
PHYSICAL REVIEW C 79, 034910 (2009)

Forward-backward correlations in nucleus-nucleus collisions: Baseline contributions from
geometrical fluctuations

V. P. Konchakovski,1,2 M. Hauer,1 G Torrieri,3 M. I. Gorenstein,2,4 and E. L. Bratkovskaya4

1Helmholtz Research School, University of Frankfurt, Frankfurt, Germany
2Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine

3Institut für Theoretische Physik, Goethe Universität, Frankfurt am Main, Germany
4Frankfurt Institute for Advanced Studies, Frankfurt, Germany

(Received 20 December 2008; published 31 March 2009)

We discuss the effects of initial collision geometry and centrality bin definition on correlation and fluctuation
observables in nucleus-nucleus collisions. We focus on the forward-backward correlation coefficient recently
measured by the STAR Collaboration in Au + Au collisions at RHIC. Our study is carried out within two
models: the Glauber Monte Carlo code with a “toy” wounded-nucleon model and the hadron-string dynamics
(HSD) transport approach. We show that strong correlations can arise from averaging over events in one centrality
bin. We, furthermore, argue that a study of the dependence of correlations on the centrality bin definition as well
as the bin size may distinguish between these trivial correlations and correlations arising from new physics.
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I. INTRODUCTION

Correlations of particles between different regions of rapid-
ity have for a long time been considered to be a signature of new
physics. A shortening in the correlation length in rapidity has
been thought to signal a transition to a quark-gluon plasma
[1,2]. Conversely, the appearance of long-range correlations
has been associated with the onset of the percolation limit,
also linked to the QCD phase transition [3,4]. Recently, the
correlations across a large distance in rapidity have also been
suggested to arise from a color glass condensate [5–7]. The
observation of such correlations in Au + Au collisions at
RHIC energies by the STAR Collaboration [8,9] has therefore
elicited a lot of theoretical interest.

The purpose of this work is to identify some baseline
contributions to the experimentally observed correlations,
contributions that do not depend on new physics. We will use
models that incorporate event-by-event fluctuations in initial
conditions to illustrate the effect of these contributions: a
“toy” wounded-nucleon model and the hadron-string dynamics
(HSD) transport model. We then argue that a study of the
dependence of correlations on the centrality bin definition
as well as the bin size may distinguish between these trivial
correlations and correlations arising from new physics.

The paper is organized as follows. In Sec. II the main
observables are introduced. In Secs. III and IV we study system
size fluctuations and the resulting centrality dependence of
correlations of two disconnected regions in momentum space
within two different models: the Glauber Monte Carlo model
(with no hadronic reinteractions or initial state dynamics) and
the HSD transport model. Section V summarizes our study.

II. DEFINITION OF OBSERVABLES

The statistical properties of a particular sample of events
can be characterized by a set of moments or cumulants of some
observable. These properties depend upon a set of criteria that
are used to select this sample. When applied to the context

of heavy-ion collisions this translates to the construction of
centrality bins of collision events from minimum-bias data.
We will discuss the charged hadron multiplicities NA and
NB in two symmetric intervals �η of pseudo-rapidity. After
construction of the centrality bins, one can calculate the
moments of a resulting distribution P

ηgap
c (NA,NB ; �η):〈

Nk
A · Nl

B

〉ηgap

c
≡

∑
NA,NB

Nk
ANl

BP
ηgap
c (NA,NB ; �η). (1)

In Eq. (1) the subscript c denotes a particular centrality bin and
the superscript ηgap denotes the separation of two symmetric
intervals �η in pseudo-rapidity space where particle multiplic-
ities NA and NB are measured. The correlation coefficient1 is
defined by

ρ ≡ 〈�NA · �NB〉ηgap
c√

〈(�NA)2〉ηgap
c 〈(�NB)2〉ηgap

c

(2)

and measures how strongly multiplicities NA and NB—in a
given centrality bin c for pseudo-rapidity separation ηgap—are
correlated. In Eq. (2), �N ≡ N − 〈N〉ηgap

c and 〈(�NA)2〉ηgap
c =

〈(�NB)2〉ηgap
c for symmetric intervals.

The recent preliminary data on the forward-backward
correlation coefficient (2) of charged particles by the STAR
Collaboration [8,9] exhibit two striking features: 1. an approx-
imate independence on the width of the pseudo-rapidity gap
ηgap and 2. a strong increase of ρ with centrality.

III. GLAUBER MONTE CARLO MODEL

We use the PHOBOS Glauber Monte Carlo code [10] coupled
to a “toy” wounded-nucleon model, referred to as GMC. The
aim of this model is to emphasize two crucial aspects: (1) An

1We use a different notation from Refs. [8,9], denoting the
correlation coefficient as ρ and reserving the letter b for the impact
parameter.
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FIG. 1. (Color online) (Left) Histogram shows the distribution of events with fixed number of participating nucleons, NP , and fixed impact
parameter b in Au + Au collisions at

√
s = 200 GeV. (Right) The scaled variance ωP of the distribution of participating nucleons in 10% bins

as defined via b, NP , and N ref
ch .

averaging over different system sizes within one centrality
bin introduces correlations and (2) the strength of these
correlations depends on the criteria used for the centrality
definition and on the size of the centrality bins.

Employing the Glauber code we model the distribution of
the number of participating nucleons, NP , in each nucleus-
nucleus collision for given impact parameter b (cf. Fig. 1,
left). This is done for Au + Au collisions with the standard
Wood-Saxon profile and the nucleon-nucleon cross section
of σNN = 42 mb. The “event” construction proceeds then in a
two-step process. First, we randomly generate the total number
of charged particles:

Nch =
NP∑
i=1

ni
ch, (3)

where the numbers of charged particles, ni
ch, per participating

nucleon are generated by independently sampling a Poisson
distribution with given mean value nch = 10. Second, these
charged particles are randomly distributed according to a
Gaussian in pseudo-rapidity space:

dNch

dη
∝ exp

(
− η2

2ση

)
, (4)

where ση = 3 defines the width of the pseudo-rapidity distri-
bution. Hence, in each single event there are no correlations
between the momenta of any two particles. Note that numerical
values of nch and ση are fixed in a way to have a rough
correspondence with the data on charged particle production
at

√
s = 200 GeV.

In Fig. 1 (left) we show the GMC event distribution in the
(b,NP )-plane. For each of these events we randomly generate
the number of charge particles, Nch, and their η distribution
according to Eqs. (3) and (4), respectively. The construction
of centrality classes can now be done in several ways. Here we
focus on the following criteria: via impact parameter b, via the
number of participating (wounded) nucleons, NP , and via the
charged particle multiplicity N ref

ch in the midrapidity window
|η| < 1.

In the case where one chooses the number of participating
nucleons, NP , for the centrality definition, one takes vertical
cuts in Fig. 1 (left); when choosing the impact parameter b,
one takes horizontal cuts. Hence, depending on the centrality
definition, one may assign a particular event (characterized by
NP and b) to two different centrality bins.

In Fig. 1 (right) we show the resulting scaled variance,

ωP ≡ 〈(�NP )2〉c
〈NP 〉c , (5)

of the underlying distribution of the number of participating
nucleons, NP , in each centrality bin. Using the centrality
selection via impact parameter b, which is a only theoret-
ically available trigger, one generally obtains a rather wide
distribution of participating nucleons in each bin. The lines
for centrality selections via N ref

ch and via NP are similar owing
to the event construction with Eqs. (3) and (4). An interesting
feature of the GMC model is that ωP increases with centrality
for the selection via NP . This result of the GMC model seems
to have a rather general origin.

We now investigate the sensitivity of the forward-backward
correlation signal as a function of the separation ηgap of two
narrow intervals (�η = 0.2) on the centrality definition. This
is done for the 10% centrality defined via NP , via b, and via
N ref

ch . The results are shown in Fig. 2.
In the GMC we can identify the number of participating

nucleons, NP , with the system size, and ωP as the measure for
system size fluctuations. Having a large system as measured by
NP implies a large number of charged particles, Nch. In GMC
they are distributed independently in pseudo-rapidity space.
Conversely, an event with small NP contains only few charged
particles. By grouping the collision events into 10% centrality
bins one finds rather large NP fluctuations in one specific
bin. The averaging over different states in the centrality bin
introduces correlations between any two regions of pseudo-
rapidity. Small systems will have few particles on the left and
few particles on the right with respect to midrapidity. Large
systems will have many particles on the left and many particles
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FIG. 2. (Color online) The forward-backward correlation coefficient ρ for 10% centrality classes defined via NP (left), via the impact
parameter b (middle), and via the multiplicity in the central rapidity region N ref

ch (right).

on the right. But this just means a nonzero forward-backward
correlations. From the definition [Eq. (2)] one finds a positive
correlation coefficient ρ owing to averaging over system sizes.

Note that centrality selections via NP and via Nch give
essentially the same results for ρ in the GMC (cf. left and
right panels of Fig. 2). Using the impact parameter b for
the centrality definition generates centrality bins with almost
constant ρ, as seen in Fig. 2 (middle). This is due to a rather flat
dependence of ωP on the centrality defined via b, as shown
in Fig. 1 (right). In the GMC model the apparent ordering
of ρ values with respect to centrality bins originates from the
width of the underlying distribution in the number of wounded
nucleons in each bin (i.e., from the values of ωP ).

The measured and apparently strong forward-backward
correlations can be accounted for by a “toy” model such as the
GMC, provided it produces particles over the whole rapidity
range and includes strong enough event-by-event fluctuations
of NP . The next section will show that an introduction of
dynamics and hadron reinteractions within the HSD does not
alter these conclusions significantly.

IV. HSD TRANSPORT MODEL SIMULATIONS

A physically more reasonable scenario, which however
also does not include any new physics (such as color glass
condensate or quark-gluon plasma), can be obtained in the
HSD transport approach [11–13]. The HSD approach has been
used for the description of pA, πA, and AA collisions from
SIS to RHIC energies [14,15]. In this model, N,�, N∗(1440),
N∗(1535), and �,�,�∗, 	,	∗, and 
 hyperons as well as
their antiparticles are included on the baryonic side, whereas
the 0− and 1− octet states are incorporated in the mesonic
sector. Inelastic baryon-baryon (and meson-baryon) collisions
with energies above

√
s th � 2.6 GeV (and

√
s th � 2.3 GeV)

are described by the FRITIOF string model [16] whereas
low-energy hadron-hadron collisions are modeled in line
with experimental cross sections. As pre-hadronic degrees
of freedom the HSD includes “effective” quarks (antiquarks)

and diquarks (antidiquarks) that interact with cross sections in
accordance with the constituent quark model.

As before within GMC, the HSD events are generated
according to a uniform distribution, Nev(b) ∼ b. The resulting
distribution of events in the (NP , b)-plane is similar to the
GMC result depicted in Fig. 1 (left).

In Fig. 3 we show the distribution of events with fixed NP

for both models. The vertical lines indicate 10% centrality bins
as defined by the NP distribution. Note that the peripheral part
of the distribution also determines the centrality binning and
the real bin widths. This is crucial for most central collisions
where the number of events is small. Slight uncertainties in
the peripheral “tail” of the distribution lead to large errors
in the sizes of most central bins and hence to large changes in
results for fluctuations and correlations.

In contrast to the STAR data, we use in the HSD simulations
the charged particle reference multiplicity N ref

ch in the same
pseudo-rapidity range |η| < 1 for all values of ηgap. This
procedure introduces a systematic bias, since the pseudo-
rapidity regions for the measured multiplicity in a small �η

window (signal) and for the reference multiplicity partially
overlap. This bias, however, is small and does not affect any
of our conclusions.

FIG. 3. (Color online) The HSD and GMC distributions of events
over NP . The vertical lines indicate 10% centrality bins.
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FIG. 4. (Color online) The HSD results for the fluctuations ωP as a function of the mean value 〈NP 〉 of the participating nucleons within
bins as defined via b, NP , and N ref

ch . The left panel corresponds to a 10% and the right to a 2% bin width.

In Fig. 4 we show the scaled variance of the underlying
NP distribution for 10% (left) and 2% (right) centrality bins
defined via different centrality triggers within HSD. The results
for 10% bins can be compared with the scaled variance ωP in
the GMC model in Fig. 1 (right). Fluctuations of the number
of participants, as well as their average values, are similar
in both HSD and GMC models when the centrality bins are
defined via NP . These quantities are completely defined by
the NP distribution, which is similar in both models (Fig. 3).
Binning via the impact parameter b in HSD, as well as in GMC,
gives decreasing fluctuations in the participant number with
increasing collision centrality. The results for 10% bins defined
via the reference multiplicity are rather different in the GMC
and HSD models. In GMC the charged multiplicity distribution
is implemented according to Eqs. (3) and (4). Hence, the results
obtained by binning via the reference multiplicity follow the
line obtained by binning via NP . In contrast to the GMC, in
the HSD simulations the average number of charged particles,
nch, per participating nucleon is not a constant but increases
with NP . Additionally, the shape of the rapidity distribution
is also different in different centrality bins. These two effects
lead to different values of ωP in the centrality bins defined via
N ref

ch in the GMC and HSD models.
One comment is appropriate here. It was argued in Ref. [17]

that any centrality selection in nucleus-nucleus collisions is
equivalent to the geometrical one via impact parameter b. This
result was obtained in Ref. [17] by neglecting the fluctuations
at a given value of b. Thus, different centrality selection criteria
give indeed the same average values of physical observables.
However, they may lead to rather different fluctuations of
these observables in the corresponding centrality bins (cf.
equal values of 〈NP 〉 and different values of ωP for different
centrality selections presented in Fig. 4).

When considering smaller centrality bins (2% in Fig. 4,
right) the fluctuations in the participant number become
smaller and more strongly dependent on the definition of the
binning.

Figure 5 summarizes the dependence of the forward-
backward correlation coefficient ρ as a function of ηgap on
the bin size and centrality definition within the HSD model.
The dependence of ρ on ηgap is almost flat, reflecting a boost-

invariant distribution of particles created by string breaking
in the HSD. The right top panel of Fig. 5 demonstrates also
a comparison of the HSD results with the STAR data [8,9].
One observes that the HSD results systematically exceed the
STAR data. However, the main qualitative features of the
STAR data—an approximate independence of the width of
the pseudo-rapidity gap ηgap and a strong increase of ρ with
centrality—are fully reproduced by the HSD simulations.

The correlation coefficient ρ largely follows the trend of the
participant number fluctuations ωP as a function of centrality.
The actual results, however, strongly depend on the way of
defining the centrality bins. For instance, choosing smaller
centrality bins leads to weaker forward-backward correlations,
a less pronounced centrality dependence, and a stronger
dependence on the bin definition. The physical origin for this
is demonstrated in Fig. 6. As the bin size becomes comparable
to the width of the correlation band between NP and N ref

ch , the
systematic deviations of different centrality selections become
dominant: The same centrality bins defined by NP and by N ref

ch
contain different events and may give rather different values
of forward-backward correlation coefficient ρ.

It should be underlined that these properties are specific
to the geometric nature of the correlations analyzed here. If
the observed fluctuations are of dynamical origin (for example,
arising from the quantum fluctuations of coherent fields created
in the first fm/c of the system’s lifetime as in Refs. [5,6]), there
are no evident reasons why they should strongly depend on
centrality bin definitions and bin sizes. Thus, the experimental
analysis for different bin sizes and centrality definitions—as
performed here—may serve as a diagnostic tool for an origin
of the observed correlations. A strong specific dependence of
the correlations on bin size and centrality definition would
signify their geometrical origin.

V. SUMMARY

In conclusion, we have presented a study of the system
size event-by-event fluctuations causing the rapidity forward-
backward correlations in relativistic heavy-ion collisions. Our
analysis has been based on two independent models—a “toy”
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FIG. 5. (Color online) The HSD results for the forward-backward correlation coefficient ρ for 10% (top) and 2% (bottom) centrality classes
defined via NP (left), via impact parameter b (center), and via the reference multiplicity N ref

ch (right). The symbols in the top right panel present
the STAR data in Au + Au collisions at

√
s = 200 GeV [8,9].

wounded-nucleon model realized as a Glauber Monte Carlo
event generator and the microscopic HSD transport approach.
We have shown that strong forward-backward correlations
arise from an averaging over many different events that belong
to one 10% centrality bin. In contrast to average multiplicities,

FIG. 6. (Color online) Histogram showing the distribution of
HSD events with fixed number of participating nucleons, NP , and
fixed reference charge particle multiplicity N ref

ch . The same centrality
class (20%–22% as an example) defined in various ways contains
different events.

the resulting fluctuations and correlations depend strongly
on the specific centrality trigger. For example, the centrality
selection via impact parameter b used in most theoretical
calculations and via N ref

ch used experimentally lead to rather
different values of ωP and ρ and their dependence on
centrality.

In the HSD model the NP distribution is similar to that
in the GMC. It also includes the fluctuations in the number
of strings and the fluctuations in the number of hadrons from
individual string fragmentation. The HSD simulations reveal
strong forward-backward correlations and reproduce the main
qualitative features of the STAR data in Au + Au collisions at
RHIC energies [5,6].

The forward-backward correlations can be studied experi-
mentally for smaller size centrality bins defined by N ref

ch . When
the size of the bins decreases, the contribution of geometrical
fluctuations discussed in our paper should lead to weaker
forward-backward correlations and to a less pronounced
centrality dependence.

Let us stress that the geometrical fluctuations discussed
in our paper are in fact present in all dynamical models of
nucleus-nucleus collisions. Thus, they should be carefully
taken into account before any discussion of new physical
effects. We hope that a future experimental analysis in the
direction examined here will clarify whether the observed
correlations by the STAR Collaboration at RHIC contain really
additional contributions from new physics.
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