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Effect of medium dependent binding energies on inferring the temperatures and
freeze-out density of disassembling hot nuclear matter from cluster yields
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We explore the abundance of light clusters in asymmetric nuclear matter at subsaturation density. With
increasing density, binding energies and wave functions are modified due to medium effects. The method of
Albergo, Costa, Costanzo, and Rubbino (ACCR) for determining the temperature and free nucleon density of a
disassembling hot nuclear source from fragment yields is modified to include, in addition to Coulomb effects
and flow, also effects of medium modifications of cluster properties, which become of importance when the
nuclear matter density is above 10−3 fm−3. We show how the analysis of cluster yields, to infer temperature and
nucleon densities, is modified if the shifts in binding energies of in medium clusters are included. Although, at
low densities, the temperature calculated from given yields changes only modestly if medium effects are taken
into account, larger discrepancies are observed when the nucleon densities are determined from measured yields.
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I. INTRODUCTION

Understanding of nuclear matter at extreme conditions is
one of key issues to clarify the problems in core-collapse
supernovae as well as neutron stars and heavy-ion collisions.
Altough heavy-ion reactions are often employed to explore
the nuclear matter equation of state (EOS), careful theoretical
work is needed to analyze the experimental signatures and
to reconstruct the properties of hot and dense matter from
the detected abundances and energy distributions of ejectiles
or from correlation functions between different ejectiles
produced in those reactions.

Among the interesting observables are the yield ratios
of different fragments measured in such reactions. In many
experiments one commonly observes light elements such as
neutrons (n), protons (p), deuterons (d), tritons (t), 3He (h),
and 4He (α) (see, for example, Ref. [1] and references therein).
Larger clusters, typically with mass numbers 5 � A � 20, are
also observed and the production process of these fragments
must be explained.

The decay of highly excited nuclear matter produced in
heavy-ion collisions is a complex dynamic process that needs,
in principle, a sophisticated treatment. One simple approach
is the freeze-out concept in which the hot and dense matter
in the initial stage is assumed to reach thermal equilibrium
as long as reaction rates are high. With decreasing density,
the reaction rates decrease and the equilibration process
becomes suppressed. At that time the nuclear thermal and
chemical equilibrium is frozen out. Often the description of
the nuclear matter, in particular the distribution of clusters,
is calculated within a statistical multifragmentation model
assuming nuclear statistical equilibrium (NSE) [2,3]. Under
the simplifying assumption that the final reaction product
distribution is identical to the cluster distribution at the freeze-
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out point, the thermodynamic parameters such as temperature
T and particle number densities, nn and np for neutrons and
protons, respectively, can be reconstructed from the observed
abundances. A simple method for extracting the temperature
of the fragmenting hot system was given by Albergo, Costa,
Costanzo, and Rubbino (ACCR) [4]. The method is based
on selecting double isotope (or isotone) ratios, R2, such that
the nucleon chemical potentials are eliminated, leading to a
relation among R2, T , and the binding energies of the isotopes
(isotones). This method has been used in the analysis of a large
number of experiments. See, for example, the early works of
Refs. [5–7].

However, one has to be aware that the dynamic reaction
processes do not cease abruptly, so the concept of a unique
freeze-out time is only approximate. A single freeze-out time,
independent of the species under consideration and their
dynamical state, the flow and further parameters describing
nonequilibrium effects, may not exist. In addition, secondary
(post-freeze-out) decay will modify the original distribution
that also contains excited states, and the decay products will
be found in the final distribution. We point out that in Ref. [8],
the ACCR method was modified to account for the screening
due to the Coulomb interactions among fragments in the
freeze-out volume by using the Wigner-Seitz approximation
[9]. It was found that the corrections for the temperature are
less than 20%, though for certain isotone double ratios it can
be as large as 50%. In Ref. [10] the ACCR method was
modified to account for the effect of radial collective flow.
It was found that the effect on the extracted temperature is
relatively small, but the increase in the freeze-out density
can be significant for large flow energy. It was noted in
Ref. [6] that an important improvement of the simple ACCR
method resulted from taking into account postemission decay
(secondary decay) processes of particles and, in particular, γ

that modify the freeze-out yield ratios. Without this correction,
different double ratios R2 associated with selected sets of
fragments (different thermometers) may result in significantly
different temperature T . We will not discuss these issues
further in this work; for a review see, for example, Ref. [11].
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If the freeze-out density is not very low, i.e., not at baryon
number densities nB <∼ 10−4 fm−3, the NSE will be modified
by medium effects. In this article, the shift of the binding
energies of the light elements in hot and dense nuclear matter
[12,13] is considered. The changes of the mass fractions
of different nuclei due to medium effects complicates the
determination of the temperature T and baryon number density
nB = nn + np from yields of the observed products. In the
following we show that simple NSE approaches like the ACCR
thermometer can be improved if in-medium effects are taken
into account.

II. THE YIELD THERMOMETER

Within a quantum statistical approach to nuclear matter
[12,13], using a cluster decomposition for the self-energy we
obtain expressions for the total proton density

np(T ,µp, µn) =
∑
A,Z

Zn(A,Z) (1)

and for the total neutron density

nn(T ,µp, µn) =
∑
A,Z

(A − Z)n(A,Z). (2)

Here, n(A,Z) is the contribution of the A-nucleon cluster
to the total nucleon density. Both Eqs. (1) and (2) may be
considered a nuclear matter equation of state (EOS) that
determines the nucleon densities nτ as functions of the
temperature and the neutron and proton chemical potentials,
respectively, denoted by T ,µn, and µp. Additional thermody-
namic quantities such as free energy and other thermodynamic
potentials are obtained by integration.

Starting with the ideal mixture of different species, where
the interaction between the species is neglected, the number
density of a cluster n(0)(A,Z) is given by

n(0)(A,Z) = gA,Z

∫
d3p

(2π )3
fA,Z

[
E

(0)
A,Z(p)

]
, (3)

with the (Fermi or Bose) distribution function

fA,Z(E) = 1

e
1
T

[E−Zµp−(A−Z)µn] − (−1)A
. (4)

In Eq. (3), E
(0)
A,Z(p) = E

(0)
A,Z + h̄2p2/(2Am), where, in the

noninteracting case considered here, E
(0)
A,Z is the ground-state

binding energy, gA,Z is the degeneracy factor of an isolated
nucleus with mass number A and charge number Z,m is
the average nucleon mass, and µn and µp are the chemical
potentials of neutrons and protons, respectively. Note that,
in general, excited states that are characterized by internal
quantum numbers may occur in addition to {A,Z}. In that
case, a summation over the excited states, including scattering
states, should be carried out. The number density is assumed to
be proportional to the cluster yield, observed after freeze-out.
In the nondegenerate limit we have the prediction of the cluster
yields within NSE models.

Y (0)(A,Z) ∝ n(0)(A,Z) = gA,Z

(
2πh̄2

AmT

)−3/2

× e−[E(0)
A,Z−Zµp−(A−Z)µn]/T . (5)

Inserting n(0)(A,Z) for the cluster densities n(A,Z), Eqs. (1)
and (2) read

n(0)
p (T ,µp, µn) =

∑
A,Z

Zn(0)(A,Z),

(6)
n(0)

n (T ,µp, µn) =
∑
A,Z

(A − Z)n(0)(A,Z),

for the total proton and neutron densities, respectively. They
are approximations to the nuclear matter EOS, reflecting NSE.

Let us now consider the observed cluster yields Y (A,Z) that
are proportional to the number density fractions n(A,Z)/nB

of the cluster {A,Z}. We introduce the (single) ratio of the
observed cluster yields

R(AZ),(A′Z′) = Y (A,Z)

Y (A′, Z′)
. (7)

If we accept the concept of NSE, identifying the observed
cluster yields with the predicted ones, Eq. (5), we can get an
estimation for the temperature T and the chemical potentials
µn,µp of nuclear matter produced in heavy-ion collisions
in a fashion similar to that employing the well-known Saha
equation in plasma physics [14]. Specifically, because the
abundances of different bound states are determined by the
temperature and the chemical potentials, observed yield ratios
can be used to determine these parameters. A simple method
to derive the temperature of the hot system was given by
ACCR [4], assuming NSE (5) and selecting double isotope
ratios such that the nucleon chemical potentials are eliminated.
In particular, the H-He thermometer considers the double ratio
R

(0)
HHe of cluster yields Y (0),

R
(0)
HHe = Y (0)(2H) Y (0)(4He)

Y (0)(3H) Y (0)(3He)
= 3 × 1

2 × 2

(
2 × 4

3 × 3

)3/2

× e
−[E(0)

2H
+E

(0)
4He

−E
(0)
3H

−E
(0)
3He

]/T
, (8)

where the degeneracy and mass factors are explicitly included.
Identifying the double ratio

RHHe = R(2H),(3H)

R(3He),(4He)
(9)

of the observed cluster yields for d(2H), t(3H), h(3He), and
α (4He) with the prediction according to the NSE, RHHe =
R

(0)
HHe, we deduce the ACCR temperature T

(a)
HHe[=T

(0)
HHe] corre-

sponding to the observed double ratio RHHe as

T
(a)

HHe = 14.325 MeV

ln[1.591RHHe]
. (10)

The constants 14.325 MeV = −(−2.225 − 28.3 + 8.482 +
7.718) MeV and 1.591 = 9/

√
32 reflect the ground-state

binding energies, spins, and mass numbers of the ejectiles
as given in Eq. (8).

Other combinations of isotopes can be used to construct
double ratios of cluster yields where, within a simple NSE, the
chemical potentials cancel out so that an ACCR temperature
can be derived directly. Thus, thermometers based on the
yields of other nuclei such as lithium or beryllium isotopes
can be introduced. Similar approaches are used in hadron
production to derive the temperature for the quark-gluon
plasma phase transition [15] or in plasma physics [14,16]
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considering spectral line intensities of different ionization
states of radiating atoms.

The advantage of the double ratio is that, within NSE, it
does not contain the density, because the chemical potentials
cancel. Therefore the temperature determination seems to
be insensitive with respect to the determination of other
parameters. These other parameters, in particular the chemical
potentials, are observed if, in addition to the double ratios
like RHHe, the single ratios R(AZ),(A′Z′) = Y (A,Z)/Y (A′, Z′)
of yields are considered.

There are some objections to inferring the parameter
values of hot dense matter from the cluster yields. First,
we have to take into account that collisions lead to initially
inhomogeneous system evolving in time. Even assuming
local thermal equilibrium, one has to separate the ejectiles
arising from different sources. In efforts to do this, the H-He
thermometer has been applied to the double ratio Rvsurf of
cluster yields Y (A,Z) for clusters with the same surface
velocity [1]. In that case an additional factor

√
(9/8) arises

in the temperature equation when the number densities as a
function of velocity are employed.

An important improvement of the simple NSE model was
to take into account secondary decay processes that modify the
freeze-out yield ratios. This has been considered in different
articles. This correction is essential to reduce the differences of
the ACCR temperatures obtained from different thermometers
[6].

The simple NSE is based on a chemical picture considering
a noninteracting, ideal mixture of different components,
which is in chemical equilibrium due to reactive collisions
as described by the mass action law. Such an approach is
valid in the low-density limit, and related expressions such
as virial expansions can be taken as a benchmark in that
limit [17]. With increasing density, modifications arise that
are based on taking the interactions between the different
components into account. Thus, as the density increases,
corrections to the ACCR approach to derive the temperatures
of hot and dense matter are expected. In earlier work, the
effects of the screening of the Coulomb interaction and
of the flow on the freeze-out density and temperature of
disassembling hot nuclei have been considered [10,11]. The
effect of screening of the Coulomb interaction becomes of
importance for heavy nuclei at densities near to the saturation
density.

The main topic we address in this article is the required
modification of the description of the matter as an ideal,
noninteracting mixture of different components when densities
are not low enough to justify this assumption. Despite the
fact that the nucleon-nucleon interaction is short-ranged, the
interaction between the free nucleons as well as nucleons
bound in clusters is negligible only below about 10−3 times
the nuclear saturation density, i.e., at baryonic densities nB <∼
10−4 fm−3. An important question is the role of medium
effects due to the nucleon-nucleon interactions. In fact, our
work indicates that the concept of the simple NSE considering
hot and dense nuclear matter as an ideal mixture of different
clusters is not appropriate to describe disassembling hot matter
at densities at and above approximately 1/10th of saturation
density. We address this in the following section.

III. MEDIUM MODIFICATION OF CLUSTER PROPERTIES

Recent progress in the description of clusters in low-density
nuclear matter [12,18–20] enables us to evaluate the abundance
of deuterons, tritons, and helium nuclei in a microscopic
approach, taking the influence of the medium into account.
Within a quantum statistical approach to the many-particle
system, we determine the single-particle spectral function,
which allows calculation of the density of the nucleons as
a function of T ,µn, and µp. The main ingredient is the self-
energy �(1, z) that is treated in different approximations. The
single-particle spectral function contains the single-nucleon
quasiparticle contribution, Equ(1) = E

qu
1,Z(p) or E

qu
τ (p), where

τ denotes isospin (neutron or proton). The quasiparticle
energy follows from the self-consistent solution of E

qu
τ (p) =

h̄2p2/(2mτ ) + Re�[p,E
qu
τ (p)].

Expressions for the single-nucleon quasiparticle energy
E

qu
τ (p) can be given by the Skyrme mean-field parametrization

[21] or by more sophisticated approaches such as relativistic
mean-field approaches [22] and relativistic Dirac-Brueckner
Hartree Fock [23] calculations. In the effective mass approx-
imation, the single-nucleon quasiparticle dispersion relation
reads

Equ
τ (p) = �ESE

τ (0) + h̄2

2m∗
τ

p2 + O(p4) , (11)

where the quasiparticle energies are shifted by �ESE
τ (0) and

m∗
τ denotes the effective mass of neutrons (τ = n) or protons

(τ = p). Both quantities, �ESE
τ (0) and m∗

τ , are functions of
T , np, and nn characterizing the surrounding matter. Empirical
values for the effective mass near the saturation density are
different from the nucleon mass. In the low-density region
considered here, the effective mass may be replaced by the
free nucleon mass. For calculating the yields, the quasiparticle
shift �ESE

τ (0) can be implemented in a renormalization of the
corresponding chemical potentials.

In addition to the δ-like quasiparticle contribution, the
contribution of the bound and scattering states can also be
included in the single-nucleon spectral function by analyzing
the imaginary part of �(1, z). Within a cluster decomposition,
A-nucleon T matrices appear in a many-particle approach.
These T matrices describe the propagation of the A-nucleon
cluster in nuclear matter. In this way, bound states contribute
to the EOS, nτ = nτ (T ,µn, µp), see Refs. [13,24]. In the
low-density limit, the propagation of the A-nucleon cluster
is determined by the energy eigenvalues of the corresponding
nucleus, and the simple EOS, Eqs. (1) and (2), results.

For the nuclei embedded in nuclear matter, an effective
wave equation can be derived [12,13]. The A-particle wave
function and the corresponding eigenvalues follow from
solving the in-medium Schrödinger equation

[
Equ(1) + · · · + Equ(A) − E

qu
Aν(p)

]
ψAνp(1 · · · A)

+
∑

1′ ···A′

∑
i<j

[1 − f̃ (i) − f̃ (j )]V (ij, i ′j ′)

×
∏
k �=i,j

δkk′ψAνp(1′ · · · A′) = 0 . (12)
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This equation contains the effects of the medium in the single-
nucleon quasiparticle shifts as well as in the Pauli blocking
terms.

The in-medium Fermi distribution function f̃ (1) =
{exp[Equ(1)/T − µ̃1/T ] + 1}−1 contains the effective chem-
ical potential µ̃1 that is determined by the total proton or
neutron density, calculated in the quasiparticle approximation,
nτ = 
−1 ∑

1 f̃ (1)δτ1,τ . It describes the occupation of the
phase space neglecting any correlations in the medium. In
the low-density and nondegenerate limit (µ̃τ < 0), assuming
the effective mass approximation for the nucleon quasiparticle
dispersion relation, we eliminate µ̃τ using

f̃τ (p) = 1

exp
[
E

qu
τ (p)

/
T − µ̃τ /T

] + 1

≈ nτ

2

(
2πh̄2

m∗
τ T

)3/2

e
− h̄2p2

2m∗
τ T . (13)

The solution of the in-medium Schrödinger equation (12)
can be obtained in the low-density region by perturbation
theory. In particular, the quasiparticle energy of the A-nucleon
cluster follows as

E
qu
A,Z(p) = E

(0)
A,Z + h̄2p2

2Am
+ �ESE

A,Z(p) + �EPauli
A,Z (p). (14)

Additional contributions such as the Coulomb shift �ECoul
A,Z (p),

which can be evaluated for dense matter in the Wigner-Seitz
approximation [8,9,11,25], will not be considered here because
the values of Z are small and the densities are low. The general
formalism also allows us to describe pairing or quartetting, but
this will not be done here. Disregarding the effects due to the
change of the effective mass, the self-energy contribution to
the quasiparticle shift is determined by the contribution of the
single-nucleon shift

�ESE
A,Z(0) = (A − Z)�ESE

n (0) + Z�ESE
p (0). (15)

Inserting the medium-dependent quasiparticle energies in the
distribution functions fA,Z[Equ

A,ν(p)], Eq. (4), this contribution
to the quasiparticle shift can be included by renormalizing the
chemical potentials µn and µp.

The most important effect on the calculation of the yields of
light elements comes from the Pauli blocking terms in Eq. (12)
in connection with the interaction potential. This contribution
is restricted only to the bound states so that it may lead to
the dissolution of the nuclei if the density of nuclear matter
increases. The corresponding shift �EPauli

A,Z (p) can be evaluated
in perturbation theory provided that the interaction potential
and the ground-state wave function are known. After angular
averaging, the Pauli blocking shift can be approximated as

�EPauli
A,Z (p) ≈ �EPauli

A,Z (0) e
− h̄2p2

2A2mT . (16)

The shift of the binding energy of light clusters at zero
total momentum that is of first order in density [18,19] has
been calculated recently [12]. In addition to neutrons (n)
and protons (p), light elements deuterons 2H, {A,Z} = d,
tritons 3H, {A,Z} = t , hellions 3He, {A,Z} = h, and α par-
ticles 4He, {A,Z} = α have been considered. The interaction
potential and the nucleonic wave function of the few-nucleon

system have been fitted to the binding energies and the
root-mean-square (rms) radii of the corresponding nuclei. The
following results (in MeV, fm) are obtained for the binding
energy shifts.

�EPauli
d =

{
38384(

1 + 22.52
T

)1/2 − 0.39402e0.049418(1+ 22.52
T )

× Erfc

[
0.2223

(
1 + 22.52

T

)1/2
]}

np + nn

T 3/2
,

�EPauli
t = 3389.7 [1 + 0.13347 T ]−3/2

(
2

3
np + 4

3
nn

)
,

(17)

�EPauli
h = 3901.5 [1 + 0.16455 T ]−3/2

(
4

3
np + 2

3
nn

)
,

�EPauli
α = 4716.0 [1 + 0.09372 T ]−3/2

(
np + nn

)
.

These results describe only the linear shifts as functions of
the nucleon densities. The differences between the values for
�EPauli

t and �EPauli
h are mainly caused by different values of

the rms radii for these two nuclei. With increasing density,
higher-orders terms with respect to the densities also become
relevant.

It can be shown [25] that the EOS can be evaluated as in the
noninteracting case (3) given above, except that the number
densities of clusters must be calculated with the quasiparticle
energies,

nqu(A,Z) = gA,Z

∫
d3p

(2π )3
fA,Z

[
E

qu
A,Z(p)

]
. (18)

In the cluster-quasiparticle approximation, the EOS, Eqs. (1)
and (2), reads

nqu
p (T ,µp, µn) =

∑
A,Z

Znqu(A,Z),

(19)
nqu

n (T ,µp, µn) =
∑
A,Z

(A − Z)nqu(A,Z),

for the total proton and neutron density, respectively.
This result is an improvement of the NSE and allows for the

smooth transition from the low-density limit up to the region
of saturation density. The bound-state contributions to the
EOS fade with increasing density because they merge with the
continuum of scattering states. This improved NSE, however,
does not contain the contribution of scattering states, in
particular resonances appearing in the continuum of scattering
states when bound states merge with the continuum. For the
treatment of scattering states in the two-nucleon case, as
well as the evaluation of the second virial coefficient, see
Refs. [17,24]. We will also not consider the formation of heavy
elements here. This limits the present results to the range of
parameters T , nn, and np, where the EOS is determined only
by the light elements. For a more general approach to the EOS
that takes also the contribution of heavier clusters into account
see Ref. [25].
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IV. IMPROVED THERMOMETER AND DENSITY
DETERMINATION, INCLUDING MEDIUM EFFECTS

To show the effect of in-medium corrections, we start with
a temperature T and densities nn and np and calculate the
corresponding yields Y qu(A,Z), taking the in-medium shifts
into account. Then we use these yields to infer the parameter
values T (a)[= T (0)], n(a)

n [= n(0)
n ], and n(a)

p [= n(0)
p ], using the

ACCR relations that were derived neglecting in-medium
corrections. In this way we obtain for given ratios of cluster
yields R(A,Z),(A′,Z′), Eq. (7), {T , nn, np} that we identify as the
values that would be derived from experiments if the medium
effects are considered and those {T (a), n(a)

n , n(a)
p }, derived

without taking the medium effects into account. Comparing
these sets of the parameters we demonstrate how the medium
modification of the binding energy of light nuclei, Eq. (18), can
modify the results determined from the experimental yields of
light clusters. The three ratios necessary to determine three
thermodynamic parameters are derived here from the four
yields of the light clusters Y (2H), Y (3H), Y (3He), and Y (4He).

We first compare results of the determination of the
temperature T from cluster yields, if the in-medium quasi-
particle shifts are taken into account, with the temperature
T (a) determined from the same yields if medium effects are
neglected. In particular, the temperature THHe is not related in
a simple way to the double ratio RHHe, Eq. (9). Considering
the yields in quasiparticle approximation, we have

RHHe = Y qu(2H) Y qu(4He)

Y qu(3H) Y qu(3He)
. (20)

If we take the yields Y qu(A,Z) ∝ nqu(A,Z), Eq. (18), in the
nondegenerate case, we obtain the relation

THHe = 1

ln[1.591RHHe]

(
14.325 MeV + �EPauli

d

+�EPauli
α − �EPauli

t − �EPauli
h

)
, (21)

The energy shifts are functions of temperature and densities
so this relation has to be solved self-consistently.

However, neglecting in-medium corrections, we find from
the same double ratio the apparent ACCR temperature T

(a)
HHe

according to Eq. (10). Using, in the nondegenerate case,
Eq. (5), the relation between both quantities is given by

T
(a)

HHe(T , nn, np)

=
[

1 + �EPauli
t + �EPauli

h − �EPauli
d − �EPauli

α

E
(0)
t + E

(0)
h − E

(0)
d − E

(0)
α

]−1

THHe .

(22)

In the approximations considered here, the self-energy con-
tributions to the shifts disappear, in a fashion similar to the
chemical potentials. In Fig. 1 we show the ratio between the
ACCR temperature T (a) and T as a function of the baryon
density nB = np + nn for various values of T .

Similarly, the densities can be estimated by considering
single ratios R(A,Z),(A′,Z′), Eq. (7). If the shifts of the binding
energies due to medium effects are neglected, we have

R
(a)
(A,Z),(A′,Z′)

= gA,ZA3/2

gA′,Z′A′3/2 e
−[E(0)

A,Z−E
(0)
A′ ,Z′−(Z−Z′)µ(a)

p −(A−Z−A′+Z′)µ(a)
n ]/T (a)

.

(23)

Assuming NSE and considering special combinations, we can
obtain the chemical potentials of protons (µp) and neutrons
(µn) from the triton to 4He ratio or from the 3He to 4He ratio,
respectively, as

µ(a)
p = −19.8 MeV + T (a) ln

[
33/2

22

Yα

Yt

]
, (24)

µ(a)
n = −20.6 MeV + T (a) ln

[
33/2

22

Yα

Yh

]
. (25)

10.0100.01000.0

n
B

[fm
-3

]

1

1.05

1.1

1.15

1.2

T
(a

) /T

T = 10 MeV
T = 8 MeV
T = 6 MeV
T = 4 MeV

FIG. 1. (Color online) The ratio be-
tween the ACCR temperature T (a) (no
medium effects) and T (including medium
effects) as a function of the baryon density
nB = np + nn for various values of T .
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10.0100.01000.0

n
B

[fm
-3

]

0

0.2

0.4

0.6

0.8

1

n B

(a
) /n

B

T = 10 MeV
T = 8 MeV
T = 6 MeV
T = 4 MeV

FIG. 2. (Color online) Similar to that
described in the caption to Fig. 1 but for
the ratio n

(a)
B /nB .

This allows us to calculate the chemical potentials separately.
Then, considering chemical equilibrium between the different
clusters, the total proton and neutron densities are given by the
mass action law, cf. Eqs. (1) and (2). Assuming NSE where
in-medium corrections are neglected, we find from Eq. (6) the
total densities n(a)

p [T (a), µ(a)
p , µ(a)

n ] and n(a)
n [T (a), µ(a)

p , µ(a)
n ] of

protons and neutrons, respectively.
Taking into account the in-medium quasiparticle energy

shifts of the nuclei, the relations are changed so that

µp =−19.818 MeV+�Equ
α −�E

qu
t +T ln

[
33/2

22

Yα

Yt

]
, (26)

µn =−20.582 MeV+�Equ
α − �E

qu
h +T ln

[
33/2

22

Yα

Yh

]
, (27)

where the temperature T is obtained taking the medium
modifications of the energies of nuclei into account. Now,
the total proton and neutron densities are calculated from the
EOS, Eqs. (19), which contain medium-dependent quasicluster
energy shifts.

To show the effect of these medium modifications, we start
with given values for T , np, and nn and calculate the cluster
abundances solving Eqs. (19), taking the shifts into account
and restricting our consideration to A � 4. This gives us certain
values for the chemical potentials µp and µn. Obviously,
within a self-consistent calculation we can reproduce not only
the input quantities np and nn from these values of µp and
µn but also the single ratios for different yields, in particular
R4He,3H, R4He,3He, and the double ratio RHHe. Now, we consider
this as input and determine within the simple NSE the ACCR
values T (a), µ(a)

p , and µ(a)
n . In NSE, where medium shifts are

neglected, we calculate the number densities n(a)(A,Z) of
the nuclei, using the EOS, Eq. (6). Obviously, the single and
double ratios given above are reproduced. However, not only
will the temperature T (a) differ from the input value T , but
also the total proton density n(a)

p and the total neutron density
n(a)

n will deviate from the input values np and nn, respectively.

In Fig. 2 we show the ratio between the ACCR baryon density
n

(a)
B = n(a)

p + n(a)
n and nB = np + nn as a function of nB for

various values of T .

V. DISCUSSION AND CONCLUSIONS

The assumption of NSE provides a simple means to
estimate the thermodynamic parameters of nuclear matter at
freeze-out from the observed yields of nuclei. This approach is
applicable as long as the interaction between the clusters can be
neglected. However, the thermometers and chemical potentials
are no longer correctly scaled when the shifts of the binding
energies due to the interaction with the surrounding matter
become of relevance. The derivation of the thermodynamic
parameters from the measured yields has to be carried out
in a self-consistent manner because the binding energies,
which determine the yields, are themselves dependent on the
temperatures and densities.

Analyzing empirical data, the use of the ACCR method
can only give a first approximation to the temperature and
the density. Taking these first estimations, the shift of the
binding energies of the clusters can be estimated. With these
modified energies, the next iteration deriving the values of
the parameters from the measured yields can be made, and a
self-consistent solution is expected after a sufficient number of
iterations. Alternatively one can also produce tables for yields
taking the medium shifts into account, so the optimal values of
the parameters are obtained by interpolating within the table
to identify the values of the parameters that best correspond to
the measured yields.

Comparing the values of the parameters obtained in the full
calculation, with inclusion of medium effects on the yields with
those deduced in the ACCR approach, we find that moderate
deviations in the temperature arise for densities larger than
0.0001 fm−3. Determination of the densities is more sensitive
to the medium effects.
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The shift of the binding energies has been given in first
order of the density, and higher-order terms in the density are
expected to contribute if the density increases. Starting with
baryonic densities near 10−2 fm−3, the composition has to
be calculated with momentum-dependent shifts instead of the
rigid shifts considered here, and then the temperature is found
from the ratio of the mass fractions after the composition is
calculated in a self-consistent way. One has to perform the full
momentum integration instead of considering a rigid shift as
given at P = 0, when the shifts depend on the center-of-mass
momentum of the cluster. The results given here are applicable
at densities that are not too high, i.e., up to 0.01 fm−3.

In conclusion we point out that the fragment yields from hot
and dense nuclear matter produced in heavy-ion collisions can
be used to infer temperatures and proton/neutron densities of
the early stages of the expanding hot matter. The assumption
of thermal equilibrium can be only a first approach to this
nonequilibrium process. To determine the yield of the different
clusters, a simple statistical model neglecting all medium
effects, i.e., treating it as an ideal mixture of noninteracting
nuclei, is not applicable when the density is larger than 0.0001
fm−3. Self-energy and Pauli blocking will lead to energy
shifts, which have to be taken into account to reconstruct
the thermodynamic parameters from measured yields. The

success of the simple ACCR method to derive the values for
the temperature can be understood from a partial compensation
of the effect of the energy shifts so reasonable values for the
temperature are obtained also at relatively high densities. More
care must be taken in inferring densities from the data. It should
be mentioned that similar questions have to be considered
when hadron production is investigated at the quark-gluon
phase transition.

Cross-checks can be performed to see to what extent the
approach given here is consistent. Hitherto we considered only
the yields of d, t, h, and α, and the corresponding ratios are
reflected by the temperature and the chemical potentials of
the neutrons and protons. The determination of the yields
of additional clusters will allow for a comparison between
predictions and experimental data.
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[19] G. Röpke, A. Grigo, K. Sumiyoshi, and Hong Shen, in NATO

Science Series II: Mathematics, Physics and Chemistry, edited
by D. Blaschke and A. Sedrakian (Springer, Netherland, 2005),
p. 75.
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