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Transverse momentum distributions in ultrarelativistic heavy ion collisions carry considerable information
about the dynamics of the hot system produced. Direct comparison with the same spectra from p + p collisions
has proved invaluable in identifying novel features associated with the larger system, in particular, the “jet
quenching” at high momentum and the apparently much stronger collective flow dominating the spectral shape
at low momentum. We point out possible hazards of ignoring conservation laws in the comparison of high- and
low-multiplicity final states. We argue that the effects of energy and momentum conservation actually dominate
many of the observed systematics, and that p + p collisions may be much more similar to heavy ion collisions
than generally thought.
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I. INTRODUCTION

A. Heavy ion physics: Relying on comparison

The physics program at the Relativistic Heavy Ion Collider
(RHIC) at Brookhaven National Laboratory is remarkably rich,
thanks to the machine’s unique ability to collide nuclei from
1H to 197Au, in fully symmetric (e.g., Au + Au or p + p) to
strongly asymmetric (e.g., d + Au) entrance channels, over an
energy range spanning more than an order of magnitude. The
capability to collide polarized protons provides access to an
entirely new set of fundamental physics, not discussed further
here.

Achieving the primary aim of RHIC—the creation and
characterization of a color-deconfined state of matter and its
transition back to the confined (hadronic) state—requires the
full capabilities of RHIC. In particular, comparisons of particle
distributions at high transverse momentum (pT ) from Au + Au
and p + p collisions probe the color-opaque nature of the
hot system formed in the collisions [1–3]. Comparisons with
reference d + A collisions were necessary to identify the role
of initial-state effects in the spectra [4]. Comparing anisotropic
collective motion from noncentral collisions of different-mass
initial states (e.g., Au + Au vs Cu + Cu) [5] tests the validity
of transport calculations crucial to claims of the creation of
a “perfect liquid” at RHIC [6]. Indeed, a main component
of the future heavy ion program at RHIC involves a detailed
energy scan, designed to identify a predicted critical point in
the equation of state of QCD [7].

The need for such systematic comparisons is not unique
to RHIC, but has been a generic feature of all heavy ion
programs [8,9], from low-energy facilities such as the National
Superconducting Cyclotron Laboratory (NSCL) at Michigan
State University to progressively higher energy facilities such
as the GSI heavy ion synchrotron (SIS), Bevatron/Bevalac at
Berkeley Lab, BNL Alternating Gradient Synchrotron (AGS),
and CERN Super Proton Synchrotron (SPS). The nature of
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heavy ion physics is such that little is learned through the
study of a single system.

B. Bigger is better

Despite the necessary attention given to smaller colliding
partners, these comparisons are ultimately aimed at identifying
novel aspects of collisions between the heaviest ions, in which
a highly excited bulk system might be created, with a sufficient
number of degrees of freedom such that it may be described
thermodynamically, e.g., in terms of pressure, temperature,
energy density, and an equation of state (EOS). If the energy
density of this system is sufficiently large (typically estimated
at εcrit ∼ 1 GeV/fm3 [6]) and its spatial extent considerably
larger than the color-confinement length ∼1 fm, then a new
state of matter—the quark-gluon plasma (QGP) [10]—may be
created. Microscopically, such a state might be characterized
by colored objects (or something more complicated [11]);
macroscopically, it represents a region on the phase diagram in
which the EOS is distinctly different from that for the hadronic
phase [12].

Ultrarelativistic collisions between the heaviest nuclei
enjoy the additional advantage that finite-size effects are
small, due to high-multiplicity final states. In a small system
(e.g., final state of a p + p̄ collision), a statistical analysis
of yields requires a canonical treatment because of the
conservation of discreet quantum numbers such as baryon
number and strangeness [13]. For larger systems, a grand
canonical treatment is more common, e.g., Ref. [14], with
finite quantum-number effects absorbed into, e.g., “saturation
factors” [15].

Because of the large available energy
√

s and final-state
multiplicity, energy and momentum conservation effects on
kinematic observables (spectra, momentum correlations, el-
liptic flow) are generally small. They are accounted for with
correction factors [16,17] or neglected altogether.

C. Multiplicity evolution of single-particle spectra

Detailed single-particle spectra (e.g., d2N/dp2
T ) have been

measured at RHIC for a variety of particle types. Often, the
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shape of the “soft” (pT <∼ 2 GeV/c) part of the spectrum
is compared with hydrodynamic calculations [18] or fitted
to simple “blast-wave” parametrizations, e.g., Ref. [19], to
extract the collective flow of the system. The “hard” sector
(pT >∼ 4 GeV/c) is assumed to be dominated by the physics of
the initial-state, high-Q2 parton collisions and resulting jets.
The physics of the “firm” sector (2 <∼ pT <∼ 4 GeV/c) may be
the richest of all, reflecting the dynamics of the confinement
process itself [20].

We would like to focus not so much on the single-particle
spectra themselves but on their multiplicity dependence. Much
has been inferred from this dependence. In the soft sector,
blast-wave fits to spectra from high-multiplicity final states
(associated with central A + A collisions) indicate strong
collective radial flow; the same fits to low-multiplicity final
states—including minimum-bias p + p collisions—appear to
indicate much weaker flow [21]. This seems to confirm a
common assumption that p + p collisions are not sufficiently
“large” to develop bulk collective behavior.

In the hard sector, one of the earliest and most exciting
observations [3,22] at RHIC was that the high-pT yield
from high-multiplicity Au + Au collisions was suppressed,
relative to appropriately scaled lower multiplicity A + A

or minimum-bias p + p collisions. This has been taken as
evidence of energy loss of hard-scattered partons through a
very color-dense medium. Meanwhile, the high-pT part of
the spectrum from high-multiplicity p + p collisions appears
enhanced relative to low-multiplicity p + p collisions [23],
again suggesting that a color-dense bulk system is not produced
in p + p collisions.

In this paper, we discuss the effects of energy and mo-
mentum conservation on the multiplicity evolution of single-
particle spectra at RHIC. Energy and momentum conservation-
induced constraints (EMCICs)1 have been largely ignored in
the analyses just mentioned, probably for two reasons. The
first is the field’s usual focus on the highest multiplicity
collisions, where such effects are assumed small; it seems
natural to compare analyses of such systems to “identical”
ones of smaller systems, forgetting that EMCIC effects play
an ever-increasing role in the latter case. Perhaps the more
important reason is that EMCICs do not generate “red flag”
structures on single-particle spectra; this is in contrast to
multiparticle correlation analyses, in which conservation-law-
induced correlations may be manifestly obvious and have
even been used to estimate the number of unmeasured neutral
particles in high energy collisions [24]. Especially with the
enhanced attention on precision and detail at the SPS and
RHIC, there has been increasing discussion of EMCIC effects
in two-particle [17,25], three-particle [26], and N -particle [27]
observables. Below, we show that EMCIC effects on single-
particle spectra are also significant and may even dominate
their multiplicity evolution.

1In Ref. [25], we discussed energy and momentum conservation-
induced correlations (EMCICs) in multiparticle distributions. In the
present manuscript, we discuss these very effects with the same
formalism, but projected onto the single-particle distributions. It is
convenient and natural, then, to use the same acronym here, replacing
“correlation” with “constraint.”

D. Organization of this paper

Several authors (see, e.g., Ref. [28]) have discussed finite-
number effects in statistical models, and many numerical
simulations of subatomic collisions conserve energy and
momentum automatically, e.g., Refs. [29,30]. However, as
pointed out by Knoll [31], our question—to what extent do
EMCICs alone explain the multiplicity evolution of spectra?—
cannot be addressed from these simulations themselves, since
in these models, the evolution of dynamics and kinematics are
interwoven. Thus, in Sec. II, we discuss a formalism based on
Hagedorn’s generalization of Fermi’s Golden Rule, in which
dynamics and kinematics (phase space) factorize. This leads to
a formula for finite-number effects on single-particle spectra,
due solely to kinematics, for a fixed dynamical (“parent”)
distribution.

In Sec. III, we test the extreme ansatz that all of the experi-
mentally measured multiplicity dependence of single-particle
spectra is due to EMCICs. We will find surprising agreement
with this ansatz in the soft sector (pT <∼ 1 GeV/c). We will
discuss that our formalism is on less firm footing, conceptually
and mathematically, at much higher pT . Nevertheless, we
explore this regime as well. We find that in the hard sector,
the data from heavy ion collisions is clearly not dominated
by EMCICs, though we point out that ignoring EMCICs,
especially for p + p collisions, may be dangerous even at
high pT .

In Secs. IV and V, we summarize and give an outlook for
future studies.

II. EFFECTS OF ENERGY AND MOMENTUM
CONSERVATION ON SINGLE-PARTICLE SPECTRA

A. Restricted phase-space factor

Changing the size (central vs peripheral ion collisions, e + e

collisions, etc.) and energy of a collision system will lead
to different measured single-particle distributions, reflecting
(1) possibly different physical processes driving the system
and (2) effects due to phase-space restrictions. To focus on
changes caused by the latter, we consider some Lorentz-
invariant “parent” distribution f̃ (p) ≡ 2E d3N

dp3 , driven by some
unspecified physical process, but unaffected by energy and
momentum conservation. For simplicity, we assume that all
particles obey the same parent distribution.

In the absence of other correlations, the measured single-
particle distribution is related to the parent according to [16,
17,25,27]

f̃c(p1)

= f̃ (p1)

∫ (∏N
j=2 d4pjδ

(
p2

j − m2
j

)
f̃ (pj)

)
δ4

(∑N
i=1 pi − P

)
∫ (∏N

j=1 d4pjδ
(
p2

j − m2
j

)
f̃ (pj)

)
δ4

(∑N
i=1 pi − P

) ,

(1)

where N is the event multiplicity. The integral in the numerator
of Eq. (1) represents the number of configurations in which the
N − 1 other particles counterbalance p1 so as to conserve the
total energy-momentum P of the event, and the denominator,
integrating over all N particles, is a normalization.

034908-2



CONSERVATION LAWS AND MULTIPLICITY EVOLUTION . . . PHYSICAL REVIEW C 79, 034908 (2009)

For N >∼ 10 [25], one may use the central limit theorem to
rewrite the factor in Eq. (1) as [16,17,25,27]

f̃c(pi) = f̃ (pi)

(
N

N − 1

)2

exp

[
− 1

2(N − 1)

(
p2

i,x〈
p2

x

〉 + p2
i,y〈

p2
y

〉
+ p2

i,z〈
p2

z

〉 + (Ei − 〈E〉)2

〈E2〉 − 〈E〉2

)]
, (2)

where 〈
pn

µ

〉 ≡
∫

dpf̃ (p)pn
µ (3)

are average quantities, and we have set the average three-
momentum 〈p(µ=1,2,3)〉 = Pµ=1,2,3/N = 0. We stress that
what appears in Eq. (3) is the parent distribution f̃ , not the
measured one f̃c. Hence, for finite multiplicity N , the averages
〈pn

µ〉 are not the measured ones, which we define as

〈
pn

µ

〉
c
≡

∫
dpf̃c(p)pn

µ. (4)

See also the discussion in Appendix B.
Since pT distributions are commonly reported, we would

like to estimate EMCIC distortions to pT distributions,
integrated over azimuth and a finite rapidity bin centered
at midrapidity. As discussed in Appendix A, for the ap-
proximately boost-invariant distributions at RHIC [21], the
measured and parent pT distributions are related by

f̃c(pT ) = f̃ (pT )

(
N

N − 1

)2

exp

[
− 1

2(N − 1)

×
(

2p2
T〈

p2
T

〉 + p2
z〈

p2
z

〉 + E2

〈E2〉 − 〈E〉2

− 2E〈E〉
〈E2〉 − 〈E〉2

+ 〈E〉2

〈E2〉 − 〈E〉2

)]
. (5)

The notation X indicates the average of X over the rapidity
interval used; see Appendix A for details. These averages
depend, of course, on pT and should not be confused with
global averages 〈X〉 [Eq. (3)] which characterize the parent
distribution.

We would also like to emphasize that since Eq. (5) depends
on the energy of the particle (not just momentum), it becomes
clear that the EMCIC effects are larger on heavier particles at
the same pT . Thus we should expect that the proton spectra
will be more suppressed than pion spectra. In what follows, we
find that ignoring the p2

z/〈p2
z 〉 term does not affect our results,

since the numerator is small for the narrow rapidity windows
used here, and the denominator is large. In discussions below,
we set this term to zero.

B. Straw-man postulate of a universal parent distribution

Equations (1)–(5) are reminiscent of Fermi’s “Golden Rule”
[32,33], in which the probability for making a particular
observation is given by the product of the squared matrix
element and a quantity determined by available phase space.
The first term represented the underlying physical process. In

his original statistical model [32], Fermi originally assumed
it to be a constant representing the volume in which emitted
particles were produced; this is equivalent to setting f̃ (p)
constant in Eq. (1). While surprisingly successful in predicting
cross sections and pion spectra [34,35], the emission volume
required to describe the data was considered unrealistically
large [36]. Using the mean value theorem, Hagedorn [33]
generalized the theory so that the “physics term” is the
interaction matrix element, suitably averaged over all final
states.

We wish to make no assumptions about the underlying
physics (represented by f̃ ) driving the observed spectrum
f̃c. Rather, we wish to quantify the effect of changing the
multiplicity N , which appears in the phase-space term.

In particular, in the following section, we compare mea-
sured single-particle spectra for different event classes.

We postulate that the parent distributions for, say, classes 1
and 2, are the same (f̃1 = f̃2). By Eq. (3), this implies 〈pµ〉1 =
〈pµ〉2 ≡ 〈pµ〉. In this case, the only reason that the observed
spectra differ (f̃c,1 �= f̃c,2) is the difference in “multiplicity”
N1 �= N2; see Sec. II C for a discussion of N1.

To eliminate the (unknown) parent distribution itself, we
will study the ratio of observed pT distributions, which, by
Eq. (5) becomes

f̃c,1(pT )

f̃c,2(pT )
= K

(
(N2 − 1)N1

(N1 − 1)N2

)2

exp

[(
1

2(N2 − 1)

− 1

2(N1 − 1)

) (
2p2

T

〈p2
T 〉 + E2

〈E2〉 − 〈E〉2

− 2E〈E〉
〈E2〉 − 〈E〉2

+ 〈E〉2

〈E2〉 − 〈E〉2

)]
, (6)

where the constant K is discussed at the end of Sec. II C. As
mentioned at the end of Sec. II A, numerically unimportant
terms in pz have been dropped.

Naturally, our postulate cannot be expected to be entirely
correct; one may reasonably expect the mix of physical
processes in p + p collisions to differ from those in Au + Au
collisions. Nevertheless, it is interesting to find the degree to
which the change in single-particle spectra may be attributed
only to finite-multiplicity effects. We will find that the postulate
works surprisingly well in some regions and fails in others. As
we will discuss, both the success and failure raise interesting
and surprising possibilities.

C. Testing the postulate: How to treat the parameters

By our postulate, the phase-space factor affecting a pT

distribution is driven by four quantities. Three of them,
〈p2

T 〉, 〈E2〉, and 〈E〉, characterize the parent distribution,
while N is the number of particles in the final state. In
general, increasing any one parameter decreases the effect
of phase-space restrictions on the observed distributions. But
what should we expect these values to be? They should
characterize the relevant system in which a limited quantity
of energy and momentum is shared. They are not, however,
directly measurable and should only approximately scale
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with measured values for at least the five following reasons
discussed here.

First, the energy and momentum are shared among mea-
sured and unmeasured (neutrals, neutrinos, etc.) particles alike
so that N should roughly track the measured event multiplicity
Nmeas, but need not be identical to it.

Second, emission of resonances smears the connection
between N and Nmeas; e.g., the emission of an ω meson
that later decays into “secondary” particles (ω → πππ )
increments N by unity, rather than by three, as far as
other particles are concerned. This latter consideration also
affects the kinematic parameters 〈p2

T 〉, 〈E2〉, and 〈E〉. While
energy and momentum are, of course, conserved in resonance
decay, the aforementioned quantities themselves are not. Thus,
one need not expect perfect correspondence between the
appropriate kinematic parameters in Eq. (6) and the measured
ones.

Third, even restricting consideration to primary particles,
it is unclear that all of them should be considered in the
relevant ensemble of particles sharing some energy and
momentum. In particular, for space-time extended systems in
high-energy collisions, the momentum extent of characteristic
physics processes (e.g., string breaking) and causality in an
approximately boost-invariant scenario suggest that rapidity
slices of roughly unit extent should be considered separate
subsystems [26]. Of course, the total available energy in any
event is shared among all such subsystems; i.e., the midrapidity
subsystem in one event will not have exactly the same available
energy as that in another event. However, such fluctuations are
to be expected in any case—surely individual collisions will
differ from one another to some extent. Thus, we repeat our
interpretation of the four parameters N, 〈p2

T 〉, 〈E2〉, and 〈E〉:
they characterize the scale, in energy and momentum, of the
limited available phase space to an N -particle subsystem.

Fourth, Eqs. (1)–(6) are appropriate for fixed N , while we
will be comparing with measured spectra selected by mea-
sured charged-particle multiplicity. Thus, N would inevitably
fluctuate within an event class, even if we could ignore the
above considerations. Naturally, high-multiplicity events con-
tribute to spectra more than low-multiplicity events. Similarly,
the average multiplicity in two-particle correlations is even
more shifted to higher multiplicities.

Fifth, as already mentioned in Sec. II A, the kinematic
parameters 〈p2

T 〉, 〈E2〉, and 〈E〉 correspond to the parent
distribution, which will only correspond identically to the
measured one in the limit of infinite multiplicity (i.e., no
EMCIC distortions). See also the discussion in Appendix B.

For all of these reasons, we will treat N, 〈p2
T 〉, 〈E2〉, and

〈E〉 as free parameters when testing our postulate against data.
Our aim is not to actually measure these quantities by fitting
the data with Eq. (6); this is good, since our fits to the data only
very roughly constrain our four parameters, as discussed in the
next section. Rather, our much less ambitious goal is to see
whether “reasonable” values of these parameters can explain
the multiplicity evolution of the spectra.

To get a feeling for these values, we look at p + p collisions
at

√
sNN = 200 GeV, simulated by the PYTHIA event generator

(v6.319) [37]. In the model, we can identify primary particles,
thus avoiding some of the issues discussed above. However, the

TABLE I. For a given selection on pseudorapidity |η| < ηmax, the
number and kinematic variables for primary particles from a PYTHIA

simulation of p + p collisions at
√

sNN = 200 GeV are given. Units
are GeV/c or (GeV/c)2, as appropriate. 100k events were used, and
all decays were switched off in simulations.

ηmax 〈N〉 〈p2
T 〉c 〈p2

z 〉c 〈E2〉c 〈E〉c

1.0 7.5 0.58 0.41 1.45 0.98
2.0 13.4 0.59 2.81 3.89 1.57
3.0 17.9 0.59 12.95 14.01 2.65
4.0 21.5 0.59 82.45 83.55 5.13
5.0 23.4 0.59 262.88 265.03 8.29
∞ 23.6 0.59 275.23 276.4 8.48

fact that PYTHIA conserves momentum means that we access
〈pn

µ〉c as defined by Eq. (4), not the parameters of the parent
distribution. Nevertheless, a scale for our expectations may
be set. Table I summarizes the result for primary particles
satisfying a varying cut on pseudorapidity where all particle
decays were switched off in PYTHIA simulations. The results
from simulations in which resonance decays were included are
presented in Table II. These two tables gives us rough estimates
of ranges of the total multiplicity and kinematic variables that
one may expect. The bulk component of single-particle spectra
is often estimated with Maxwell-Boltzmann distributions, with
inverse slope parameters in the range T ∼ 0.15–0.35 GeV.
Again, simply for rough guidance, we list Maxwell-
Boltzmann expectations for our kinematic parameters in
Table III, assuming pion-dominated system.

Finally, a word about normalization—the quantity K which
appears in Eq. (6). Not only energy and momentum but also
discrete quantum numbers such as the strangeness and baryon
number are conserved event by event, affecting the overall
yield of a given particle species. For example, the related
phenomenon of “canonical suppression” affects the ratio
of yields for strange versus nonstrange particles, as multiplicity
varies [38,39]. Since we restrict our attention to energy
and momentum conservation and the effect on kinematic
quantities, we are interested in the shape of the spectra ratio,
as a function of particle momentum, and include a factor K

in our Eq. (6), which should be of order, but not necessarily
identical to, unity. We do not discuss it further.

TABLE II. For a given selection on pseudorapidity |η| < ηmax, the
number and kinematic variables for final state particles (particle index
KS = 1 in PYTHIA) from a PYTHIA simulation of p + p collisions at√

sNN = 200 GeV are given. 100k events were generated, and default
PYTHIA parameters were used in simulations. Units are GeV/c or
(GeV/c)2, as appropriate.

ηmax 〈N〉 〈p2
T 〉c 〈p2

z 〉c 〈E2〉c 〈E〉c

1.0 16 0.20 0.11 0.40 0.44
2.0 29 0.21 0.76 1.05 0.68
3.0 39 0.21 3.5 3.8 1.2
4.0 47 0.21 24 25 2.2
5.0 51 0.22 88 89 3.7
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TABLE III. Average kinematic variables obtained from the
Maxwell-Boltzmann distribution f (p) = dN

dp3 ∼ e−E/T using nonrel-
ativistic and ultrarelativistic limits. A pion gas is assumed.

Nonrel. limit Ultrarel. limit If T = 0.15–0.35 GeV

〈p2
T 〉 2mT 8T 2 0.045–0.98 (GeV/c)2

〈E2〉 15
4 T 2 + m2 12T 2 0.10–1.50 GeV2

〈E〉 3
2 T + m 3T 0.36–1.00 GeV

III. TEST OF THE POSTULATE: COMPARISON
WITH DATA

We now explore the degree to which the postulate proposed
above describes the multiplicity evolution of measured pT

spectra measured in
√

sNN = 200 GeV collisions at RHIC. As
is frequently done, we will separately discuss the soft (pT <∼
1 GeV/c) and hard (pT >∼ 3 GeV/c) portions of the spectra.
This separation is not entirely arbitrary, as spectra in these
two pT ranges are thought to be dominated by quite different
physics, and the multiplicity evolution in the two sectors is
usually interpreted in terms of distinct physics messages.

In the soft sector, the spectral shapes are often consistent
with hydrodynamic calculations, e.g., Refs. [18,40], or fitted
with blast-wave type models, e.g., Refs. [19,41], and show
evidence of strong, explosive flow associated with a collective
bulk medium. This is especially clear in the mass dependence
of the spectra; the mT (or pT ) spectrum of heavy particles
such as protons are significantly flatter than that for pions,
in the presence of strong flow. The multiplicity evolution

in this sector suggests that high-multiplicity collisions (say,
central Au + Au collisions) show much more collective flow
than do low-multiplicity (say, p + p) collisions [21]. Such an
interpretation is initially sensible in a scenario in which flow is
built up through multiple collisions among emitted particles;
the concept of a collective bulk medium in a very low-
multiplicity collision is thus usually considered questionable.

Particle yields at high pT , on the other hand, are generally
discussed in the context of fragments from high-Q2 parton
scatterings in the initial stage of the collision. As the event
multiplicity in Au + Au collisions is increased, a suppression
of high-pT yields is observed, relative to a properly normalized
minimum-bias spectrum from p + p collisions. This suppres-
sion has been attributed to partonic energy loss in the bulk
medium [42–45].

The multiplicity evolution of the spectra in p + p col-
lisions, however, shows quite the reverse. Relative to the
soft sector, the high-pT yields increase as the multiplicity
increases; one may also say that the pT spectra become less
steep as multiplicity increases [23]. This seems to reinforce
the conclusion discussed above in relation to the soft sector,
that p + p collisions do not build up a bulk system capable of
quenching jets.

Here, we reconsider these conclusions based on the mul-
tiplicity evolution of the spectra, in light of the phase-space
restrictions discussed above.

A. Soft sector: Identified particles in Au + Au versus p + p

Figure 1 shows mT distributions for minimum-bias p + p

collisions and multiplicity-selected Au + Au collisions, all at

]2 [GeV/cπ - mTm
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/G

eV
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d
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FIG. 1. (Color online) Transverse mass distributions for pions (left), kaons (center), and antiprotons (right) measured by the STAR
Collaboration for

√
sNN = 200 GeV collisions [21]. The lowest data points represent minimum-bias p + p collisions, while the others come

from Au + Au collisions of increasing multiplicity. Filled data points are for the top 5% and 60–70% highest multiplicity Au + Au collisions
and for the p + p collisions.
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FIG. 2. (Color online) Temperature (top panel) and flow (bottom
panel) parameters of a blast-wave model [19] fit to the STAR spectra
of Fig. 1 (circles) and to EMCIC-corrected spectra (squares), as a
function of the event multiplicity. The shaded region represents these
results combined with systematic errors, as discussed in the text.

√
sNN = 200 GeV, reported by the STAR Collaboration at

RHIC [21]. For the highest multiplicity Au + Au collisions
(top-most filled data points), the spectrum for heavier emitted
particles is less steep than the essentially exponential pion
spectrum. Circles in Fig. 2 show the result of fits with a
blast-wave model [19]. They indicate a kinetic freeze-out
temperature of about 100 MeV and average collective flow
velocity about 0.6c for the most central collisions. For lower
multiplicity collisions, the freeze-out temperature appears
to grow to ∼130 MeV, and the flow velocity decreases to
∼0.25c. The STAR Collaboration, using a slightly different
implementation of a blast-wave model, reported essentially
identical values [21].

Ratios of spectra from minimum-bias p + p collisions to
those from Au + Au collisions are plotted in Fig. 3. For the
filled points, the denominator is the most central Au + Au
collisions, while the open points represent the ratio when the
denominator is from peripheral (60–70% centrality) Au + Au
collisions. Pions, kaons, and protons are distinguished by
different symbol shapes.

The curves show the function given in Eq. (6) for the
kinematic scales given in Table IV. From the table it is clear
that all curves in Fig. 3 are generated with the same kinematic
variables 〈p2

T 〉, 〈E2〉, and 〈E〉; only the relevant multiplicity
changes.

We do not quote uncertainties on the kinematic or multi-
plicity parameters, as the fitting space is complex, with large
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FIG. 3. (Color online) Ratio of the pT distribution from
minimum-bias p + p collisions to the distribution from 0–5% (filled
data points) and 60–70% (open data points) highest multiplicity
Au + Au collisions; c.f. Fig. 1. The ratio of the kaon spectra from
p + p and 0–5% Au + Au collisions (solid squares) has been scaled
by a factor 1.7 for clarity. Curves represent a calculation of this ratio
(ratio of EMCIC factors) using Eq. (6).

correlations between them. Furthermore, it is clear that the
calculated curves do not perfectly reproduce the measured
ratios. However, it is also clear that “reasonable” values of
multiplicity and energy-momentum scales go a long way
toward explaining the multiplicity evolution of the spectra,
even keeping physics (parent distribution) fixed. Our postulate
of Sec. II B seems to contain a good deal of truth.

Another way to view the same results is useful. While the
curves shown in Fig. 3 only approximately describe the data
shown there, one may approximately “correct” the measured
mT distributions to account for EMCICs. This is shown in
Fig. 4, where the measured mininum-bias p + p and central
and midperipheral Au + Au spectra have been copied from the
full points of Fig. 1 and are shown as full points. The open red
triangles represent the minimum-bias p + p spectra, divided
by Eq. (6), with the parameters from Table IV. This “EMCIC-
corrected” spectrum is then scaled up to show comparison with
the spectra from central Au + Au (open red circles); the level
of (dis)agreement is identical to that between the lower data
points and curves in Fig. 3.

Spectra from the mid-central Au + Au collisions have been
likewise “corrected”. The open squares in Fig. 4 may be com-
pared with the open circles; again the level of (dis)agreement
is equivalent to that between the upper data points and curves
in Fig. 3.

Spectra themselves contain more information than two-
parameter fits to spectra. However, much has been made of
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TABLE IV. Multiplicity and parent-distribution kinematic parameters that give a
reasonable description of the spectrum ratios for identified particles in the soft sector.
See text for details. Note that the multiplicity changes with event class; the parent
distribution is assumed identical.

Event selection N 〈p2
T 〉 [(GeV/c)2] 〈E2〉 (GeV2) 〈E〉 (GeV)

p + p min-bias 10.3 0.12 0.43 0.61
Au + Au 70–80% 15.2 ” ” ”
Au + Au 60–70% 18.3 ” ” ”
Au + Au 50–60% 27.3 ” ” ”
Au + Au 40–50% 38.7 ” ” ”
Au + Au 30–40% 67.6 ” ” ”
Au + Au 20–30% 219 ” ” ”
Au + Au 10–20% >300 ” ” ”
Au + Au 5–10% >300 ” ” ”
Au + Au 0–5% >300 ” ” ”

blast-wave fits to measured pT spectra, which suggest a much
larger flow in central Au + Au collisions, relative to p + p

collisions. Thus, it may be instructive to see how EMCICs
affect these parameters. In Fig. 5, the pT distributions for
p + p collisions and the six lowest multiplicity selections on
Au + Au collisions are shown. Blast-wave fits to the measured
spectra, resulting in the parameters shown by red triangles
in Fig. 2 are shown as curves. On the linear scale of the
figure, some deviation between the fit and data, particularly
at the lowest pT for the light particle, is seen. This has been
observed previously in blast-wave fits and may be due to

resonances [19,46]. Nevertheless, the fits to measured data
are reasonable overall, and for simplicity, we do not exclude
these bins.

Also shown in Fig. 5 are the EMCIC-corrected spectra,
as discussed above. As already seen in Fig. 4, these differ
from the measured spectra mostly for low-multiplicity
collisions and for the heavier emitted particles. Blast-wave
fits to these spectra are also shown. Especially for the
very lowest multiplicity collisions, these fits are less
satisfactory than those to the measured spectra; the par-
ent distributions extracted via our approximate EMCIC
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FIG. 4. (Color online) Transverse mass distributions of pions, kaons, and antiprotons for minimum-bias p + p collisions and 60–70% and
0–5% highest multiplicity Au + Au collisions at

√
sNN = 200 GeV. Filled data points are the same as in Fig. 1. Open triangles represent the

p + p spectra divided by the lower curves shown in Fig. 3. Open circles are the same spectra as the open triangles, except scaled up to compare
with the spectra from the Au + Au collisions. Open squares represent the spectra from 60–70% highest multiplicity Au + Au events, divided
by the ratio of upper and lower curves shown in Fig. 3. See text for details.
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FIG. 5. (Color online) dN/dp2
T spectra for pions (left), kaons (center), and protons (right) are plotted on a linear scale, as a function of

event multiplicity. Topmost panels show spectra for minimum-bias p + p collisions, and the spectra for the six lowest multiplicity selections
of Au + Au collisions are shown in the lower panels. Filled symbols are the measured data, while open symbols are the “EMCIC-corrected”
distributions, discussed in the text. (For pions, these distributions overlap almost completely.) Blast-wave fits are indicated by the curves. For
the EMCIC-corrected spectra, two fits are performed to estimate systematic errors: a fit to all data points (solid line) and a fit that ignores proton
yields above pT = 0.8 GeV/c (dashed line).

correction procedure follow the blast-wave shape only ap-
proximately. Much of the deviation is at pT ∼ 0.9 GeV/c for
protons from the lowest multiplicity collisions (upper-right
panels). This is the region around which the approximations
used in deriving the EMCIC correction should start to
break down, as discussed in Appendix B. So, two fits are
performed: one including all data points shown (blue squares in
Fig. 2), and the other excluding proton spectra points with
pT > 0.8 GeV/c. The resulting range of blast-wave parameters
is indicated by the shaded region in Fig. 2. There, statis-
tical errors on the fit parameters have been multiplied by√

χ2/d.o.f. (ranging from ∼2 for spectra from p + p colli-

sions to ∼1 for those from midperipheral and central Au + Au
collisions) and added to both ends of the range. Thus,
the shaded region should represent a conservative estimate
of blast-wave temperature and flow strengths to the parent
distributions.

In summary, to the extent that the curves in Fig. 3 describe
the ratios shown there—which they do in sign, magnitude, and
mass dependence but only approximately in shape—the data
are consistent with a common parent distribution for spectra
from all collisions. The residual deviation seen in Fig. 3 is
observed again in different forms in Figs. 4 and 2. The upshot
is that EMCICs may dominate the multiplicity evolution of the
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FIG. 6. (Color online) Transverse momentum spectra of uniden-
tified negative hadrons from p + p collisions at

√
sNN = 200 GeV

by the STAR Collaboration [23]. The lowest (highest) dataset
corresponds to the lowest (highest) multiplicity collisions. The solid
line is intended only to guide the eye and show the shape of the
spectrum for the highest multiplicity selection. It is rescaled and
redrawn as a dashed lines below to emphasize the multiplicity
evolution of the spectrum shape.

spectra in the soft sector at RHIC. Extracting physics messages
from the changing spectra, while ignoring kinematic effects of
the same order as the observed changes themselves, seems
unjustified.

In particular, the STAR Collaboration [21] and others [19]
have fitted the spectra with blast-wave distributions, which
ignore EMCIC effects. Based on these fits, they concluded
that the difference in spectral shapes between high- and
low-multiplicity collisions was due to much lower flow in the
latter; c.f. Fig. 2. Recently, Tang et al. [47] arrived to the same
conclusion, using a modified blast-wave fit based on Tsallis
statistics. This requires introduction of an extra parameter
q intended to account for system fluctuation effects [48].
However, contrary to the claims in the Tang paper, the Tsallis
distribution, with or without q, does not account for energy
and momentum conservation [49]; EMCIC effects would need
to be added on top of the Tsallis statistics [49]. Therefore,
conclusions about flow in low-multiplicity collisions based on
these fits are suspect.

An independent measurement of flow would help clarify
this issue. Two-particle femtoscopy (HBT) is a sensitive probe
of collective motion [50] and has been measured in p + p

collisions at RHIC [51]. Any scenario should be able to
describe simultaneously both the spectral shapes and the mT

dependence of the femtoscopic scales. A study of this topic is
underway.

B. Soft sector: Unidentified particles in multiplicity-selected
p + p collisions

While minimum-bias p + p collisions are the natural
“reference” when studying Au + Au collisions, the STAR
experiment has also measured pT spectra from multiplicity-
selected p + p collisions [23]. These are reproduced in
Fig. 6, in which the lowest multiplicity collisions are shown
on the bottom and the highest at the top. Numerical labels to
the right of the spectra are included just for ease of reference
here.

The solid curve is a power-law fit to the highest multiplicity
spectrum (#10), just for reference. This curve is scaled
and replotted as dashed lines to make clear the multiplicity
evolution of the spectra. Concentrating on the soft sector for
the moment, we perform the same exercise as above, to see
to what extent this multiplicity evolution can be attributed to
EMCICs.

In Fig. 7 are shown three ratios of spectra, in which
the second-highest multiplicity spectrum (#9) is used as the
denominator, to avoid statistical fluctuations associated with
the highest multiplicity spectrum. Also shown are curves,
using Eq. (6) with the energy-momentum scales given in
Table V.

The spectra reported by STAR are for unidentified negative
hadrons. In calculating these curves, we assumed that all
particles were pions. This matters, since the energy terms
in Eq. (6) require the particle mass. We expect the energy-
momentum scales listed in Table V to be affected by this
simplistic assumption. To do better, particle-identified spectra
from multiplicity-selected p + p collisions would be required.
Given this and the only semiquantitative agreement between
the calculations and measured ratios shown in Fig. 7, we
conclude only that the EMCIC contribution to the multiplicity
evolution of low-pT spectra in p + p collisions is at least of
the same order as the observed effect itself.
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FIG. 7. (Color online) Ratio of the pT spectra shown by full points
in Fig. 6. Spectra for the lowest multiplicity (triangles), fifth-lowest
(circles), and seventh-lowest (squares) multiplicity collisions are
divided by the spectrum for the second-highest multiplicity collisions.
Curves represent a calculation of this ratio (ratio of EMCIC factors)
using Eq. (6); see text for details.
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TABLE V. Multiplicity and parent-distribution kinematic para-
meters that give a reasonable description of the spectrum ratios for
unidentified particles in the soft sector from multiplicity-selected
p + p collisions. See text for details. Note that the multiplicity
changes with event class; the parent distribution is assumed identical.

Multiplicity
cut

N 〈p2
T 〉

[(GeV/c)2]
〈E2〉

(GeV2)
〈E〉

(GeV)

# 1 6.7 0.31 0.90 0.84
# 4 11.1 ” ” ”
# 7 24.2 ” ” ”
# 9 35.1 ” ” ”

C. Segue: From the soft to the hard sector

Figure 3 shows the central result of this paper, namely, that
the multiplicity evolution of the mass and pT dependence of
single-particle spectra in the soft sector may be understood
almost entirely in terms of phase-space restriction with
decreasing event multiplicity.

Plotted in that figure is the ratio of spectra from low-
multiplicity events over spectra from high-multiplicity events.
Experimental studies sometimes show this ratio’s inverse,
often called RAA [3]. While of course the same information
is shown in both representations, we chose that of Fig. 3 for
two reasons. The first is to emphasize the effects of EMCICs,
the topic of this paper; these are, generically, to suppress the
particle yield at high energy and momentum, particularly for
low-N final states. (In multiparticle distributions, they also
generate measurable correlations [25].)

The second reason is to stress that we have been discussing
spectra in the soft sector, whereas the ratio RAA is generally
studied at high pT . At large pT , we expect that a purely
EMCIC-based explanation of the multiplicity evolution of
the spectra might break down, for two reasons. First, even
if particles of all momenta shared phase space statistically,
our approximation of Eq. (2) is expected to break down for
energies much above the average energy, as discussed in
Appendix B. Second, it is believed that the high-pT yield
has a large preequilibrium component; thus, high-pT particles
might participate less in the statistical sharing of phase space,
as discussed in Sec. II C.

As we discuss in the next section, EMCICs surely do
not dominate the multiplicity evolution of the hard sector
in heavy ion collisions. For interpreting high-pT spectra
from multiplicity-selected p + p collisions, accounting for
EMCICs may or may not be important. To make the connection
to Fig. 3, we will plot spectra from low-multiplicity collisions
over those from high-multiplicity, as well as the inverse, to
make the connection to RAA.

D. Spectra in the hard sector

The generic effect of EMCICs is to suppress particle
yields at energy and momentum far from their average
values. The effect is stronger for lower multiplicity N . It is
clear, then, that EMCICs cannot account for the multiplicity
evolution of the spectra at high pT in Au + Au collisions,
since high-multiplicity collisions are observed to have more

suppression at high pT than do low-multiplicity collisions
[3]. Thus, we conclude that our postulate fails for Au + Au
collisions at high pT ; the parent distribution describing the
underlying physics in this region does, indeed, change with
multiplicity.

But in p + p collisions, the multiplicity evolution in the
hard sector is opposite to that in Au + Au collisions. In
particular, in p + p collisions, the yield at high pT (relative to
lower pT ) is increased as multiplicity increases, as is clear from
Fig. 6; similar results have been observed in p + p collisions
at Fermilab’s Tevatron [52] and CERN’s Intersecting Storage
Rings (ISR) [53] and SppS [54]. A “hardening” of the spectrum
with increasing multiplicity goes in the same direction as
would EMCIC effects. To what extent can EMCICs account
for the multiplicity evolution of spectra from p + p collisions
in the hard sector?

Some insight into this question may be gained from
Fig. 8, in which the data and curves shown in Fig. 7
are plotted out to pT = 6 GeV/c. Clearly, the calculated
suppression function [Eq. (6)] fails dramatically at high
pT .

We recall that Eqs. (2) and (6) are based on the central
limit theorem (CLT), which naturally leads to Gaussian
distributions. As discussed in Appendix B, one expects the
breakdown of the CLT approximation in the far tails of
the distribution, e.g., when p2

T 	 〈p2
T 〉. Thus, any infer-

ences we make about EMCIC effects in the hard sector
remain qualitative. Nevertheless, the level of disagreement
between the calculations and measurements leads us to
conclude that EMCICs do not fully explain the multiplicity
evolution of pT spectra in p + p collisions in the hard
sector.

However, this in itself raises a fascinating possibility.
Figure 8 shows that relative to high-multiplicity p + p colli-
sions, the suppression of high-pT yields from low-multiplicity
collisions is not as strong as one expects from our simple
postulate. Said another way, the high-pT “enhancement” in
high-multiplicity collisions may not be as large as one expects
from phase-space considerations alone. This is emphasized in
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FIG. 8. (Color online) Same as Fig. 7, but plotted over the entire
measured pT range.
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inverse of those shown in Fig. 8.

Fig. 9, in which is plotted Rpp, the ratio of the spectrum from
high-multiplicity to lower-multiplicity collisions; Rpp is the
analog of RCP from heavy ion collisions [3].

The motivation for studying quantities like RAA and RCP

(and now Rpp) is to identify important differences between one
class of collisions and another. Presumably, one is interested in
physics effects (jet quenching, etc.), above and beyond “trivial”
energy and momentum conservation. Thus, it makes sense to
attempt to correct for EMCICs by dividing them out as we did
in Sec. III A, keeping in mind the caveats just discussed.

The result of this exercise is shown in Fig. 10, in which
the data points from Fig. 9 are divided by the curves from the
same figure, to form a new quantity R′

pp. Explicitly, the circles
in Fig. 10, which compare multiplicity selections #9 and #4,
are given by

R′(#9,#4)
pp (pT ) ≡

dn
dpT

∣∣
#9

dn
dpT

∣∣
#4

exp

[(
1

2 (N#9 − 1)
− 1

2 (N#4 − 1)

)

×
(

2p2
T〈

p2
T

〉 + (E − 〈E〉)2

〈E2〉 − 〈E〉2

)]
, (7)

where the relevant quantities from Table V are used. Again, all
particles are assumed to have pion mass. Qualitative though it
is, Fig. 10 raises the possibility that when “trivial” EMCICs are
accounted for, the high-pT yield from high-multiplicity p + p

collisions is suppressed relative to low-multiplicity collisions,
a trend in the same direction as that observed in Au + Au
collisions.

In the hard sector, our estimates are mathematically and
conceptually too simplistic to decide whether this implies jet
quenching in high-multiplicity p + p collisions. However, it is
quite clear that conservation-induced phase-space restrictions
might be sufficiently large in the hard sector, so that a high-
pT “enhancement” in high-multiplicity p + p collisions turns
into a “suppression” when these effects are accounted for.
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FIG. 10. (Color online) Rpp (c.f. Fig. 9) divided by the EMCIC
contribution to Rpp , as calculated by Eq. (7).

Extracting physics messages (e.g., about minijet production or
jet quenching) from the multiplicity evolution of p + p spectra
is a nontrivial task, in light of this potentially huge background
effect. At the very least, EMCICs should not be ignored, as
they usually are, when extracting physics messages.

IV. SUMMARY AND DISCUSSION

The study of relativistic heavy ion collisions is, by its
very nature, heavily dependent on comparative systematics.
Physical models or hypotheses are most stringently tested
when predictions for a given observable are compared with
measurements for a range of global collision conditions. Even
aside from specific models, much qualitative information
may be gleaned simply through study of the evolution of
an observable as collision conditions—quantified by global
variables—change.

Since the goal is to probe an interaction or transition
characterized by a dimensionful scale (confinement length
∼1 fm), perhaps the most important global variable is event
multiplicity, which on average reflects the size of the system
generated in the collision.

Directly measurable is the multiplicity evolution of ex-
perimental observables. This evolution is driven by (1) the
evolution of the underlying physics, which is of direct interest,
and (2) kinematic phase-space restrictions (EMCICs), which
are presumably less interesting. It may be hazardous to ignore
the latter effect and make inferences on the former, particu-
larly since phase-space restrictions have an obvious explicit
multiplicity dependence. In this study, we have quantitatively
estimated the degree to which phase-space restrictions may
affect physics inferences based on measured data.

We have focused on the multiplicity evolution of single-
particle spectra. In previous published studies, analyses that
have ignored EMCICs have inferred much from this evolution.
In particular, there have been conclusions that spectra from
central Au + Au collisions exhibit greater collective radial
flow than do those from peripheral Au + Au or p + p

collisions. Using an expression to approximately account for
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EMCIC effects, we have shown that the multiplicity evolution
of the spectra may be dominated by such effects, rather than
any change in the underlying physics.

In particular, we have tested the extreme postulate that
the driving physics, characterized by a parent distribution,
is identical for p + p collisions and Au + Au collisions of
all centralities. Since the parameters characterizing the parent
distribution and the system multiplicity N were fitted, our
test is not perfect. Some multiplicity evolution of the parent
distribution itself may exist and may not be easily separable
from EMCICs. Our point is that, with “reasonable” parameters,
much of the data systematics is readily understood in terms
of a universal parent distribution in the soft sector, and
similar high-pT yield suppression in p + p and Au + Au
collisions.

In the soft sector (pT <∼ 1 GeV/c), this postulate worked
surprisingly well. The changes in mT distributions, as the
collision multiplicity is changed, are almost entirely due to
EMCICs. “Correcting” the spectra for EMCICs, an approxi-
mate procedure along the lines of Fermi’s Golden Rule, reveals
almost universal parent distributions.

While the spectra themselves carry more information than
fits to the spectra, it was interesting to find that blast-wave fits
to the EMCIC-corrected spectra show that low-multiplicity
Au + Au collisions, and even p + p collisions, are charac-
terized by very similar flow and temperature values as for
spectra from Au + Au collisions. This contrasts strongly with
previous conclusions and assumptions about collectivity in
small systems. Blast-wave [19,21] or modified Blast-wave [47]
fits which ignore EMCICs may yield unreliable results for
low-multiplicity final states.

The same analysis of pT spectra of unidentified hadrons
from multiplicity-selected p + p collisions yielded similar
results, though the multiplicity evolution of the spectra was
only roughly explained by our postulate. This is to be expected,
for several reasons. First, our approximate expression to
account for EMCICs was based on the central limit theorem,
which begins to break down for the very small multiplicities
involved. Second, the lack of particle identification led to a
simple assumption that all particles were pions. Nevertheless,
it was clear that EMCICs can go a long way toward explaining
the multiplicity evolution of the pT spectra in the soft
sector.

EMCIC effects on momentum distributions are expected
to be large at higher pT , where a single particle may
consume much of the total available energy. However, the
approximations behind our EMCIC factor should begin to
break down at high pT . Unlike our results in the soft sector,
we would be on shaky ground to draw firm conclusions from
our studies in the hard sector. Nevertheless, we applied our
formalism to obtain a rough estimate of the magnitude of
restricted phase-space effects at high pT .

First, we immediately realized that the well-known high-
pT suppression for central Au + Au collisions cannot be
explained by EMCICs, as these effects would cause the
opposite behavior (i.e., high-pT enhancement) from what is
experimentally observed. Thus, our postulate fully breaks
down at high pT —there is a difference in the physics (parent
distribution) in the hard sector.

Turning to the multiplicity evolution of pT spectra from
p + p collisions, however, the measured effect goes in the
same direction as that expected from EMCIC effects. Still
keeping in mind the caveats behind our expression at high
momentum, we estimated that the high-pT enhancement
expected from EMCICs should be at least as large as that
observed in the data. Again, we do not conclude but suggest
that the multiplicity evolution of the parent distributions in
p + p collisions might in fact reveal a high-pT suppression for
high-multiplicity collisions, reminiscent of the effect measured
in heavy ion collisions.

V. CONCLUSIONS AND OUTLOOK

Our results suggest that the multiplicity evolution of the soft
portion of the pT spectra in collisions at RHIC is dominated
by phase-space restrictions. Effects due to actual changes
in physics (the parent distribution) are subdominant. This
suggests one of two possibilities.

First, one may take the common assumption that the physics
underlying the soft particles from A + A and p + p collisions
is quite different, say, bulk behavior versus string breaking,
respectively. In this case, our results suggest that single-particle
spectra are too insensitive to distinguish very different physics
scenarios, and physics conclusions (say, radial flow in A + A

collisions) based on them are questionable.
On the other hand, the single-particle spectra may well

reflect the underlying physics. If energy and momentum
conservation effects are taken into account, the low-pT spectra
indicate that p + p collisions display as much collective
radial flow as do Au + Au collisions. In the larger system,
this collective behavior is usually considered to arise from a
(perhaps only partially) thermalized bulk system.

The question naturally arises: isn’t it impossible for a
system as small as that created in a p + p collision to form even
a partially thermalized bulk system which develops flow? The
answer is not obvious. After all, estimates set the timescale for
complete thermalization in central Au + Au collisions below
1 fm/c [18,40], via a mechanism that may be driven more by
fluctuating color fields than by classical rescattering processes
(see Ref. [55] and references therein). Perhaps the possibility
that similar processes have sufficient time to thermalize a
system on the scale of ∼1 fm should not be dismissed out
of hand.

Indeed, in the literature one finds frequent suggestions
[53,56–60], based on single-particle spectra, that high-energy
particle collisions generate flowing bulk systems and perhaps
even quark-gluon plasma; see also the recent review by Weiner
[61]. By partially removing the obscuring effects of EMCICs,
we have more directly compared proton collisions with heavy
ion collisions (at the same energy and measured with the same
detector), for which a flow-based interpretation is generally
well accepted.

If a bulk system is created in p + p collisions, might
it quench jets as the medium does in Au + Au collisions?
This was, after all, the original proposition of Bjorken [62].
The signature of such quenching would be a suppression
of particle yields at high pT in high-multiplicity collisions,
relative to those at lower multiplicity. While our formalism is
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insufficiently reliable at high pT to draw firm quantitative
conclusions, such a suppression may possibly be present,
though obscured by EMCICs in measured spectra.

Increased focus on the relationship between large and small
systems created in ultrarelativistic collisions is called for.
Experimental programs at the CERN Large Hadron Collider
will very soon open up important avenues in this study. In
particular, the experiments will measure first p + p collisions
at record collision energies, with event multiplicities similar to
Cu + Cu or semiperipheral Au + Au collisions at RHIC. Soft
sector pT distributions will likely be among the first observa-
tions reported. Later, with identical acceptance and techniques,
the same experiments will then measure much larger systems
created in Pb + Pb collisions. The direct comparison afforded
by these data should help answer the question of whether a bulk
system created in hadronic collisions is qualitatively different
than that created in collisions between the heaviest ions, or
merely a smaller version of it.

The nature of relativistic heavy ion studies depends upon
comparison of small and large collision systems, each of which
may be driven by distinct, nontrivial physics processes. In
performing such comparisons, we must not neglect the “trivial”
effect of energy and momentum conservation, and its explicit
dependence on collision size.
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APPENDIX A: EMCIC FACTORS FOR RAPIDITY- AND
ANGLE-INTEGRATED pT DISTRIBUTIONS

Equation (2) gives the EMCIC correction factor to the triple
differential spectrum f̃ (p). Experimental measurements often
report pT distributions integrated over angle and a range of
rapidity, i.e.,

f̃c(pT ) ≡ 1

4πymax

∫ 2π

0
dφ

∫ ymax

−ymax

dyf̃c(px, py, pz, E). (A1)

In the absence of a triple-differential measurement, we
consider azimuthally symmetric distributions, and 〈p2

x〉 =
〈p2

y〉 = 〈p2
T 〉/2. At midrapidity at RHIC, it is reasonable also

to assume a boost-invariant parent distribution. In this case,
only part of the EMCIC factor remains in the rapidity integral:

f̃c(pT ) = f̃ (pT )

(
N

N − 1

)2

exp

[
−p2

T

(N − 1)
〈
p2

T

〉
]

1

2ymax

×
∫ ymax

−ymax

dy exp

[
−1

2(N − 1)

(
p2

z〈
p2

z

〉 + E2

〈E2〉 − 〈E〉2

− 2E〈E〉
〈E2〉 − 〈E〉2

+ 〈E〉2

〈E2〉 − 〈E〉2

)]
. (A2)
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FIG. 11. (Color online) EMCIC factor calculated using the
numerical averaging of Eq. (A2) and the approximation of Eq. (A3).

To arrive at a closed form for our EMCIC factor, we ap-
proximate the average of the exponential with the exponential
of the average, i.e.,

f̃c(pT ) = f̃ (pT )

(
N

N − 1

)2

×exp

[
− 1

2(N − 1)

(
2p2

T〈
p2

T

〉 + p2
z〈

p2
z

〉 + E2

〈E2〉 − 〈E〉2

− 2E〈E〉
〈E2〉 − 〈E〉2

+ 〈E〉2

〈E2〉 − 〈E〉2

)]
. (A3)

This expression is reproduced in Eq. (5).
Here, the rapidity-averaged quantities are

p2
z ≡ 1

2ymax

∫ ymax

−ymax

p2
z dy = m2

T

(
sinh(2ymax)

4ymax
− 1

2

)
, (A4)

E2 ≡ 1

2ymax

∫ ymax

−ymax

E2dy = m2
T

(
sinh(2ymax)

4ymax
+ 1

2

)
, (A5)

E ≡ 1

2ymax

∫ ymax

−ymax

E dy = mT

sinh(ymax)

ymax
. (A6)

The approximation used in going from Eq. (A2) to (A3) is
well justified for typical numerical values used in this study.
Figure 11 shows a numerical integration of the EMCIC factor
from Eq. (A2) (labeled “exact”) and Eq. (A3) (“approxima-
tion”) for values indicated in the figure.

APPENDIX B: REGION OF APPLICABILITY FOR THE
EMCIC FORMULA

The exact expression for the phase-space integral of
Eq. (1) was approximated by that in Eq. (2) through an appeal
to the central limit theorem. Discrepancies between the exact
expression and the approximate Gaussian functional form will
become more apparent in the tails of the distribution. For
example, our approximate phase-space suppression function
never vanishes, thus permitting a tiny but finite probability for
a particle to carry more energy than that of the entire system!
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In this appendix, we perform simple numerical calculations
with the GENBOD computer program [63] to estimate the range
of quantitative reliability of Eq. (2).

Given a total energy Etot, multiplicity N , and list of particle
masses, GENBOD produces phase-space-weighted events of
N four-momenta by filling Lorentz-invariant phase space
according to the Fermi distribution,

f̃ ≡ 2E
d3N

dp3
= 1

2πp

dN

dE
∝ e−E/ζ , (B1)

where ζ characterizes the slope of the energy distributions.
Since it is (1/p) × dN/dE which is exponential and not
(1/(pE)) × dN/dE, the inverse slope ζ should not be consid-
ered a “temperature,” but only a parameter characterizing the
parent distribution.

As a result, generated particles in an event are correlated
only by energy and momentum conservation. Thus, EMCIC
effects on the calculated single-particle spectrum, f̃c(p), are
given precisely according to Eq. (1).

To evaluate the region of validity of Eq. (2), we use
Eq. (B1) as a parent distribution, f̃ (p). Results of this exercise
are presented on Fig. 12, which shows energy spectra from
GENBOD events with the same average energy per particle
〈E〉c = Etot/N = 1 GeV, but different multiplicity N . As
expected, in the limit of large N, f̃c(p) → f̃ (p), and it is clear
that the plotted distribution is increasingly well described by
an exponential, as N increases.

It is appropriate here to point out why we wish to identify the
parent distribution in the first place, rather than following the
procedure outlined in Sec. II B. There, the parent distribution
cancels when taking the ratio of two measured spectra
f̃c,1/f̃c,2, using the postulate that the parent distributions f̃1

and f̃2 are identical. In contrast, the parent distributions for
the different GENBOD spectra shown in Fig. 12 are assuredly
not the same. Those spectra came from event samples having
the same 〈E〉c [c.f. Eq. (4)] and thus different〈E〉 [c.f. Eq. (3)],
implying different parents.

Having at hand a functional form for the GENBOD parent
distribution, we may test our approximate formula for the
phase-space modification factor by fitting the calculated

E [GeV]
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(1
/p

) 
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N
/d
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FIG. 12. (Color online) 1
p

dN

dE
obtained from GENBOD events

run for the same average energy (〈E〉c = 1 GeV) but different
multiplicities: N = 5, 10, 15, 20, 30, 40 pions.
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FIG. 13. (Color online) Blue points are 1
p

dN

dE
obtained from

GENBOD events run for N = 20, 〈E〉 = 1 GeV. Black solid curve
is an exponential, the assumed parent distribution; c.f. Eq. (B1).
Red dashed curve is the exponential times the EMCIC factor, as per
Eq. (B2).

spectrum according to

dNc

dE
= Ape−E/ζ

(
N

N − 1

)2

exp

[(
− 1

2(N − 1)

) (
3p2

〈p2〉

+ E2

〈E2〉 − 〈E〉2
− 2E〈E〉

〈E2〉 − 〈E〉2
+ 〈E〉2

〈E2〉 − 〈E〉2

)]
,

(B2)

where we used the fact that GENBOD generates particles
isotropically so that 〈p2

x〉 = 〈p2
y〉 = 〈p2

z 〉 = 1
3 〈p2〉. Since N

is a known quantity, and 〈E〉, 〈E2〉, and 〈p2〉 may be directly
calculated from ζ , the fit of Eq. (B2) has only two parameters:
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)ζ / exp(-E/
dE
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FIG. 14. (Color online) Blue points are 1
p

dN

dE
obtained from GEN-

BOD events run for N = 20, 〈E〉 = 1 GeV, divided by exp(−E/ζ ),
i.e., the blue points from Fig. 13 divided by the black full curve from
the same figure. Red dotted line is the EMCIC factor, i.e., the red
dotted curve from Fig. 13 divided by the black full curve from the
same figure.
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the overall normalization A, which is unimportant to us, and
ζ , which characterizes the parent distribution.

The results are shown in Fig. 13 and, for better detail, in
Fig. 14. For the case here, which is typical of that in

the data, we see that our approximation begins to break
down for particle energies E >∼ (2–3)〈E〉. Above this range,
our approximation [e.g., Eq. (6)] should only be taken
qualitatively.
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