Our starting point is the following
leading order effective chiral Lagrangian for a baryon ψB and
a pseudoscalar meson φ,

Lint = i

8F 2
π

Tr (ψ̄Bγ µ[[φ, ∂µφ], ψB ]). (13)

The s-wave meson-baryon potential derived from Lint is of the
following separable form

〈 �p′, β|VBM| �p, α〉 = −Cβ,α

1

(2π )38F 2
π

mβ + mα√
4Eβ( �p′)Eα( �p)

× gβ( �p′)gα( �p), (14)

with gα( �p) = �4
α/( �p2 + �2

α)2. Here �p and �p′ are the momenta
of the mesons in the initial α and the final β states, respectively.
The coupling constants Cβ,α are CK̄N-K̄N = 6, CK̄N-π� =
−√

6, and Cπ�−π� = 8. Thus the potential is attractive for
both K̄N and π� channels. The strength of the potential at
zero momentum is determined by the pion decay constant
Fπ (Fπ = 92.4 MeV). We found only one resonance in the
I = 0 K̄N -π�s-wave channel. Meanwhile it has been shown
in Refs. [12,23,24] that two resonance poles may exist in
this channel. The potential in Eq. (14) is independent of the
scattering energy. The energy dependence of the K̄N -π�

interactions is one of the important features that differentiate
our approach from the chiral unitary approach. The properties
of the resonances and the energy dependence of the potentials
in the s-wave meson-baryon scattering will be examined in
Ref. [25].

We first discuss the values of the cutoff parameters, �α’s,
to be used in this work. Table I gives two sets of choices,
Model (A) in the first row and Model (B) in the second row.
The cutoff parameters for Model (A) are taken from Model (f)
in Ref. [7], which was constructed to generate a resonance

TABLE I. The cutoff parameters and the resonance energy of the
�(1405).

�K̄N (MeV) �π� (MeV) Resonance energy (MeV)

(A) 1160 1100 1405.8 − i25.2
(B) 1100 1100 1414.2 − i18.6
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FIG. 2. Invariant mass distribution of the π�.

at around 1405 MeV [26]. When the couplings between
the K̄N and the π� are switched off in Model (A), a bound
state appears in the K̄N channel and there is no resonance
in the π� channel. To test the prediction of Model (A) in
the energy region below the K̄N threshold, we study the
π−�+ mass distribution in the K−p reaction [27]. Following
Ref. [28], we calculate the π−�+ mass distribution from the
I = 0 π� scattering t matrix

dN

dWc.m.

= C|tπ�−π� |2pc.m., (15)

where pc.m. is the π� relative momentum in the center
of mass system. Because of the presence of an arbitrary
constant C, only the shape of the mass distribution can be
compared with the data. We assume that the mass distribution
of π−�+ is dominated by the I = 0 amplitude and that the
mass distribution can be deduced from the π� rescattering,
neglecting other energy dependence due to the π� production
mechanism. The mass distribution calculated from Model (A)
is compared with the data in Fig. 2. Model (A) gives a spectrum
slightly larger than the data in the lower mass region. To
examine the model dependence of this analysis, we study
Model (B), which gives a slightly better description of the
π−�+ mass distribution. The results for Model (B) are shown
as the dashed line in Fig. 2. Model (B) has a K̄N interaction
slightly weaker than that of Model (A) because of the smaller
value of the cutoff parameter. The resonance generated from
Model (B) is less bound and has a narrower width than that
generated from Model (A). Both models give a satisfactory

TABLE II. The pole energy of the strange dibaryon resonance is
given in MeV. The pole energy is related to the binding energy B and
the width � as Wpole − mK − 2mN = −B − i�/2.

Model (A) Model (B)

Full calculation −63.3 − i22.2 −44.4 − i22.8
Without pion-exchange Z −66.9 − i21.7 −47.4 − i25.0

description of the total cross sections for the K−p → K−p

reaction [Fig. 3(a)], the K−p → π+�− reaction [Fig. 3(b)],
and the K−p → π−�+ [Fig. 3(c)] reaction.

IV. RESULTS AND DISCUSSION

The energies of the strange dibaryon resonances obtained
from our Faddeev approach described in Sec. II are listed in
the first row of Table II. The half width of the resonance is
about 22 MeV [23 MeV] for Model (A)[(B)]. Model (B) gives
a binding energy (−B = Re (Wpole) − mK − 2mN ) about
20 MeV smaller than that of Model (A).

In all of the previous theoretical studies of strange dibaryon
resonances except our previous work [7], the π�N Fock space
is not treated explicitly; it is only included in the intermediate
states of the two-body K̄N -π� scattering amplitude. The
influence of this simplification can be examined in our
approach by turning off the pion exchange Z term in Eq. (1).
As can be seen in Table II, the pion-exchange Z term plays
only a minor role in the determination of the resonance energy.
In the following discussion therefore we will treat the Faddeev
calculation without the pion-exchange Z term as the “Exact”
calculation.

Table III provides comparisons between the resonance
energy obtained in the Exact calculation and that obtained
from the EPA described in Sec. II. Clearly, there are significant
differences between the two approaches. The EPA calculation
gives a binding energy 15 to 25 MeV smaller than that of the
Exact calculation. Similar effects of the three-body dynamics
were partly studied in Ref. [11]. To understand these results,
it is informative to plot τ (W ) defined in Eq. (4) as a function
of the momentum pN of the spectator nucleon in the most
important I = 0 K̄N channel (see Fig. 4). The amplitude τ (W )
is evaluated at B = 66.9(47.4) MeV for Model (A)[(B)]. The
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035201-4



RESONANCE ENERGY OF THE K̄NN -πYN SYSTEM PHYSICAL REVIEW C 79, 035201 (2009)

TABLE III. The pole energies obtained from
EPA are compared with the Exact results; for an
explanation of the term “Exact,” see the text.

Model (A) Model (B)

Exact −66.9 − i21.7 −47.4 − i25.0
EPA −41.8 − i35.4 −31.5 − i26.3

real and imaginary parts of τ are shown in solid (dash-dotted)
and dashed (dotted) curves for the Exact (EPA) calculations.
As pN increases, the scattering energy available for the π�

system decreases. This implies that in the Exact calculation
the effects of the π� threshold appear as a cusp in the real part
of τ at threshold and the vanishing of the imaginary part of τ

for the larger value of pN (see Fig. 4). On the other hand, the
EPA fails to capture this important behavior of the t matrix.

As mentioned, the EPA involves the approximation of
the π�N Green function. If we further approximate the
K̄NN Green function we are led to the tρ approximation,
which underlies the first order optical potential model.
With this additional approximation we find a resonance at
(−67.4 − i64.2) MeV and (−60.6 − i47.7) MeV for Models
(A) and (B), respectively. We note that the additional approx-
imation influences the resonance width drastically.

In summary, our analysis clearly shows that the exact
treatment of three-body dynamics, such as given by the
Faddeev formulation, is essential in making precise predictions
on the resonance positions of the strange dibaryons.

Finally, we examine the behavior of the resonance pole
trajectory as the magnitude of the K̄N interaction is artifi-
cially increased from its physical value. Let f stand for an
enhancement factor of strength of the I = 0 K̄N interaction:

v̄K̄N,K̄N = f vK̄N,K̄N . (16)

The resonance determined from the pole of the scattering
amplitude in our K̄N -π� coupled-channels model becomes a
“virtual state” as f increases. This behavior of the two-body
resonance pole is similar to the one observed in Ref. [13].
Although it was discussed in Ref. [13] that the spectrum shape
of the Green function cannot be well explained based on the
pole of the Green function, we emphasize that the spectrum
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The circles (squares) show resonance energies obtained with the Exact
(EPA) treatment of the three-body Green function. The numbers
attached to the circles and squares give the corresponding values
of the enhancement factor f in Eq. (16).

shape can in fact be well described in terms of the resonance
pole in the amplitude, we take into account the residue at the
pole and the next order term in the Laurent expansion of the
Green function (see Ref. [34]).

The trajectory of the resonance pole occurring in the three-
body system behaves quite differently from the resonance pole
in the two-body system. The resonance energies obtained from
our Model (A) are shown as circles in Fig. 5. The squares in
the same figure correspond to the EPA results. The numbers
attached to the circles and squares give the corresponding
values of the enhancement factor f . As f increases, the
binding energy of the resonance increases for both the Exact
and the EPA cases. In the Exact calculation (circles), the
imaginary part of the resonance energy becomes smaller as
the binding energy increases and, for f = 1.3, the resonance
almost becomes a bound state. On the other hand, in the EPA
case (squares) the resonance becomes a virtual state as f

grows. By contrast, in the Exact case the resonance energy
of the three-body system determined from the pole of the
scattering amplitude does not become a virtual state even for an
(artificially) strong strong K̄N interaction. Here again we see
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FIG. 4. K̄N amplitude of (a) Model (A) and (b) Model (B). K̄N amplitudes for I = 0 are shown for Exact and EPA treatments of the
π�N Green function.
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the importance of taking a full account of three-body dynamics
for understanding the strange dibaryon resonances.

V. SUMMARY

We have demonstrated the importance of taking a proper
account of three-body dynamics in predicting the resonance
energies of strange dibaryons. Within the Faddeev formulation
we have examined the approximations involved in the existing
effective potential approach (which for short we refer to as
EPA). Upon eliminating the π�N Fock space, the effective
interaction in the K̄NN subspace becomes a three-body
interaction that depends on the resonance energy and the
momenta of all the three particles. We have shown that
this energy and momentum dependence (which is neglected
in the EPA) plays an important role in determining the
resonance energies. As regards the behavior of the resonance
position as a function of the strength of the K̄N potential,

we have shown that the appearance of a virtual state in
the EPA as the strength of the K̄N potential grows is an
artifact of the approximations involved in the EPA. We have
demonstrated that the results obtained from the Faddeev
approach indicate that the resonance becomes a bound state
as the K̄N potential becomes strong. In conclusion, we
emphasize that a full treatment of three-body dynamics is
essential in understanding the K̄NN -πYN coupled-channels
resonance.
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