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Crossover transition in bag-like models
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We formulate a simple model for a gas of extended hadrons at zero chemical potential by taking inspiration
from the compressible bag model. We show that a crossover transition qualitatively similar to lattice QCD can
be reproduced by such a system by including some appropriate additional dynamics. Under certain conditions,
at high temperature, the system consist of a finite number of infinitely extended bags, which occupy the entire
space. In this situation the system behaves as an ideal gas of quarks and gluons.
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I. INTRODUCTION

The phase transition of strongly interacting matter has been
intensively studied for many years. As early as the 1960s,
before the discovery of QCD, there was speculation about a
possible new phase of strongly interacting matter, based on
studies of the thermodynamics of a hadron gas. Particularly,
in the statistical bootstrap model [1], the asymptotically
exponential mass spectrum of hadrons implied the existence
of a limiting temperature of about 170 MeV (the Hagedorn
temperature) above which hadrons cannot exist.

After the discovery of QCD, and in particular asymptotic
freedom, the discussion focused on the ideas of a quark gluon
plasma (QGP), a system of weakly interacting quarks and
gluons, and a possible transition between a pion gas and a
quark gluon plasma. The physical picture for such a transition
was that at the critical temperature the additional degrees of
freedom carried by the quarks and gluons would be released
leading to a rapid increase of the entropy, energy-density, and
pressure. This was supported by first lattice QCD (LQCD)
calculations [2]. Lately, however, the hadron resonance gas
experienced a renaissance, mainly due to its successful descrip-
tion of hadron yields in heavy ions and also elementary particle
collisions [3–12]. In addition it was realized that the sharp
rise of the entropy density near the transition temperature,
as observed in lattice QCD calculations, could be accounted
for by a hadron resonance gas as well [13,14]. The success
of the hadron resonance gas below the transition temperature
Tc, however, changes the physical interpretation for the QCD
phase transition. Instead of releasing additional degrees of
freedom at Tc, the system has to reduce the number of active
degrees of freedom at the transition temperature, because a
hadron gas has many more than a quark gluon plasma. In case
of a Hagedorn exponential mass spectrum, the entropy density
actually diverges at the Hagedorn temperature.1 But even if the
number of hadrons is restricted to those needed for a successful
description of hadronic final states in heavy ion and elementary
particle collisions, the entropy quickly exceeds that observed
on the lattice.

1Actually, for given choices of the mass-spectrum parameters the
entropy is finite at the Hagedorn temperature, but it diverges at any
higher temperature.

Meanwhile many articles have addressed this issue, ranging
from QCD-based approaches (see, for example, Refs. [13,15,
16]) to various generalizations of the hadron gas [17–27]. In
this article we will study the transition region, and we will
provide a simple and intuitive modification to the hadron
gas model to qualitatively reproduce the crossover transition
observed in lattice QCD [28]. Our calculations are based on
the ideas proposed in Ref. [22], where it was shown that under
certain circumstances a gas of extended hadrons could produce
phase transitions of the first or second order and also a smooth
crossover transition that might be qualitatively similar to that
of lattice QCD.

We first observe that for the typical particle density at the
transition the size of hadrons needs to be taken into account
as it leads to a considerable suppression of the available
phase space. As a result the number of effective degrees of
freedom is reduced. This suppression alone, however, does
not explain the ideal gas behavior of lattice QCD at high
temperatures, above Tc. Additional model assumptions have
to be made. For example, one could explicitly introduce a
deconfined phase and then match the two different phases. For
this exercise to work, however, rather detailed assumptions
about the intrinsic nature of hadrons have to be made to avoid
the occurrence of an actual phase transition [16]. In this article,
we follow a different route. We adopt the philosophy that
the same partition function should describe both “phases.”
To this end we need to introduce appropriate dynamics to
model the crossover observed on the lattice. This approach
is similar in spirit to that in Ref. [22]. We find that the MIT
bag model [29] of the hadrons is well suited for our purposes,
because it embodies confined and deconfined phases from the
very beginning. Thus, we will describe hadrons as extended
bags of QGP and we will assume an infinite mass spectrum
of the Hagedorn’s type. The additional dynamics needed
to describe the transition are simply the elastic interactions
between hadrons. They give rise to a kinetic pressure that
in turn “squeezes” the bag-like hadrons. We find that the
behavior of our system depends sensitively on the choice of
parameters for the mass spectrum. One can obtain either a
real phase transition [20,22] or, as we shall show, a crossover.
In addition, in the latter case the specific parametrization for
the mass spectrum affects the microscopic structure of the
gas of “compressible” hadrons at high temperatures (T > Tc).
One finds either a high temperature phase that is populated
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by one or few infinitely large bags, consistent with the usual
picture of a QGP. Or, for a different choice of parameters, one
obtains a system of many, densely packed heavy hadrons,2

which nonetheless exhibit the thermodynamic properties of a
QGP of massless quarks and gluons.

On first sight, our approach appears to be similar to the ideas
of percolation models [31–36]. The finite size corrections to
the statistical ensemble remove all the configurations with
overlapping hadrons, resulting in large hadronic states dom-
inating the partition function. This is similar to percolation.
However, there are quite some differences in the specific
implementation. First, in our model, we do not consider
an explicit coupling between the bags as it is done in the
percolation model of Refs. [33–36]. Instead, we take the
effect of the kinetic pressure onto the bag sizes into account,
resulting in a self-consistency relation for the effective bag
pressure. This is more in the spirit of a mean-field description,
although we do not introduce an additional interaction but
simply consider the kinetic pressure. Second, in contrast to
purely geometric percolation, in our model the number of
hadrons and their sizes are not independent quantities. In a
given multihadron state, melting two or more hadrons together
(to form a bigger one) results in a different kinetic pressure
and, in turn, in the rearrangement of the sizes of all the hadrons.

Throughout this article, we will maintain a simple
schematic approach to highlight the main features of the model,
leaving a more detailed quantitative analysis and further
generalizations to future work. We will confine ourselves to
the simplest case of nonrelativistic Boltzmann particles and
we will neglect subtleties such as surface effects and van der
Waals–type residual interaction among the bags.

This article is organized as follows: in Sec. II we introduce
the main ideas of the model and derive the grand-canonical
partition function for the gas of compressible hadrons. In
Sec. III we will use the corresponding isobaric partition
function to perform a comprehensive numerical analysis. We
will study the pressure, the energy density, and the entropy
density of the system. We will further analyze particles
number, the filling fraction, and the average mass of particles
in the system.

II. THE PARTITION FUNCTION

In this section we will set up the general formalism for our
model. Let us start with the partition function Z(V,T ) of an
ideal gas of Boltzmann particles of mass m and degeneracy
g in the nonrelativistic limit. For the subsequent discussion it
is advantageous to express the partition function Z(V,T ) in
a multiplicity expansion, i.e., as a sum of partition functions
ZN (V,T ) for fixed particle numbers N :

Z(V,T ) ≡
∞∑

N=0

ZN (V,T ) ≡
∞∑

N=0

1

N !
(gV )Nφ(m,T )N, (1)

2In what follows, we will sometimes use the word hadron with its
widest meaning without distinguishing among hadronic state such as
resonances, bags, or very short living states such as clusters (see, for
example, Ref. [30]).

with

φ(m,T ) ≡ 1

(2π )3

∫
d3p exp

[
−

(
p2

2mT
+ m

T

)]

= exp
[
−m

T

](
mT

2π

)3/2

. (2)

Here V and T are the volume and the temperature of the
system, respectively. The function Z is the grand-canonical
partition function with vanishing chemical potentials. In the
context of this article we shall refer to ZN as the canonical
partition function keeping in mind that this notation deviates
from the conventions for relativistic hadron gases, where the
canonical ensemble has fixed Abelian charges (such as electric
charge, strangeness, baryon number), but no constraints on the
number of particles. Equation (1) can be easily generalized to
a multispecies gas of particles. If we label with j = 1, . . . , K

the various particle species we have:

Z(V,T ) =
K∏

j=1

⎡⎣ ∞∑
Nj =0

1

Nj !

(
gjV

)Nj
φ(mj,T )Nj

⎤⎦

= exp

⎡⎣V

K∑
j=1

gjφ(mj,T )

⎤⎦. (3)

In case of K → ∞, it is convenient to replace the discrete
index j with a continuous spectrum density ρ(m) so that the
number of species in the mass interval [m,m + dm] is given
by ρ(m)dm. Formally, we make the substitution:

∞∑
j=1

gjφ(mj,T ) →
∫

dmρ(m) φ(m,T ). (4)

By expanding the exponential in Eq. (3) the partition function
can then be written as:

Z(V,T ) =
∞∑

N=0

V N

N !

[
N∏

i=1

∫ ∞

0
dmiρ(mi) φ(mi,T )

]
. (5)

Because a hadron gas, or, more precisely, a Hagedorn gas,
is characterized by an exponential mass spectrum, we set

ρ(m) = c0
em/T0

mα
, (6)

where the parameters c0 and α will be determined from
empirical data. In the case of gas-of-bags models, which also
have an exponential mass spectrum, the parameters c0 and α

will have to be determined from the underlying (dynamical)
model parameters, such as bag pressure, and so on. We note
that c0 has dimensions of [mass]α−1 and α typically ranges
from α = 0 to α ∼ 7 depending on the model. In Eq. (6),
T0 simply parametrizes the mass spectrum. In the context of
the MIT bag model, T0 can be interpreted as the effective
“temperature” inside the bag, as will be discussed in Sec. II A.
By substituting Eq. (6) in Eq. (5) we arrive at the following
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partition function for a hadron gas

Z(V,T ) =
∞∑

N=0

(
T

2π

)3N/2 (V c0)N

N !

[
N∏

i=1

∫ ∞

0
dmi m

3/2−α

i

]

× exp

[∑N
i=1 mi

T0
−

∑N
i=1 mi

T

]
. (7)

This partition function Z(V,T ) (and also ZN (V,T )) is di-
vergent for T > T0 as already pointed out by Hagedorn.
Although an upper limit in the mass spectrum ρ(m) regulates
the divergences, it will not prevent the system from having a
much higher entropy density than that observed on the lattice.

An exponential mass spectrum without any cutoff may
certainly be an oversimplification and a more realistic cal-
culation may take into account discrete states as well as
a mass spectrum that grows less than exponential above a
certain mass. However, empirically the known hadronic states
do indeed grow exponentially up to a mass of m ∼ 2 GeV.
Above that, very few states are known and it is not clear
if this is an indication of a saturating density of states
or simply the lack of experimental data on higher mass
resonances. Therefore, working with an exponential mass
spectrum without any cutoff appears to be an approximation
as good as any other. Furthermore, because we are interested
only in bulk thermodynamic quantities such as energy density
and pressure, the use of a continuous mass spectrum should be
a reasonable approximation as all these quantities represent
integrals/sums over the mass spectrum. Therefore, in this
article we will assume that the mass spectrum is of the
Hagedorn type and will discuss a dynamical scenario in
the framework of the MIT bag model, which will regulate
the partition function.

A. The regularized partition function

To develop the partition function of our model, we need to
recall some of the basic features of the MIT bag model [29].
In its simplest formulation, hadrons can be considered as bags
of partonic fields confined in a spatial region with a constant
potential energy per unit volume B, where B is commonly
referred as the bag constant or bag pressure. The total energy,
i.e., the mass m of a bag with volume Vb, is then given by [29]:

m = U + BVb, (8)

where U is the internal energy of the field inside the bag. When
its linear extension is larger than the wavelengths of the partons
(the quanta of the inner field), we can approximate the bag by
a gas of free massless particles confined to its volume [29].
For a sufficiently large Vb, the internal energy is then given by
the relation:

U = 3prVb, (9)

where pr is the pressure of the gas. For a single hadron the
stability condition requires:

pr ≡ B, (10)

which then gives

m = 4BVb. (11)

The effective temperature of the bag is related to the bag
pressure by the relation T0 ≡ kB1/4, where k is a dimensionless
constant whose value depends on the number of internal
degrees of freedom of the gas inside the bag. For large Vb,
the entropy S of a bag is the entropy of a massless gas with
internal energy U and pressure B [29], therefore,3

S = 4U

3kB1/4
≡ 4U

3T0
= m

T0
. (12)

From Eq. (12) one can derive the level density

ρ(m) ∝ eS ∝ em/T0 . (13)

Note that the generic spectrum introduced in Eq. (6) has an
additional contribution: m−α . This factor can be interpreted
as a logarithmic correction to the entropy of the bag. In
what follows, we will retain the spectrum in Eq. (6) and we
will analyze different values of α. Of course, Eq. (13) will
correspond to the case α = 0.

Once the temperature T of the gas of bags approaches
T0, the average masses and hence the volume [see Eq. (11)]
of the bags grow very fast. Therefore, the bag-like hadrons
tend to occupy more and more of the available space and,
eventually, they will overlap. To avoid multiple counting of
the phase space, configurations with overlapping bags need to
be excluded from the partition function. For a finite system
of volume V this can be achieved with an excluded volume
correction, where the total volume V is replaced by the
available volume (V − ∑N

i=1 Vi)N , where Vi is the volume
of the i-th particle. In addition the volume of all bags

∑N
i=1 Vi

should not exceed the total volume V . Following Ref. [20],
this leads to the modified N -particle phase-space integral[

N∏
i=1

V

(2π )3

∫
d3p

]
→

[
N∏

i=1

1

(2π )3

∫
d3p

](
V −

N∑
i=1

Vi

)N

�

(
V −

N∑
i=1

Vi

)
. (14)

This modified phase-space integral results in a well-defined
and finite partition function at every temperature

Z(V,T ) =
∞∑

N=0

(
T

2π

)3N/2
cN

0

N !

[
N∏

i=1

∫ ∞

0
dmi m

3/2−α

i

]

× exp

[∑N
i=1 mi

T0
−

∑N
i=1 mi

T

]

×
(

V −
N∑

i=1

Vi

)N

�

(
V −

N∑
i=1

Vi

)
. (15)

3In principle, on the left-hand side of Eq. (12) one should subtract a
constant S0 that corresponds to the entropy at U = 0. Here, this term
has been omitted as it is immaterial for our purposes.
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It can be shown that such a system of extended hadrons leads
to a constant value for the energy-density ε, in contradiction
with lattice QCD, where the energy density is found to increase
with the fourth power of the temperature, εlattice ∼ T 4. In fact,
for T → ∞, the most favorite configurations are those where
the hadrons occupy all the available space. In this case, the
energy density of the system correspond to ε = 4B, i.e., the
inner density of the hadrons [see Eq. (11)]. The underlying
reason for this behavior is that the system is not able to pick up
additional kinetic energy once the entire volume is filled with
bags, as the bags have no more room to move.

Obviously some additional dynamics needs to be included
to allow for the system to pick up more energy as the
temperature is increased. To this end we adopt the idea of
compressible bags [23]. More precisely, we will allow the
volume of the hadrons to vary under the effect of the pressure
generated by their own thermal motion in a self-consistent
way. Consequently, as the temperature and hence the pressure
increase, the bags will be compressed and acquire a higher
internal mass/energy density. We will show that the system
does not exhibit any limiting value of the energy density and,
under appropriate conditions, exhibits the desired increase of
the energy density and entropy.

To illustrate the underlying mechanism, let us consider a
gas of many hadrons. For small temperatures, T � T0, the
system is dilute (V � ∑

i=1 Vi) and behaves like a gas of
noninteracting point-particles. With increasing temperature,
the average mass, and hence the spatial extent of the hadrons,
increases and as T approaches T0 the dilute-gas approximation
seizes to be valid. The pressure exerted by the other particles
becomes sizable and its effect on the hadrons properties, such
as the size, can no longer be ignored. In other words, in
addition to the bag pressure B, every particle in the system
will feel an additional kinetic pressure pk that is generated
by the thermal motion of the other hadrons in the gas. In this
situation, the stability condition, Eq. (10), needs to be modified
by taking onto account the contribution of the kinetic pressure
pk . Microscopically, the pressure pk can be interpreted as
the consequence of elastic collisions. The effect of inelastic
collisions, which are certainly present in a hadron gas, in
our approach are accounted by the infinite mass spectrum of
hadrons without enforcing any constraint on the number of
particles N . In this way all the possible configurations with
few large hadrons or many small ones are included. This is
analogous to the hadron-resonance gas model, where a large
part of the inelastic interaction is taken into account by adding
resonances as free particles in the gas.

Neglecting any surface effect, the simplest generalization
of the stability condition, Eq. (10), is

pr = B + pk(V,T ). (16)

A pictorial illustration of the pressure balance in the last
equation is given in Fig. 1. Each hadron in the gas is
characterized by the same internal pressure pr . But instead
of being a constant (as in the case of a single hadron in the
vacuum where pr ≡ B), pr now depends on T and V and must
be evaluated in a self-consistent fashion from the partition
function itself.

FIG. 1. Pictorial representation of the pressure balance in a gas of
compressible hadrons. The internal hadron pressure must be equal to
the sum of the constant bag pressure B plus the pressure pk generated
by the thermal motion of the hadrons themselves.

It is clear that the number of hadrons, their sizes, and the
kinetic pressure are all connected by the above self-consistency
relation. Accordingly, as we have already pointed out, if we
split or combine two or more hadrons, the pressure, and thus
the volume of all the hadrons in the system, changes. This new
state corresponds to a distinct state of the ensemble that cannot
be obtained by a simple geometrical clustering procedure as
usually done in percolation models [31–36].

To account for this additional dynamics, we need to
generalize the partition function, Eq. (15). To this end, we
write the explicit dependence of volumes and the masses of
the bags on the pressure pr

Vi = Ui

3pr
(17)

mi = Ui + BVi = Ui

(
1 + B

3pr

)
.

We also rewrite the exponential mass spectrum, ∼emi/T0 , in
terms of the general expression for the entropy

Si = 4Ui

3kp
1/4
r

, (18)

leading to the substitution

emi/T0 → e4Ui/3kp
1/4
r . (19)

Finally, because the bag masses depend on pr , instead of
integrating on dm1 . . . dmN as in Eq. (15) we will perform
the integral over the internal energies, i.e., we substitute∫

dmi → 4

3

∫
dUi. (20)

The factor 4/3 in the previous formula ensures that we recover
the partition function, Eq. (15) in the limit of pk → 0, i.e.,
in the dilute gas limit. With the replacements in Eq. (17) to
(20), the modified grand-canonical partition function can now
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be written on the basis of Eq. (15) and reads:

Z(V,T ) =
∞∑

N=0

(
4

3

)N (
T

2π

)3N/2
cN

0

N !

×
[

N∏
i=1

∫
dUi

(
Ui + B

Ui

3pr

)3/2−α
]

× exp

{[
4

3kp
1/4
r

− 1

T

(
1 + B

3pr

)]
N∑

i=1

Ui

}

×
(

V −
N∑

i=1

Ui

3pr

)N

�

(
V −

N∑
i=1

Ui

3pr

)
. (21)

The new partition function Z(V,T ) is identical (by construc-
tion) to Eq. (15) when pr ≡ B. Conversely, for a given set
{Ui}, the effect of a finite kinetic pressure pk > 0 is to squeeze
each bag to a smaller size [see Eq. (17)], and, as a result, the
effective bag temperature Tb ≡ kp

1/4
r increases. The Eq. (21)

can be made more familiar by substituting

Ui → ηi = 4Ui/3 (22)

leading to

Z(V,T ) =
∞∑

N=0

(
T

2π

)3N/2
cN

0

N !

×
[

N∏
i=1

∫
dηi

(
3

4
ηi + B

ηi

4pr

)3/2−α
]

× exp

{[
1

kp
1/4
r

− 1

T

(
3

4
+ B

4pr

)]
N∑

i=1

ηi

}

×
(

V −
N∑

i=1

ηi

4pr

)N

�

(
V −

N∑
i=1

ηi

4pr

)
. (23)

Obviously, in the dilute gas limit, pk → 0 ηi → mi .
We further introduce a lower bound mc for the integrals

over {dηi}. This is needed because, for α > 0, the spectrum in
Eq. (6) has a pole in m = 0, resulting in a divergent partition
function for α � 5/2. Because there are no hadrons lighter than
the pion, we will set mc ≡ mπ = 0.139 GeV.

III. THE ISOBARIC PARTITION FUNCTION

Because the pressure pk is thermally generated, it must
be calculated from the partition function itself, resulting in a
self-consistency relation. This is best achieved by introducing
the isobaric partition function, which is defined as the Laplace
transform of Z(V,T ) over the variable V :

Ẑ(T ,s) ≡
∫ ∞

0
dV Z(V,T ) exp[−sV ]. (24)

The quantity sT in Eq. (24) plays the role of a constant external
pressure. Accordingly, the equilibrium condition requires

pk = sT . (25)

The integral in Eq. (24) can be solved analytically (see
Appendix A) and gives:

Ẑ(T ,s) = 1

s

∞∑
N=0

[
f (T ,s)

s

]N

= 1

s − f (T ,s)
(26)

with

f (T ,s) = c0

(
T

2π

)3/2 ∫ ∞

mc

dη

(
3

4
η + B

η

4(B + sT )

)3/2−α

× exp

[
η

k(B + sT )1/4
− η

T

]
. (27)

In the limit V → ∞ the asymptotic behavior of Z(V,T ) is
defined by the singularity of Ẑ(T ,s) with the largest real part
[20]. We have two distinct cases: α � 5/2 and α > 5/2. For
α � 5/2 the transform Ẑ(T ,s) in Eq. (26) has two kinds of
singularities: the first, s0(T ), is given by the pole of 1/[s −
f (T ,s)], i.e.,

s0(T ) = f [T , s0(T )], (28)

whose solution is the pressure of the system according to
Eq. (25). The second singularity, sf (T ), corresponds to a
divergence of the function f itself. This happens if the
exponent of the integrand of f (T ,s) in Eq. (27) vanishes, i.e.,

sf (T ) = T 3

k4
− B

T
. (29)

The situation is schematically represented by the leftmost
curve in Fig. 2. The solid line represents the function f (T ,s)
for a given temperature and the 45◦’s dashed line corresponds
to s. The intersection between the dashed and the solid line
corresponds to the solution s = s0(T ) of Eq. (28) and is
denoted by a black dot. The function f (T ,s) is a positive
function of s that goes to infinity for s = sf (T ) and tends to
zero as s → ∞. Consequently, there is always a solution for
Eq. (28) and the pole s = s0(T ) = pk(∞, T )/T corresponds
to the rightmost singularity. Thus the pressure has always a
solution. For α > 5/2 the situation is different, however. In this
case the function f has an essential discontinuity at sf (T ): it is
finite at s = sf (T ) and diverges for s < sf (T ). Because sf (T )
increases with temperature [see Eq. (29)] and f (T ,s) → 0
as s → ∞, for sufficiently large T , f [T , sf (T )] < sf (T ),
and, consequently, Eq. (28) does not have a solution. This
situation is illustrated by the rightmost curve in Fig. (2) where
f [T , sf (T )] (denoted by a X) lies below the diagonal.4 Both
these cases, have been discussed in Refs. [20,22] where the
absence of the solution s0(T ) was identified with the onset of
a phase transition. Here, we analyze in detail the case of a
crossover transition, i.e., α � 5/2.

Before we proceed, let us fix the model parameters. In what
follows, we set k = 0.68 and we keep the product

T0 ≡ kB1/4 = 0.17 GeV (30)

fixed. This yields a bag pressure B = 3.9 × 10−3 GeV4 (i.e.,
B1/4 = 250 MeV) that is a plausible value for the bag model

4Notice that this can occur only for temperatures T > kB1/4 ≡ T0

because the singularity sf (T ) < 0 for T < T0 [see Eq. (29)].
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FIG. 2. Schematic representation of two possible curves f (T ,s).
When α � 5/2 the solution of Eq. (28) always corresponds to the
rightmost singularity (denoted with the black dot), whereas for α >

5/2 the function f [T , sf (T )] is finite, and when T > T0 it can happen
that sf (T ) is the only singularity (denoted with the X). The figure is
adapted from Refs. [20,22].

parameter. The constant k has been chosen to obtain roughly
the same value for ε/T 4 as LQCD for large T (see Fig. 3). Its
value can also be estimated by counting the degrees of freedom
of a thermal system of independent quarks and gluons. Our
choice lies between the values for the lightest quark doublet
u, d (k = 0.70) and for u, d, and s quarks (k = 0.66). The
values for the remaining parameter c0 have been fixed by fitting
the shape of the actual hadron mass spectrum over the mass
range of 1–2 GeV. They are given in Table I. Of course a
different mass range or a different choice for T0 would affect
these fits. However, for our schematic considerations here, a
fine tuning of the model parameters is rather meaningless.
In the same spirit we also ignore the ∼10% deviation of the
LQCD result for ε/T 4 from the free gas (Stefan-Boltzmann)
limit [14].

In Fig. 3(a) we plot the pressure pk(∞, T )/T 4 ≡ s0(T )/T 3

evaluated with the isobaric partition function, Eq. (28). As

TABLE I. Standard values of the parameter c0 for different
choices of α.

α 0 1/2 1 3/2 2 5/2

c0 (GeVα−1) 0.157 0.199 0.252 0.318 0.400 0.502

one can see, the results depend on the choice of α. For
α = 0 and 1/2, the curves grow with the temperature with
larger slopes for smaller α’s. Instead, for 1 � α � 5/2, they
settle onto constant asymptotic values (as we have verified
numerically up to T ∼ 6 GeV). As α change from 1 to 5/2
the asymptotic value converges very fast to 1/k4 = 4.67 (the
Stefan-Boltzmann limit5) from above. As shown in the plot,
the curves practically coincide with the Stefan-Boltzmann
limit already for α = 2. This behavior can be understood by
inspecting the solution s0(T ) = pk(∞, T )/T for the pressure.
Because s0(T ) is always larger than sf (T ), we have

pk(∞, T ) >
T 4

k4
− B (31)

and for T → ∞
pk(∞, T )

T 4
>∼

1

k4
. (32)

The pressure pk(∞, T ) converges to T 4/k4 only for suffi-
ciently large values of α, when the solutions s0(T ) and sf (T )
get closer and closer as T → ∞.6

5In the situation where the system is completely filled by the inner
hadrons matter (i.e., the free massless gas), the relation between
pressure and temperature is p = (T/k)4. Accordingly, the energy
density is given by ε = 3p = 3(T/k)4.

6Actually, because pk = s0(T )T , to obtain the pressure of an ideal
gas the difference [s0(T ) − sf (T )] must decrease faster than 1/T .
For the ratio pk/T 4 it is sufficient that the difference [s0(T ) − sf (T )]
grows slower than T 3.
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FIG. 3. (Color online) (a) The ratio pk(∞, T )/T 4 calculated with the isobaric partition function for various values of α. Above T0, the
curves at α = 2.0 and α = 2.5 are practically coincident. (b) The corresponding value of ε/T 4.

034905-6



CROSSOVER TRANSITION IN BAG-LIKE MODELS PHYSICAL REVIEW C 79, 034905 (2009)

0

5

10

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

T (GeV)

(ε
-3

p k)
/T

4

(a)

 α=0.0
 α=0.5
 α=1.0
 α=1.5
 α=2.0
 α=2.5

T (GeV)

s/
T

3

(b)

SB

0

10

20

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

FIG. 4. (Color online) (a) The ratio (ε − 3pk)/T 4. (b) The ratio s/T 3, where s is the entropy density.

In Fig. 3(b), we plot the ratio ε/T 4, where ε has been
evaluated numerically by using the relation:

ε = T
∂pk

∂T
− pk. (33)

Again this quantity converges to a finite asymptotic limit only
for 1 � α � 5/2 and, as before, coincides with the massless gas
limit 3/k4 ∼ 14 for α = 2 and α = 5/2. The overall behavior
is roughly the same as LQCD except for a small “horn” right
above T0. A closer look reveals that this is due to the constant
bag pressure B that produces a contribution ∼B to the energy
density of the system. Being a constant term its contribution
to ε/T 4 becomes negligible at high temperatures.

In Fig. 4(a), the ratio (ε − 3pk)/T 4 is plotted up to
T = 0.6 GeV. This quantity corresponds to the trace of the
energy-momentum tensor �µµ(T )/T 4, which is actually the
fundamental quantity calculated in LQCD [14]. In Fig. 4(b),
we plot the ratio s/T 3 ≡ (ε + pk)/T 4, where s is the entropy
density. Again, for α = 0 and 1/2, the curves do not converge
to a constant value, as expected from the previous results for
ε and pk .

In our scheme, the pressure pk (and thus the energy density
and the entropy) exceeds the corresponding Stefan-Boltzmann
limit, except for α = 2 and 5/2 where it converges to it. To
obtain a lower pressure (at least at finite temperatures) one
needs to further reduce the effective degrees of freedom of
the system. This could be possibly achieved by introducing
a surface energy term. In addition to the fact that part of the
energy of the system would be spent to create the bags surface,
such a contribution would favor spherically shaped bags,
resulting in a further suppression of the accessible phase space.
Probably, a similar effect could be also obtained, including
some residual repulsive interaction of the van der Waals type.

We stress that the general behavior of our model for the
pressure, energy, and entropy density cannot be obtained by
simply introducing an upper mass cutoff on the exponential
spectrum in Eq. (7): the entropy density would considerably
exceed that obtained from LQCD even if we kept only masses
up to 2 GeV. In addition, the system would reach the massless
gas limit only at temperatures much higher than the cutoff

itself. However, in our model it is absolutely essential to
assume an infinite mass spectrum. Otherwise the flat behavior
in Fig. (3) and on Fig. 4(b) would be spoiled and all these
quantities would decrease with the temperature.

It is also interesting to plot the average bag effective
“temperature” Tb ≡ k(pk + B)1/4. As shown in Fig. 5, for
α = 2 and α = 5/2 this converges to T very quickly above
T0. For α = 3/2 or smaller the effective bag temperature is
always larger than the system temperature. This fact is a direct
consequence of the inequality in Eq. (31) that gives

Tb = k(pk + B)1/4 > T. (34)

Notice also that in the region T < T0, Tb ≈− T0 for any value
of α. In other words, the pressure pk is negligible with respect
to B and the system behaves as a standard hadron gas. It
is worth mentioning that in our framework the compressible
hadrons can exchange energy only through a mechanical work
(compression). They are, therefore, thermally insulated from
the rest of the system and the bag temperature, as well as the
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FIG. 5. (Color online) The average effective bag temperature. The
45◦’s straight line corresponds to the system temperature T .
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FIG. 6. (Color online) (a) Average number of particles per unit volume. (b) The filling fraction (f.f.). The horizontal line f.f. = 1 has
been drawn for reference.

entropy, must be understood as quantities that measure the
degeneracy of the hadronic states.

Finally, for 1 � α � 5/2, our model seems to produce a
smooth crossover transition toward a new regime whose
features are very similar to those of a gas of massless particles,
even though no deconfined states are included in the partition
function. To better understand this behavior it is useful to study
the particles density 〈n〉 ≡ 〈N〉/V [Fig. 6(a)] and the filling
fraction (f.f.) [Fig. 6(b)] that is defined as:

f.f. ≡ 〈Vhadrons〉
V

, (35)

where 〈Vhadrons〉 is the average volume occupied by the hadrons
(for a rigorous definition and formula see Appendix B). The
particles density can be calculated from the isobaric partition
function by introducing a fictitious fugacity λ (to be set to
1 afterward) for each particle in the system, i.e., replacing
Z(V,T ) with

Z(V,T ,λ) ≡
∞∑

N=0

λNZN (V,T ). (36)

Accordingly, the isobaric partition function in Eq. (26)
becomes

Ẑ(T ,s,λ) = 1

s − λf (T ,s)
(37)

and the corresponding solution for the pressure pk ≡
pk(∞,T ,λ). In the infinite volume limit, the particles density
can be then obtained as:

〈n〉 = lim
V →∞

1

V

∂ ln Z(V,T ,λ)

∂λ

∣∣∣∣
λ=1

= 1

T

∂pk(∞,T ,λ)

∂λ

∣∣∣∣
λ=1

, (38)

where in the last equality we have used the known relation
ln Z = pV/T . As shown in Fig. 6(a), the particles density
grows very rapidly as T approaches T0 from below. This is
qualitatively what one expects for the hadron gas, where the
average number of particles shows a monotonically growing

behavior. Conversely, for T > T0 this quantity depends very
strongly on the choice of the parameter α. For α = 0, 1/2,

and 1 we observe a change in the slope, but the curves still
grow monotonically. For α = 1.5 and 2 the particles’ density
has a local minimum at T ∼ 0.2 GeV and T ∼ 0.27 GeV,
respectively (the latter lies outside the plotted region), and then
it starts growing again with smaller slopes for larger values of
α. For α = 5/2 the local minimum has disappeared, and after
a sharp maximum at T ∼ 0.18 GeV the particles density goes
to zero. This is the effect of the finite size of hadrons, which
tends to saturate the available system volume. In fact, as shown
in Fig. 6(b), when T < T0 the filling fraction, Eq. (35), is
relatively small, whereas for higher temperatures, the system is
almost totally filled by extended particles, i.e., 〈Vhadrons〉 ∼ V .
In this scenario, the space and the phase space available is
strongly suppressed, and the system tends to be populated by
a smaller number of heavy particles. This effect is strongest
for α = 5/2 (the filling fraction converges very fast to 1) and
therefore 〈n〉 → 0. For smaller values of α this saturation effect
becomes slightly less pronounced. A closer inspection reveals
that for α < 1 the filling fraction has a maximum at very
high temperature and then decreases with a very small slope,7

whereas for α = 1 it seems to settle to a constant value f.f. ∼
0.98. The phase space, therefore, is never entirely suppressed.

The behavior of the system changes continuously by
varying α. A numerical analysis indicates that there exist a
value α0 between 2.12 and 2.13 such that, at high T , the
particles density vanishes for any α0 < α � 2.5. In this range,
the system is populated by one or few infinitely extended
hadrons that occupy the entire space, filling the system with
their inner QGP matter, which is a possible scenario for the
deconfined phase. Conversely, for 1 � α � α0, we find many,
rather heavy, “squeezed” hadrons, which nonetheless mimic
an ideal gas of massless particles. The number of particles,
however, might be affected by the introduction of a surface

7For α = 0, the rate of decrease of the filling fraction for large
temperatures is maximum but still only ∼2% going from T = 1 GeV
to T = 10 GeV.
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FIG. 7. (Color online) Average hadrons mass.

energy term in the spectrum in Eq. (6). Such a term would
result in an energy cost associated with the splitting of a large
hadron into many smaller ones and might then widen the range
of values for α that lead to 〈n〉 � 0 at temperatures above T0.

Note that, even though 〈n〉 can have a minimum or
even vanish, the entropy of the system always increases
monotonically with the temperature [see Fig. 4(b)]. This is due
to the fact that the dominant contribution (already at T ∼ T0)
comes from the bags entropies. This has been checked by using
the classical expression for a gas with 〈N〉 particles (with the
excluded volume correction) and degeneracy g:

S ∼ Sclass(〈N〉, g) = Sclass(〈N〉, g ≡ 1) + 〈N〉 ln g.

The contribution 〈N〉 ln g corresponds to the sum of the bag
entropies in Eq. (18), and it is dominant at high T . Another
interesting quantity is the average hadron mass 〈m〉, shown in
Fig. 7 that has been evaluated according to

〈m〉 = ε

〈n〉 − 3

2
T . (39)

As one can see, smaller values of α correspond to higher 〈m〉
at low temperature, whereas the situation is reversed at high
T . This follows from Eq. (39) as a direct consequence of the
behavior of 〈n〉 [Fig. 6(a)]. For α = 5/2 the average mass
〈m〉 grows with the temperature with the maximum slope and
diverges when 〈n〉 → 0, i.e., when the system is populated by
a finite number of infinite “hadrons.”

In the vicinity of the transition region 〈m〉 varies from
4.34 GeV (for α = 0) to 0.75 GeV (for α = 5/2) at T =
0.16 GeV and from 5.70 GeV to 1.08 at T = 0.17 GeV
for α = 0 and 5/2, respectively. These values will somewhat
depend on the choice of the model parameters. They would
depend even more on an eventual upper mass cutoff. In fact,
the high value of 〈m〉 for α = 0 results from our assumption
of an infinite mass spectrum and already at T = 0.16 GeV it
falls outside the region of the known hadrons. Our estimates
are, however, lower than what one obtains for an exponential
spectrum of pointlike hadrons as in Eq. (7). In such a case, for

α = 0 the average mass is 〈m〉 = 6.80 GeV at T = 0.16 GeV
and infinity at T = T0 = 0.17 GeV (the partition function itself
is divergent). A mass cut-off at 2.0 GeV would reduce these
numbers to 〈m〉 = 1.36 GeV and 〈m〉 = 1.43 GeV at T =
0.16 GeV and T = 0.17 GeV, respectively.

A. Consistency check

As a final remark, we want to discuss the consistency of the
model. To check this point we must make sure that quantities
such as the energy density [that we have evaluated from the
pressure by using Eq. (33)] correspond to a thermal average of
the form

ε = 1

V

∑
states Estatee

−Estate/T∑
states e−Estate/T

. (40)

A first hint in this direction, is given, a posteriori, by the results
shown in this section, particularly, by quantities such as the
filling fraction. The f.f. has been evaluated by making use of
the relation in Eq. (39) (see Appendix B) that implicitly relies
on a form like Eq. (40) for the energy density. Indeed, a wrong
thermodynamical interpretation of ε would likely have lead to
dramatic consequences on the filling fraction, which contrarily
assumes only physical values in the interval [0, 1]. However,
to make a more direct test, we will provide an approximate
expression for the grand-canonical partition function and we
will compare ε in Fig. 3(b) with its corresponding value
obtained as in Eq. (40). This can be done for the case α = 3/2.
For this particular value of α the multiple integrals over {dηi}
in Eq. (23) can be reduced to an unidimensional integral (see
Appendix C) that greatly facilitates the numerical treatment.
Although, as demonstrated in this section, results do depend
on the choice of α, for the range of 0 � α � 5/2, one can hope
that the following arguments will be still valid.

Using α = 3/2 in Eq. (23) we get for the partition function

Z(V,T ) =
∞∑

N=0

ZN (V,T ) (41)

with

ZN (V,T ) =
[
c0

(
T

2π

)3/2
]N

1

N !

[
N∏

i=1

∫ ∞

mc

dηi

]

× exp

{[
1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

)]
N∑

i=1

ηi

}

×
(

V −
N∑

i=1

ηi

4pr,N

)N

�

(
V −

N∑
i=1

ηi

4pr,N

)
.

(42)

Here we have added the suffix N to pr to indicate the
dependence of the pressure pr,N on the particle number in the
canonical ensemble. The pressure pr,N is now just a parameter
of the model. To determine its value, we need to find the
value of pr,N that maximizes the logarithm of the integrand in
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FIG. 8. (Color online) (a) Comparison between the ratio pk/T 4 evaluated with the isobaric partition function (solid line) and with the grand
canonical partition function (dashed line). (b) The same as in the left panel for the corresponding ratio ε/T 4.

Eq. (42):

� =
[

1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

)]
N∑

i=1

ηi

+N log

(
V −

N∑
i=1

ηi

4pr,N

)
, (43)

where (for the moment) we omit the � function. The above
expression depends on � ≡ ∑N

i=1 ηi . To simplify the follow-
ing derivation, we will introduce an approximation. Instead of
solving ∂�/∂pr,N = 0 for a generic set η1, . . . , ηN , we find
a solution for the most important configurations defined by
the value �̃ that maximizes the integrand. In other words, we
solve the system of equations:{

∂�

∂�
= 0

∂�
∂pr,N

= 0
. (44)

Note that the second condition ensures that ε =
T 2(∂ ln Z/∂T )/V has the form of Eq. (40) as any implicit
dependence on T of pr,N do not contribute to ∂ ln Z/∂T . In
fact, if we denote with ∂∗ ln Z/∂T the derivative performed
only on the explicit T dependence of ln Z we have

∂ ln Z

∂T
= ∂∗ ln Z

∂T
+ 1

Z

∞∑
N=0

∂ZN

∂pr,N

∂pr,N

∂T
, (45)

where the second term vanishes because of the sec-
ond condition in Eq. (44). The Eq. (44) results in (see
Appendix D):

p̃r,N = B + NT(
V − �̃

4p̃r,N

) . (46)

The interpretation of the above expression is straightforward.
Writing p̃r,N ≡ B + p̃k,N one obtains the equivalent equation:

p̃k,N ≡ NT

V − �̃
4(B+p̃k,N )

. (47)

Here, the right-hand side of Eq. (47) is simply the canonical
pressure of an ideal gas of N particles with the total volume
V replaced by the available volume (V − ∑N

i Vi). It is then
natural to identify pk,N with the kinetic pressure in the
canonical ensemble. Of course, once averaged over N and
over {ηi}, for a sufficiently large V , this pressure must coincide
with pk(∞, T ) evaluated with the isobaric partition function.
Equation (47) has the form of a self-consistency relation, as
p̃k,N appears also in the right-hand side in the excluded volume
term. Equation (47) is a quadratic form and has two solutions,
a negative and positive one, and the negative corresponds to the
situation where volume of hadrons exceeds the total volume,∑N

i=1 Vi > V . The positive solution ensures
∑N

i=1 Vi � V and
therefore the condition for the � function in Eq. (42) is always
fulfilled. In what follows, we will adopt the positive solution
of the Eq. (47) for any {η1, . . . , ηN } (not only for the most
probable set

∑N
i ηi = �̃ ) and we will integrate numerically

ZN (V,T ) in the variables {ηi}. The partition function Z(V,T )
is then evaluated by summing over the particle number N up
to a cut-off Ncut

Z(V,T ) =
Ncut∑
N=0

ZN (V,T ), (48)

where Ncut is sufficiently large to ensure the accuracy of our
calculations. Finally we test the consistency of our picture
by comparing the ratios pk/T 4 and ε/T 4 with the results
obtained with the isobaric partition function. In Fig. 8, the
ratios pk/T 4 (left panel) and ε/T 4 (right) have been evaluated
with the isobaric partition function (solid line) and with the
grand canonical partition function (dashed line) for a volume
V = 6.4 × 104 GeV−3, which is, as we checked, a good
approximation of the infinite volume limit. As one can see, in
both cases the two curves are very close, actually for the energy
density they are practically coincident. The small (expected)
difference between the isobaric and the grand-canonical result
reflects the quality of our approximation. The same test has
been also performed on the entropy density, the particles
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density, and the filling fraction. For all these quantities we
have observed an equally good agreement.

IV. CONCLUSIONS AND DISCUSSION

In this article, we have studied the crossover transition of the
gas of bags [22]. We have found that the behavior of the system
depends sensitively on the parameter α of the Hagedorn-like
mass spectrum ρ(m) = c0m

−α exp {m/T0}. The system ex-
hibits a crossover transition for 0 � α � 5/2 and an actual phase
transition for larger values. In the range 0 � α � 5/2 we made
a coarse scan of α, setting α = 0, 1/2, 1, 3/2, 2, and 5/2. For
1 � α � 5/2 the gas of bags undergoes a sharp (yet, continuous)
transition qualitatively similar to lattice QCD. In this range,
the asymptotic values of p/T 4, ε/T 4, s/T 3, coincide with the
Stefan-Boltzmann limit for α = 2 and α = 5/2, whereas they
settle to slightly larger values for α = 3/2 and 1. For α = 0 and
1/2, these quantities grow indefinitely with the temperature
with small, decreasing, slopes going from α = 0 to α = 1/2.
We have also studied the (strong) dependence of the particles
density 〈n〉 = 〈N〉/V (where V → ∞) on α. We have found
that there exist a limiting value α0 between 2.12 and 2.13 such
that for α0 < α � 5/2 the particles density vanishes at high
temperature. The system is then populated by one (or few)
infinite bag(s) that occupies the entire volume. Conversely,
for α < α0, 〈n〉 grows with the temperature. In the range
1 � α < α0, the ideal gas behavior is mimicked by a number
of heavy extended bags that saturates the phase space forming
a dense system. A pictorial representation summarizing the
various high-temperature phases of the model is given in Fig. 9.

In this work we have explored a simple, intuitive model for
a gas of hadrons in the vicinity of the transition at vanishing
baryochemical potential. To this end, we have adopted the
idea of the MIT bag model and we have described hadrons as
extended QGP bags. We have shown that, in the vicinity of T0

(which is directly related to the transition temperature of our
model), elastic interactions among hadrons play a fundamental
role. In our schematic approach, they are quantified by the
thermal pressure pk . The effect of pk is to squeeze the hadrons,
and for a certain set of model parameters, 1 � α � 5/2, the
ideal gas behavior at high temperature can be reproduced. At
the same time, the effective inner “temperature,” or, rather,
degeneracy parameter, Tb, of the bags increases with pk ,

resulting in a temperature-dependent mass spectrum. Above
T0, the physical picture of the QGP phase corresponds to a
number ∼1 of infinite bags that occupy the entire space. This
is indeed the situation for α0 < α � 5/2. A large number of
independent QGP bags (such as for α < α0) would contradict
the lattice findings of vanishing flavor-flavor correlations
[37–39]. However, to define precisely the range of values of
α that lead to a consistent QGP scenario, it is fundamental to
study the effect of a surface energy term. This contribution
disfavors configurations with a large number of particles (they
are more “expensive” in terms of surface energy) and might
reduce the number of bags in the high-temperature phase,
widening the range of possible values for α.

Future work will likely concentrate on the effect of surface
energy terms in addition to the study of van der Waals–type
residual interactions. It would be also interesting to analyze
in detail the behavior of the system at finite baryochemical
potential. This could be done starting from the formalism
developed in Ref. [24].
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APPENDIX A

By using the equations (16) and (25), the isobaric partition
function in Eq. (24) can be conveniently written as:

Ẑ(T ,s) =
∞∑

N=0

1

N !

[
N∏

i=1

∫ ∞

mc

dηi

]
hN ({ηi},T ,s)

×
∫ ∞

0
dV exp[−sV ]

(
V −

N∑
i=1

ηi

4(B + sT )

)N

�

(
V −

N∑
i=1

ηi

4(B + sT )

)
, (A1)

FIG. 9. Pictorial representation of the various high-temperature phases of the model as a function of α. The scale has been distorted for
visual reasons.
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where

hN ({ηi},T ,s) ≡
(

T

2π

)3N/2

cN
0

×
[

N∏
i=1

(
3

4
ηi + B

ηi

4(B + sT )

)3/2−α
]

× exp

{[
1

k(B + sT )1/4

− 1

T

(
3

4
+ B

4(B + sT )

)] N∑
i=1

ηi

}
. (A2)

The integral over dV can be carried out∫ ∞

0
dV exp[−sV ]

(
V −

N∑
i=1

ηi

4(B + sT )

)N

�

(
V −

N∑
i=1

ηi

4(B + sT )

)

= N !

sN+1
exp

{
−

N∑
i=1

ηi

s

4(B + sT )

}
. (A3)

and Eq. (A1) becomes:

Ẑ(T ,s) = 1

s

∞∑
N=0

[
N∏

i=1

∫ ∞

mc

dηi

]
hN ({ηi},T ,s)

sN

× exp

{
−

N∑
i=1

ηi

s

4(B + sT )

}
. (A4)

The multiple integral in the last equation can be factorized as:[
N∏

i=1

∫ ∞

mc

dηi

]
hN ({ηi},T ,s) exp

{
−

N∑
i=1

ηi

s

4(B + sT )

}
≡ f (T ,s)N. (A5)

One then obtains Eq. (26) with f (T ,s) given by Eq. (27).

APPENDIX B

By using Eq. (17), we write the average volume occupied
by hadrons as

〈Vhadrons〉 = 〈N〉〈U 〉
3pr

= 〈N〉 〈m〉
3pr + B

= 〈N〉 〈m〉
3pk + 4B

, (B1)

where we used the stability condition pr = pk + B. In turn,
the average mass 〈m〉 reads [see also Eq. (39)]:

〈m〉 = ε

〈n〉 − 3

2
T . (B2)

The filling fraction f.f. can then be expressed in terms of ε, pk

and the particles density 〈n〉 as:

f.f ≡ 〈Vhadrons〉
V

= ε − 3/2〈n〉T
3pk + 4B

. (B3)

APPENDIX C

The partition function of N particles can be reduced
to a unidimensional integral when α = 3/2 as the factor
(3/4ηi + BVi)3/2−α reduces to 1. Let us begin by making the
substitution: ηi → y2

i + mc that gives for ZN in Eq. (42):

ZN =
[

2c0

(
T

2π

)3/2
]N

1

N !

[
N∏

i=1

∫ ∞

0
dyi yi

]

×
(

V − Nmc

4pr,N

−
N∑

i=1

y2
i

4pr,N

)N

exp

{[
1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

) ] (
N∑

i=1

y2
i + Nmc

)}
. (C1)

It is now convenient to rewrite our integral by using N -
dimensional hyperspherical coordinates by setting:

y1 = r cos φ1

y2 = r sin φ1 cos φ2

y3 = r sin φ1 sin φ2 cos φ3 (C2)

...

yN = r sin φ1 sin φ2 . . . sin φN−1,

and

dNr

= rN−1 sinN−2 φ1 sinN−3 φ2 . . . sin φN−2 dr dφ1 . . . dφN−1.

(C3)

with

r2 ≡
N∑
i

y2
i . (C4)

We now note that, apart from dyi yi , the integrand in Eq. (C1)
depends only on r2. This is true also for the pressure pr,N =
B + pk,N , where pk,N is given by the equations (47) and, in
the new variables, reads:

pk,N = 1

6V
(ξ +

√
36BT NV + ξ 2), (C5)

where

ξ = 3T N + 3
4 (r2 + Nmc) − 3BV. (C6)

Eq. (C1) can now be written as:

ZN =
[

2c0

(
T

2π

)3/2
]N

1

N !

∫ ∞

0
dr rN−1

∫ π
2

0
dφ1 . . .

×
∫ π

2

0
dφN−1 sinN−2 φ1 sinN−3 φ2 . . . sin φN−2

× rN

[
N−1∏
i=1

cos φi

]
sinN−1 φ1 sinN−2 φ2 . . . sin φN−1

034905-12



CROSSOVER TRANSITION IN BAG-LIKE MODELS PHYSICAL REVIEW C 79, 034905 (2009)

×
(

V − Nmc

4pr,N

− r2

4pr,N

)N

× exp

{[
1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

)] (
r2 + Nmc

)}
.

(C7)

Next we separate Eq. (C7) into an angular integral, AN , and a
radial integral, IN , such that:

ZN =
[

2c0

(
T

2π

)3/2
]N

1

N !
ANIN, (C8)

where

AN =
∫ π

2

0
dφ1 . . .

∫ π
2

0
dφN−1 sinN−2 φ1 sinN−3 φ2 . . . sin φN−2

×
[

N−1∏
i=1

cos φi

]
sinN−1 φ1 sinN−2 φ2 . . . sin φN−1, (C9)

and

IN =
∫ ∞

0
dr r2N−1

(
V − Nmc

4pr,N

− r2

4pr,N

)N

× exp

{[
1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

)] (
r2 + Nmc

)}
.

(C10)

The angular integral AN can be solved by applying the
following recursion relation:

AN = AN−1

∫ π
2

0
dφ sin2N−3 φ cos φ = AN−1

2(N − 1)
. (C11)

yielding

AN = AN−1

2(N − 1)
= AN−2

22(N − 1)(N − 2)

= AN−3

23(N − 1)(N − 2)(N − 3)
. . . . (C12)

Accordingly, by using A2 = 1/2 one obtains:

AN = 1

2N−1(N − 1)!
. (C13)

The Eq. (C7) then reduces to:

ZN =
[

2c0

(
T

2π

)3/2
]N

1

N !

1

2N−1(N − 1)!

∫ ∞

0
dr r2N−1

×
(

V − Nmc

4pr,N

− r2

4pr,N

)N

× exp

{[
1

kp
1/4
r,N

− 1

T

(
3

4
+ B

4pr,N

)] (
r2 + Nmc

)}
.

(C14)

APPENDIX D

Performing the derivatives, the system in Eq. (44) reads⎧⎪⎪⎨⎪⎪⎩
1

kp
1/4
r,N

= N
4pr,N

1(
V − �

4pr,N

) + 1
T

(
3
4 + B

4pr,N

)
1

kp
1/4
r,N

= B
Tpr,N

+ N
pr,N

1(
V − �

4pr,N

) . (D1)

By subtracting the first equation from the second equation, one
easily obtains Eq. (46).
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