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Universality of the diffusion wake from stopped and punch-through jets in heavy-ion collisions
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We solve (3+1)-dimensional ideal hydrodynamical equations with source terms that describe punch-through
and fully stopped jets to compare their final away-side angular correlations in a static medium. For fully
stopped jets, the backreaction of the medium is described by a simple Bethe-Bloch-like model that leads to
an explosive burst of energy and momentum (Bragg peak) close to the end of the jet’s evolution through the
medium. Surprisingly enough, we find that the medium’s response and the corresponding away-side angular
correlations are largely insensitive to whether the jet punches through or stops inside the medium. This result
is also independent of whether momentum deposition is longitudinal (as generally occurs in pQCD energy loss
models) or transverse (as the Bethe-Bloch formula implies). The existence of the diffusion wake is therefore
shown to be universal to all scenarios where momentum as well as energy is deposited into the medium, which
can readily be understood in ideal hydrodynamics through vorticity conservation. The particle yield coming from
the strong forward moving diffusion wake that is formed in the wake of both punch-through and stopped jets
largely overwhelms their weak Mach cone signal after freeze-out.
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I. INTRODUCTION

One of the major discoveries found at the Relativistic Heavy
Ion Collider (RHIC) was the suppression of highly energetic
particles in central A + A collisions [1,2]. Jets are assumed
to be created in the early stage of a heavy-ion collision where
they interact with the hot and dense nuclear matter and serve as
a hard probe for the created medium [3–12]. Two- and three-
particle correlations of intermediate–p⊥ particles provide an
important test of the medium response to the details of the jet
quenching dynamics and they show a reappearance of a broad
or double-peaked structure in the away-side of jet angular
correlations [13–18].

The observation of strong elliptic flow in noncentral
Au+Au collisions consistent with fluid dynamical predictions
[19,20] suggests that a thermalized medium that evolves
hydrodynamically is created in these collisions. Moreover,
because the average momentum of particles emitted on the
away-side approaches the value of the thermalized medium
with decreasing impact parameter [15], the energy lost by the
jet should quickly thermalize. Thus, the disturbance caused by
the jet may also be described hydrodynamically.

Recent interest in Mach-like conical dijet correlations is
based on suggestions [21–26] that a measurement of the
dependence on the cone angle associated with a supersonic
jet moving with velocity v could provide via Mach’s law
(cos φM = cs/v) a constraint on the average speed of sound in
the strongly coupled quark-gluon plasma (sQGP) [27,28]. For
a quantitative comparison to RHIC data, a detailed model of
both energy and momentum deposition coupled to a relativistic
fluid model is needed [23,26,29–35].

In general, supersonic probes that shoot through a fluid can
deposit energy and momentum in the medium in such a way
that collective excitations such as Mach cones and diffusion
wakes are formed [36]. These structures have indeed been

found [37,38] in the wake of a supersonic heavy quark that
travels through an N = 4 Supersymmetric Yang-Mills (SYM)
thermal plasma [39–41]. The validity of a hydrodynamic
description of the supersonic heavy quark wake was studied in
Refs. [42–46] in the framework of the anti-de Sitter/conformal
field theory correspondence (AdS/CFT) [47,48]. The angular
correlations created by heavy quark jets in AdS/CFT have
recently been computed in Refs. [49–51] and compared [52]
to the results obtained by a punch-through heavy quark
jet described by the Neufeld et al. [53–55] chromoviscous
hydrodynamic model, which is formulated within perturbative
quantum chromodynamics (pQCD).

In general, a fast-moving parton (which could be a light
quark/gluon or a heavy quark) will lose a certain amount of
its energy and momentum along its path through the medium
and then decelerate. Thus, the fate of the parton jet strongly
depends on its initial energy: If the parton has enough energy
it can punch through the medium and fragment in the vacuum
(punch-through jet) or it can be severely quenched until it
becomes part of the thermal bath (stopped jet). Of course,
the amount of initial energy required for the parton to punch
through depends on the properties of the medium (a very large
energy loss per unit length dE/dx means that most of the
jets will be quenched while only a few would have enough
energy to leave the plasma). In this article we solve the (3+1)-
dimensional ideal hydrodynamical equations [56] with source
terms that describe the two scenarios to compare the final
away-side angular correlations produced by a punch-through
and a fully stopped jet in a static medium with background
temperature T0. We would like to point out that the wake
formed by fully stopped jets has not yet been studied using
hydrodynamics.

For simplicity, our medium is a gas of massless SU(3)
gluons in which p = e/3, where p and e are the pressure
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and the energy density, respectively. An isochronous Cooper-
Frye (CF) [57] freeze-out procedure is employed to obtain
the angular distribution of particles associated with the away-
side jet. We use a simplified Bethe-Bloch model [58] to show
that the explosive burst of energy and momentum (known as
the Bragg peak [59–62]) deposited by a fully quenched jet
immediately before it thermalizes does not stop the diffusion
wake and, thus, no new structures in the away-side of angular
correlation functions can be found. This explosive release of
energy before complete stopping is a general phenomenon that
has been employed, for instance, in applications of particle
beams for cancer therapy [63] and [64].

This article is organized as follows. In Sec. II we de-
scribe how a jet deposits energy and momentum in (3+1)-
dimensional hydrodynamics and how we extract observables
for the Mach cone created by the away-side jet. In Sec. III and
Sec. IV we present our results, respectively, for punch-through
and completely stopped jets. A summary concludes this article
in Sec. V.

We use natural units and the Minkowski metric gµν =
diag(+,−,−,−). Lorentz indices are denoted with Greek
letters µ, ν = 0, . . . , 3. In our system of coordinates, the beam
axis is aligned with the z direction and the associated jet moves
along the x direction with velocity �v = v x̂.

II. JETS IN IDEAL HYDRODYNAMICS

Energetic back-to-back jets produced in the early stages of
a heavy-ion collision transverse to the beam axis can travel
through the sQGP and deposit energy and momentum along
their path in a way that depends on the physics behind the
interaction between the jet and the underlying medium. In the
case where one of the jets is produced near the surface (trigger
jet), the other supersonic away-side jet moves through the
medium and excites a Mach wave as well as a diffusion wake.
The resulting angular correlation with respect to the away-side
jet axis is then expected to lead to an enhancement of associated
hadrons at the characteristic Mach angle [23–26,30].

In ideal hydrodynamics, the energy-momentum tensor

T µν = (e + p)uµuν − pgµν, (1)

is locally conserved, i.e.,

∂µT µν = 0, (2)

where uµ = γ (1, �v) is the flow four-velocity and γ = (1 −
�v2)−1/2. We take the net baryon density to be identically zero
in this study. Here, we only consider a static medium. More
realistic initial conditions involving an expanding medium will
be considered in a further study.

Once the jet is included in the system the conservation
equations change. We assume that the energy lost by the jet
thermalizes and gives rise to a source term Sν in the energy-
momentum conservation equations

∂µT µν = Sν. (3)

Thus, one has to solve Eq. (3) numerically to determine the
time evolution of the medium that was disturbed by the moving
jet. The source term that correctly depicts the interaction of the

jet with the sQGP is unknown from first principles, although
recent calculations in AdS/CFT [42–44] and pQCD [54] have
shed some light on this problem. Although pQCD is certainly
the correct description in the hard-momentum region where
jets are produced (Q � T0), in the soft part of the process
(Q ∼ T0) nonperturbative effects may become relevant.

In this article, we omit the near-side correlations associated
with the trigger jet and assume that the away-side jet travels
through the medium according to a source term that depends
on the jet velocity profile that shall be discussed below for the
case of punch-through and stopped jets.

The away-side jet is implemented in the beginning of the
hydrodynamical evolution at x = −4.5 fm, and its motion
is followed until it reaches x = 0. For a jet moving with a
constant velocity vjet this happens at tf = 4.5/vjet fm.

We use two different methods to obtain the away-side
angular correlations. In the CF method [57], the fluid velocity
uµ(tf , �x) and temperature T (tf , �x) fields are converted into
free particles at a freeze-out surface � at constant time tf .
In principle, one has to ensure that energy and momentum
are conserved during the freeze-out procedure [65]. How-
ever, the associated corrections are zero if the equation of
state is the same before and after the freeze-out, as it is assumed
in the present study. In this case, the momentum distribution
for associated (massless) particles pµ = [p⊥, p⊥ cos(π −
φ), p⊥ sin(π − φ)] at midrapidity y = 0 is computed via

dNass

p⊥dp⊥dydφ

∣∣∣
y=0

=
∫

�

d�µpµ[f0(uµ, pµ, T ) − feq] . (4)

Here, φ is the azimuthal angle between the emitted particle
and the trigger, p⊥ is the transverse momentum, f0 =
exp[−uµ(t, �x)pµ/T (t, �x)] the local Boltzmann equilibrium
distribution, and feq ≡ f |uµ=0,T =T0 denotes the isotropic
background yield. We checked that our results do not change
significantly if we use a Bose-Einstein distribution instead of
the Boltzmann distribution. The background temperature is set
to T0 = 0.2 GeV. Following Refs. [23,26,33,50], we perform
an isochronous freeze-out where d�µ = d3 �x(1, 0, 0, 0) and
define the angular function

CF(φ) = 1

Nmax

[
dNass(φ)

p⊥dp⊥dydφ
− dNass(0)

p⊥dp⊥dydφ

] ∣∣∣∣
y=0

, (5)

where the constant Nmax is used to normalize the plots. We
would like to remark that in the associated p⊥ range of interest
a coalescence/recombination hadronization scenario [66–70]
may be more appropriate than CF freeze-out. However, we
expect that the main features of the away-side angular corre-
lations obtained using CF hadronization are robust enough to
survive other hadronization schemes.

The other freeze-out prescription (called bulk flow freeze-
out) used in the present article was introduced in Ref. [52]. The
main assumption behind the bulk flow freeze-out is that all the
particles inside a given small subvolume of the fluid will be
emitted in the same direction as the average local energy flow

dE
dφdy

=
∫

d3 �x E(�x) δ[φ − �(�x)] δ[y − Y (�x)] . (6)

Here, φ is again the azimuthal angle between the detected
particle and the trigger jet and y is the particle rapidity. Only the
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y = 0 yield is considered. The cells are selected according to
their local azimuthal angle �(�x) = arctan[Py(�x)/Px(�x)] and
rapidity Y (�x) = Artanh[Pz(�x)/E(�x)]. The local momentum
density of the cell is T 0i(�x) = Pi(�x), whereas its local energy
density in the lab frame is E(�x) = T 00(�x). The δ functions are
implemented using a Gaussian representation as in Ref. [52].
Due to energy and momentum conservation, this quantity
should be conserved after freeze-out. Note that Eq. (6) is not
restricted to a certain p⊥ and does not include the thermal
smearing that is always present in the CF freeze-out.

III. PUNCH-THROUGH JETS

In this section we consider a jet moving with a uniform
velocity vjet = 0.999 through the medium. The source term is
given by

Sν =
∫ τf

τi

dτ
dMν

dτ
δ(4)

[
xµ − x

µ

jet(τ )
]
, (7)

where τf − τi denotes the proper time interval associated
with the jet evolution. We further assume a constant energy
and momentum loss rate dMν/dτ = (dE/dτ, d �M/dτ ) along
the trajectory of the jet x

µ

jet(τ ) = x
µ

0 + u
µ

jetτ . In noncovariant
notation, this source term has the form

Sν(t, �x) = 1

(
√

2π σ )3
exp

{
− [�x − �xjet(t)]2

2σ 2

}

×
(

dE

dt
,
dM

dt
, 0, 0

)
, (8)

where �xjet describes the location of the jet, �x is the position on
the computational grid, and σ = 0.3. The system plasma+jet
evolves according to Eq. (3) until the freeze-out time tf =
4.5/vjet fm is reached.

The temperature and flow velocity profiles created by a
punch-through jet with a constant energy loss rate of dE/dt =
1.5 GeV/fm and vanishing momentum deposition are shown
in Fig. 1(a). In Fig. 1(b) the jet has lost the same amount of
energy and momentum and in this case one can clearly see that
the space-time region close to the jet, where the temperature
disturbance is the largest, is bigger than in the pure energy
deposition scenario. The creation of a diffusion wake behind
the jet in the case of equal energy and momentum deposition is
clearly visible, which is indicated by the strong flow observed
in the forward direction (at φ = π ).

Note in Fig. 2(a) that for the punch-through jet deposition
scenario with equal energy and momentum loss one always
obtains a peak in the associated jet direction after perform-
ing the freeze-out using the two prescriptions described in
Sec. II. However, the energy flow distribution in Fig. 2(b)
displays an additional small peak at the Mach cone angle
indicated by the arrow. This Mach signal cannot be seen
in the Cooper-Frye freeze-out because of thermal smearing
[23,33,50,52] and the strong influence of the diffusion wake,
which leads to the strong peak around φ ∼ π in the bulk energy
flow distribution.

However, given that the exact form of the source term in
the sQGP is unknown, one may want to explore other energy-
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FIG. 1. (Color online) Temperature pattern and flow velocity
profile (arrows) after a hydrodynamical evolution of t = 4.5/vjet

fm, assuming (a) an energy loss rate of dE/dt = 1.5 GeV/fm for
a vanishing momentum loss rate and (b) an energy and momentum
loss rate of dE/dt = dM/dt = 1.5 GeV/fm for a punch-through
jet moving with a constant velocity of vjet = 0.999 along the x-axis
through a static background plasma with temperature T0 = 200 MeV.
The jet is sitting at the origin of the coordinates at the time of
freeze-out.

momentum deposition scenarios where the jet deposits more
energy than momentum along its path. Although this may
seem unlikely, such a situation cannot be ruled out. Thus, for
the sake of completeness, we additionally consider in Fig. 2(a)
the case where the jet source term is described by a fixed
energy loss of dE/dt = 1.5 GeV/fm and different momentum
loss rates. In the bulk flow distribution in Fig. 2(b), one can
see that the peak at the Mach cone angle is more pronounced
for smaller momentum loss, whereas the contribution of the
diffusion wake (indicated by the peak in forward direction)
is reduced. The associated particle distribution from the CF
freeze-out in Fig. 2(a) reveals a peak at φ �= π for pure energy
deposition (solid black line); however, the opening angle is
shifted to a value smaller than the Mach cone angle due to
thermal smearing [33].

In Figs. 2(c) and 2(d) we consider dM/dt = 0 jets that
move through the medium with different velocities vjet =
0.999, 0.75, and 0.58. Note in Fig. 2(d) that the peak position
changes in the bulk flow distribution according to the expected
Mach cone angles (indicated by the arrows). However, due to
the strong bow shock created by a jet moving at a slightly
supersonic velocity of vjet = 0.58, there is a strong contribution
in the forward direction in this case and the peak position is
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FIG. 2. (Color online) The left panels show
the normalized angular distribution created by
a punch-through jet at midrapidity with a fixed
energy loss of dE/dt = 1.5 GeV/fm and different
momentum loss rates. The jet moves at a constant
velocity vjet = 0.999 through the medium. The
right panels show the angular distributions asso-
ciated with jets where dE/dt = 1.5 GeV/fm and
vanishing momentum loss (dM/dt = 0). Here,
the jets move with different velocities through the
medium: vjet = 0.999 (black), vjet = 0.75 (blue),
and vjet = 0.58 (magenta). In the upper panels,
an isochronous Cooper–Frye freeze-out at p⊥ =
5 GeV is used while in the lower panels we
employed the bulk flow freeze-out procedure [52].
The arrows indicate the angle of the Mach cone
as computed via Mach’s law.

shifted from the expected value. In the CF freeze-out shown
in Fig. 2(c), the peak from the Mach cone can again be seen
for the jet moving nearly at the speed of light (vjet = 0.999),
but for slower jets thermal smearing again leads to a broad
distribution peaked in the direction of the associated jet.

It is apparently surprising that the above-mentioned results
are independent of whether the momentum deposited by
the particle is in the longitudinal (along the motion of the
jet) or transversal (perpendicular) direction. Repeating the
calculation shown in Fig. 1 including transverse-momentum
deposition

Sν(t, �x) ∝

⎡
⎢⎢⎢⎣

dE/dt

dML/dt

(dMT /dt) cos ϕ

(dMT /dt) sin ϕ

⎤
⎥⎥⎥⎦ , (9)

where ϕ is the latitude angle in the y − z plane with respect to
the jet motion and the magnitude of Sν(t, �x) is the same as
Eq. (7), shows that transverse-momentum deposition will
not alter the results presented in this section (see Fig. 3).
A longitudinal diffusion wake still forms during the fluid
evolution stage, and its contribution will still dominate the
resulting angular interparticle correlations though a peak
occurs around the expected Mach cone angle in the CF
freeze-out.

The reason is that transverse-momentum deposition will
force the fluid around the jet to expand, and the empty space
left will create a shock wave in the longitudinal direction
that behaves much like a diffusion wake. In terms of ideal
hydrodynamics, this universality of the diffusion wake can be
understood in the context of vorticity conservation because

momentum deposition, whether transverse or longitudinal,
will add vorticity to the system. This vorticity will always
end up behaving as a diffusion wake [71]. In the next section,
we demonstrate that these results are largely independent of
whether the jet is fully quenched or survives as a hard trigger.

IV. STOPPED JETS

In the previous section we considered a uniformly moving
jet that deposited energy and/or momentum in the medium
at a constant rate. However, due to its interaction with the
plasma, the jet will decelerate and its energy and/or momentum
loss will change. Thus, the deceleration roughly represents the
response of the medium. In general, a decelerating jet should
have a peak in the energy loss rate because the interaction
cross section increases as the parton’s energy decreases. In
other words, when the particle’s velocity goes to zero there
appears a peak in dE/dx known as the Bragg peak [59].
The question to be considered in this section is whether this
energy deposition scenario might be able to somehow stop
the diffusion wake and, thus, change the angular distributions
shown in Fig. 2. The source term in this case is still given by
Eq. (8) and, according to the Bethe-Bloch formalism [59–62],
one assumes that

dE(t)

dt
= a

1

vjet(t)
, (10)

which shows that when the jet decelerates the energy loss
rate increases and has a peak as vjet → 0. Note that here
dE/dt is the energy lost by the jet, which is the negative
of the energy given to the plasma. Using this ansatz for the
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FIG. 3. (Color online) (Left
panel) Temperature pattern and
flow velocity profile (arrows) after
a hydrodynamical evolution of t =
4.5/vjet fm, assuming an energy
loss rate of dE/dt = dM/dt =
1.5 GeV/fm for (a) full transverse-
momentum deposition and (b) lon-
gitudinal as well as transverse-
momentum deposition with a ra-
tio of dML/dt = 0.25 dMT /dt .
(Right panel) The normalized angu-
lar distribution created by a punch-
through jet at midrapidity for the
two above-mentioned transverse-
momentum deposition scenarios. In
the upper panel, an isochronous
Cooper-Frye freeze-out at p⊥ =
5 GeV is used while in the lower
panel the bulk flow freeze-out pro-
cedure [52] is employed. The ar-
rows indicate the ideal Mach cone
angle.

velocity dependence of the energy loss rate and the identities
dE/dt = vjet dM/dt and dM/dyjet = m cosh yjet (as well as
vjet = tanh yjet), one can rewrite Eq. (10) as

t(yjet) = m

a

[
sinh yjet − sinh y0

− arccos
1

cosh yjet
+ arccos

1

cosh y0

]
, (11)

where y0 is the jet’s initial rapidity. The equation above
can be used to determine the time-dependent velocity vjet(t).
The initial velocity is taken to be v0 = Artanhy0 = 0.999.
The mass of the moving parton is taken to be of the order
of the constituent quark mass m = 0.3 GeV. Moreover, the
initial energy loss rate a 
 −1.3607 GeV/fm is determined
by imposing that the jet stops after �x = 4.5 fm (as in the
previous section for a jet with vjet = 0.999). Thus, the jet
location as well as the energy and momentum deposition can
be calculated as a function of time via the following equations

xjet(t) = xjet(0) + m

a

[(
2 − v2

jet

)
γjet − (

2 − v2
0

)
γ0

]
,

dE

dt
= a

1

vjet
,

dM

dt
= a

1

v2
jet

, (12)

which can be used to determine the corresponding source term
for the energy-momentum conservation equations. The change
of the jet velocity vjet(t) and energy deposition dE(t)/dt are
displayed in Fig. 4. The strong increase of energy deposition
shortly before the jet is completely stopped corresponds to the
well-known Bragg peak [59].

The main difference between the ansatz described here and
the Bethe-Bloch equation is that the momentum deposition
is longitudinal (parallel to the motion of the jet) rather than

transverse (perpendicular to the motion of the jet). According
to most pQCD calculations, this is true in the limit of an
infinite energy jet [3–12], but it is expected to break down in the
vicinity of the Bragg peak where the jet energy is comparable to
the energy of a thermal particle. However, as we demonstrated
in the previous section, the freeze-out phenomenology is rather
insensitive to whether the momentum deposition is transverse
or longitudinal.

Figure 5 displays the temperature and flow velocity profiles
of a jet that stops after �x = 4.5 fm, with an energy loss
according to Eq. (10) and vanishing momentum deposition
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FIG. 4. (Color online) The jet velocity vjet(t) (solid black line)
and energy deposition rate dE(t)/dt (dashed blue line) according to
Eq. (12). The initial jet velocity and energy loss rate are vjet = 0.999
and a 
 −1.3607 GeV/fm, respectively.
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FIG. 5. (Color online) Temperature pattern and flow velocity profile (arrows) after a hydrodynamical evolution of t =
4.5 fm (left panel), t = 6.5 fm (middle panel), and t = 8.5 fm (right panel) for a jet that decelerates according to the Bethe-Bloch formula and
stops after �x = 4.5 fm. The jet’s initial velocity is vjet = 0.999. In the upper panel a vanishing momentum loss rate is assumed, whereas in
the lower panel the momentum loss is related to the energy loss by Eq. (12).

(upper panel) as well as an energy and momentum deposition
following Eq. (12) (lower panel). In the left panel the medium
decouples immediately after t = 4.5 fm when the jet is stopped
while in the middle and right panel the decoupling takes place
after t = 6.5 fm and t = 8.5 fm, respectively.

Comparing this result to Fig. 1 leads to the conclusion that
the diffusion wake is present independent of whether the jet
is quenched or survives until freeze-out. In the former case,
however, the diffusion wake is only weakly sensitive to the
duration of the subsequent evolution of the system. Within
ideal hydrodynamics this can be understood via vorticity
conservation. The vorticity-dominated diffusion wake will
always be there in the ideal fluid, whether the source of
vorticity has been quenched or not. The only way this
vorticity can disappear is via viscous dissipation. Although
a (3+1)-dimensional viscous hydrodynamic calculation is
needed to quantify the effects of this dissipation, linearized
hydrodynamics predicts that both Mach cones and diffusion
wakes are similarly affected [23,26,36].

The angular distribution associated with the decelerating
jet (which stops after �x = 4.5 fm), shown in Fig. 6, is
determined according to the two freeze-out prescriptions
described in Sec. II. When the energy and momentum loss rates
are determined by Eq. (12) (magenta line), both freeze-out
procedures display a feature discussed in the previous section
for the case of punch-through jets: the formation of a strong

diffusion wake that leads to a strong peak in the associated jet
direction. The results after the isochronous CF freeze-out are
shown in the upper panel of Fig. 6. As in Fig. 5, the medium
decouples after t = 4.5 fm (left panel), t = 6.5 fm (middle
panel), and t = 8.5 fm (right panel). Only the pure energy
deposition scenario produces a peak at an angle close to the
Mach angle [see Fig. 6(a)] that is smeared out thermally for
larger decoupling times [cf. Figs. 6(b) and 6(c)]. However,
the bulk energy flow freeze-out displayed (lower panel) shows
in all cases a peak at the Mach cone angle. Note that in this
case the peak becomes more pronounced when dM/dt = 0.
Although the Mach cone signal increases with the decay time,
the signal is still smaller than the forward yield of the diffusion
wake.

V. SUMMARY

In this article we compared the away-side angular corre-
lations at midrapidity associated with uniformly moving jets
and also decelerating jets in a static medium. In general, a
fast moving parton will lose a certain amount of its energy
and momentum along its path through the medium and thus
decelerate. Therefore, depending on its energy the jet will
either punch through the medium and fragment in the vacuum
or it will be severely quenched until it cannot be distinguished
from the other thermal partons in the plasma.
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FIG. 6. (Color online) The normalized angular distribution generated by a decelerating jet (cf. also Fig. 5) at midrapidity is shown (upper
panel) according to an isochronous Cooper-Frye freeze-out at p⊥ = 5 GeV for a jet that stops after �x = 4.5 fm and a hydrodynamical
evolution of t = 4.5 fm (left panel), t = 6.5 fm (middle panel), and t = 8.5 fm (right panel). The corresponding bulk flow pattern [52] is shown
in the lower panel. The solid black line in all plots depicts the pure energy deposition case while the dashed magenta line corresponds to the
energy and momentum deposition scenario given by Eq. (12). The arrows indicate the angle of the Mach cone as computed via Mach’s law.
The inserts repeat Figs. 2(a) and 2(b) for comparison.

Our results confirm previous studies [23,26,33] where a
similar source term [see Eq. (7)] was used to show that
the diffusion wake created by these jets leads to a single
peak in the away-side of the associated dihadron correlations
that overwhelms the weak Mach signal after isochronous
CF freeze-out unless the total amount of momentum loss
experienced by the jet is much smaller than the corresponding
energy loss. However, according to the bulk energy flow the
peak always occurs at the expected Mach cone angle but the
diffusion wake still leads to a large peak in the associated jet
direction when dM/dt �= 0 (see Fig. 2).

The same features also appear when different jet velocities
are considered. In the bulk energy flow distribution the peaks
occur nearly at about the expected Mach cone angles (for slow
velocities they are shifted due to the creation of a bow shock),
but in the CF freeze-out distribution these peaks only occur at
large jet velocities (see Fig. 2). This result is consistent with
the angular correlations obtained for a punch-through heavy
quark jet [52] described by the Neufeld et al. pQCD source
term [53–55].

The diffusion wake created behind the jet dominates the
freeze-out distribution for a jet moving through a static
medium, even in case of large transverse-momentum depo-
sition (see Fig. 3) and independent of whether the jet has
enough energy to punch through (see Fig. 1) the medium
(Fig. 5). Assuming that the jet decelerates according to the

Bethe-Bloch formalism, see Eq. (10), we checked whether
the large amount of energy deposited around the stopping
point (the well-known Bragg peak) can block the diffusion
wake and thus alter the angular correlations. However, our
results show that no significant differences occur between the
away-side angular correlations associated with punch-through
jets and decelerating jets described within the Bethe-Bloch
model (compare Figs. 2 and 6). Clearly, it would be interesting
to study other models that describe decelerating jets in strongly
coupled plasmas. However, the simple Bethe-Bloch model
used here displays the main qualitative features relevant for
the hydrodynamic wake associated with decelerating jets.
The path lengths of both types of jets were taken to be the
same. A different scenario in which the light jets are almost
immediately stopped in the medium while the heavy quark jets
are still able to punch through may lead to different angular
correlations. Such an analysis is left for a future study.

We would like to underline that the formation of a diffusion
wake that trails the supersonic jet is a generic phenomenon
[36] and, thus, its phenomenological consequences must be
investigated and not simply neglected. Our results indicate
that the diffusion wake is universal to all scenarios where
momentum as well as energy is deposited to the medium,
independent of whether the jet stops or is quenched. However,
one can expect that the strong forward-moving column of
fluid represented by the diffusion wake can be considerably
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distorted in an expanding medium by the presence of a large
radial flow. The interplay between radial flow and away-side
conical correlations in an expanding three-dimensional ideal
fluid with a realistic equation of state [72] compatible with
current lattice results [73] is currently under investigation.
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