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Nuclear “bubble” structure in 34Si
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Bubble nuclei are characterized by a depletion of their central density. Their existence is examined within
three different theoretical frameworks: the shell model and nonrelativistic and relativistic microscopic mean-field
approaches. We analyze 34Si and 22O as possible candidates for proton and neutron bubble nuclei, respectively. In
the case of 22O, we observe a significant model dependence, thereby calling into question the bubble structure of
22O. In contrast, an overall agreement among the models is obtained for 34Si. Indeed, all models predict a central
proton density depletion of about 40% and a central charge density depletion of 25%–30%. This result provides
strong evidence in favor of a proton bubble in 34Si.
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I. INTRODUCTION

The “bubble” structure of atomic nuclei is characterized by
a depleted central density. Although it is somewhat unexpected
that a “hole” can be made in a nuclear system where nuclear
forces generate a saturation density (ρ0 ∼ 0.16 fm−3), this
phenomenon has been discussed for many decades. Indeed,
the possibility of bubble nuclei started with the pioneering
work of Wilson in the 1940s [1], who studied the low-energy
excitations of a thin spherical shell, up to the first microscopic
calculations of Campi and Sprung in the 1970s [2]. More
recently, bubbles have been discussed in superheavy and
hyperheavy nuclei [3,4]. The promise of producing more exotic
nuclei with the new generation of RIB facilities has revived
interest in this subject.

Owing to the absence of a centrifugal barrier, s orbitals have
radial distributions peaked in the interior of the nucleus, with
their corresponding wave function extending further into the
surface depending on the number of nodes. In contrast, orbitals
with nonzero angular momenta are suppressed in the nuclear
interior and do not contribute to the central density. Therefore,
any vacancy of s orbitals is expected to produce a depletion of
the central density. By using electron scattering from 206Pb and
205Tl up to large momentum transfers, the radial distribution of
the 3s proton orbital was experimentally mapped and shown to
closely resemble the one predicted by an independent particle
model. The agreement extends from the center of the 206Pb
nucleus all the way to the surface and reproduces accurately
the nodal structure of the wave function [5,6]. Differences in
the charge density between 206Pb and 205Tl revealed that about
80% of the proton removal strength came from the 3s state,
thereby leading to a depletion of the proton density in the
nuclear interior. Specifically, the depletion fraction, defined
as

F ≡ ρmax−ρc

ρmax
, (1)

amounts to F =11(2)%. In this equation ρc and ρmax represent
the values of the central and maximum charge density in 205Tl,
respectively. Yet the small energy difference between the 3s1/2

and the 2d3/2 proton orbitals plus the coupling of the 3s1/2

proton to collective excitations in 206Pb yield a proton hole
strength in 205Tl that is shared among the 3s1/2 and 2d3/2

orbitals, with the former carrying about 70% of the strength
and the latter the remaining 30%. Consequently, the central
depletion in 205Tl relative to 206Pb is not as large as if the
full hole strength would have been carried by the 3s orbital.
Using similar arguments, one can conclude that the depletion
at the center of 204Hg is not expected to be very large, as the
two-proton hole strength will be again shared among the 3s1/2

and 2d3/2 orbitals. Therefore, the search for the best bubble
candidates should be oriented toward nuclei with an s orbital
well separated from its nearby single-particle states and where
correlations are weak. This latter feature arises mainly for
nuclei located at major shell closures.

Recently, the formation of a proton bubble resulting from
the depletion of the 2s1/2 orbital was investigated in 46Ar [7,
8] and in the very neutron rich Ar isotopes [8]. In 46Ar the
proton 2s1/2 and 1d3/2 orbitals are almost degenerate: As in
the case of 206Pb, pairing correlations will lead to a significant
occupancy of the 2s1/2 orbital [9], thus weakening the bubble
effect. This weakening will continue to hold for any N = 28
isotone between Z = 20 and Z = 14 as long as the 2s1/2 and
1d3/2 orbitals remain degenerate, as shown for instance in
Fig. 3 of Ref. [10]. For very neutron rich Ar isotopes, such as
68Ar, the s1/2 proton orbital is predicted to move significantly
above the d3/2 state, hindering the role of pairing correlations
[8,11]. Unfortunately, the production of this exotic nucleus
is far beyond the present and near-future capabilities of RIB
facilities.

A more suitable region of the chart of the nuclides to search
for a proton bubble is that of the N = 20 isotones. Between
Z = 20 and Z = 16 the s1/2 orbital is located about 6.5 MeV
above the d5/2 orbital and about 2.5 MeV below the d3/2 orbital,
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thereby forming two subshell closures at Z = 14 and Z = 16,
respectively [12]. In addition, the N = 20 shell closure is rigid
enough to hinder significant coupling to collective states. If
one assumes a sequential filling of proton orbitals, the 2s1/2

orbital should be completely empty in 34Si but fully filled
in 36S. This may lead to an important change in the proton
density distribution between 36S and 34Si, making 34Si an
excellent candidate for a bubble nucleus. Concomitantly, both
Skyrme and Gogny Hartree-Fock-Bogoliubov models predict
a spherical shape for 34Si [13,14]. Other possible candidates in
the Si-isotopic chain, such as 28Si and 42Si, are not optimal as
they are deformed [15,16]. For these nuclei several correlations
hinder the development of a bubble. The mirror system of (36S,
34Si), (36Ca, 34Ca), could not be studied at present because the
34Ca nucleus has not been observed so far.

A neutron bubble may be found in the oxygen chain, where
large N = 14 (between d5/2 and s1/2) and N = 16 (between
s1/2 and d3/2) subshell gaps of about 4.2 MeV [17,18] and
4 MeV [19], respectively, have been determined. Combined
with the large proton gap at Z = 8, 22O [17,20,21] and 24O
[18,19,22] therefore behave as doubly magic nuclei. In this
case the change in the occupancy of the 2s1/2 neutron orbital
will occur between 22O and 24O, making 22O a good candidate
for a neutron bubble nucleus.

The present article aims at determining whether 34Si and
22O could be considered as good proton and neutron bubble
nuclei, respectively. Various theoretical approaches will be
employed to test the robustness of the results. In Sec. II
these nuclei are analyzed in terms of shell-model calculations
and the occupancies of the proton and neutron orbitals are
determined. In Sec. III we first address the role of pairing
correlations in mean-field approaches and then show results
on microscopic nucleon density profiles obtained from (i) non-
relativistic Hartree-Fock (HF) and Hartree-Fock-Bogoliubov
(HFB) and (ii) relativistic mean-field (RMF) and relativistic
Hartree-Bogoliubov (RHB) microscopic calculations. Com-
parisons to experimental data will be made whenever possible.
Conclusions are drawn in Sec. IV.

II. SHELL-MODEL PREDICTIONS

The occurrence of bubbles in nuclei, as previously defined,
is directly linked to the occupancy of s1/2 orbitals. For both
bubble candidates under study in this article, 22O and 34Si,
experimental values for the occupancies are not yet available.
Thus, we rely hereafter on shell-model (SM) calculations to
estimate the occupation numbers of interest. Calculations have
been performed with the ANTOINE code [23,24] using the USD
interaction [25]. The full sd valence space was considered for
protons and neutrons to study the ground-state configuration
of the nuclei under consideration.

Special care should be taken concerning the contamination
of the physical states of interest by spurious states originating
from the center-of-mass (CM) translation. The internal struc-
ture of a nucleus with N nucleons is described by 3N − 3
coordinates giving the relative positions of its constituents.
The three remaining degrees of freedom describe the CM
motion of the whole nucleus and give rise to spurious CM

effects that modify the properties of the physical states such as
binding energies and occupation numbers, as already shown
by Dieperink and de Forest [26]. Following the work presented
in Ref. [26], it is possible to obtain CM-corrected occupation
numbers, referred to as S ′ in the following, from the occupation
numbers S calculated within the SM framework. For the
2s1/2 and 1d3/2,5/2 orbits, the relation S ′

sd = (
A

A−1

)2
Ssd holds,

where A is the mass number of the considered nucleus. The
corrected occupation numbers for 1p orbits are defined as
S ′

1p = A
A−1 (S1p − 2Ssd

A−1 ) for the nuclei under consideration in
this article. Finally, the sum rule on occupation numbers allows
us to deduce the CM-corrected value for the deeply bound 1s1/2

orbit as

S ′
1s = M −

∑
α �=1s

S ′
α,

where M is either the neutron or the proton number of the
considered nucleus.

The nucleon densities presented in the following have
been evaluated by using the wave functions of a Woods-
Saxon potential (without spin-orbit term), with parameters
V0 = −50 MeV, a = 0.65 fm, and r0 = 1.25 fm [27], and
the SM occupation numbers corrected for CM effects. One
notices that not considering the spin-orbit interaction leads to
the same radial dependence for wave functions of nucleons
occupying orbits with the same principal quantum number (n)
and orbital angular momentum (�), but with different total
angular momentum (J ), as for the 1p3/2 and 1p1/2 orbitals.

A. Neutron bubble: 24O and 22O

The mean occupation numbers S and S ′ of neutron orbits
deduced from SM calculations are reported in Table I. The
difference of the neutron 2s1/2 occupancy between 24O to 22O
amounts to 1.69, where a value of 2 was expected without
nuclear correlations. The remaining neutron strength is mainly
taken from the νd5/2 and to a lesser extent from the νd3/2

orbital. As a result of the depletion of the 1s1/2 and 1p inner
shells, the S ′ occupation numbers for the ν1d5/2 and ν2s1/2

orbits in 24O slightly exceed the standard value of (2J + 1)
(see Table I).

The neutron densities of 22,24O shown in Fig. 1 include the
CM correction just discussed. The effect of the removal of
two neutrons between 24O and 22O is clearly visible from the
comparison of their densities. The effect of the CM correction

TABLE I. Ground-state occupation numbers S of neutron orbits
obtained in the present SM calculations for 24O and 22O. The
corresponding values S ′, corrected for CM effects, are also reported.

Orbital S(24O) S ′(24O) S(22O) S ′(22O)

ν1s1/2 2.00 1.75 2.00 1.73
ν1p3/2 4.00 3.69 4.00 3.79
ν1p1/2 2.00 1.85 2.00 1.90
ν1d5/2 5.75 6.26 5.38 5.91
ν2s1/2 1.89 2.06 0.34 0.37
ν1d3/2 0.36 0.39 0.28 0.31
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FIG. 1. Neutron densities of 24O and 22O (open squares and
triangles, respectively) obtained using the occupation numbers
corrected for CM motion and Woods-Saxon wave functions. The
density of 22O without CM correction is also shown (black triangles).

is to slightly deepen the density profile at small radial distances
(r < 2 fm). Indeed the depletion fraction in 22O, as defined in
Eq. (1), is found to be 28% for the CM-corrected density (open
triangles on Fig. 1) and 24% for the uncorrected density (filled
triangles).

In lighter oxygen isotopes this central depletion should not
persist as the neutron 1d5/2 orbital, located at the surface of
the nucleus, is depleted in concert with the 2s1/2. It follows
that the relative difference of the density in the vicinity of the
surface and at the interior of the nucleus is also reduced.

B. Proton bubble: 36S and 34Si

The mean occupation numbers of the proton 1d3/2 (0.31),
2s1/2 (1.63), and 1d5/2 (5.95) orbitals in 36S have been
obtained from the 36S(d, 3He)35P experiment [28]. The small
occupancy of the 1d3/2 state is due to correlations. The sum
of the deduced spectroscopic factors from the proton pickup
reaction from the whole sd states amounts to

∑
C2S ≈ 7.9.

Within the 20% uncertainties of the method, this is compatible
with

∑
C2S = 8. The mean calculated occupation numbers

S for the proton orbitals, as well as those corrected for CM
motion, S ′, are reported in Table II. The agreement with the
experimental values for 36S is very good, lending confidence
to the SM predictions for 34Si. The mean occupation number
in 34Si, summed over the 1s and 2s orbits, is smaller than in
22O. Moreover, a larger mean occupation number of the d5/2

orbital is predicted in 34Si as compared to 22O. Both effects,

TABLE II. Same as Table I for proton orbits in 36S and 34Si.
Experimental occupancies obtained in Ref. [28] for 36S and SExp(36S)
are also reported.

Orbital S(36S) S ′(36S) SExp(36S) S(34Si) S ′(34Si)

π1s1/2 2.00 1.84 2.00 1.82
π1p3/2 4.00 3.80 4.00 3.87
π1p1/2 2.00 1.90 2.00 1.94
π1d5/2 5.85 6.19 6.0(12) 5.76 6.11
π2s1/2 1.88 1.99 1.63(32) 0.08 0.09
π1d3/2 0.27 0.29 0.31(6) 0.16 0.17
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FIG. 2. Same as Fig. 1 but for charge densities in 36S and 34Si
(see text).

that is, weaker (larger) occupancy at the center (surface),
account for the depletion fraction in the proton density of
34Si found to be F = 44% (F = 41%) with (without) the CM
corrections. The charge densities displayed on Fig. 2 for 34Si
and 36S are obtained by including CM and proton finite-size
corrections. The resulting value of F for 34Si is F = 28%. It
has been shown in the previous section that the effect of the
CM correction is to increase the bubble; this means that the
proton finite-size correction acts in the opposite way: When
both effects are taken into account in the charge density, the
net result is a bubble weakening in 34Si. In the case of the
stable nucleus 36S, the experimental charge distribution is
available [29] and is reported on Fig. 2 as a set of black squares.
The agreement with the SM profile is satisfactory.

It is interesting to note that the proton density depletion
between the N = 20 isotones 34Si and 36S is stronger than the
one reported for the N = 16 isotones 30Si and 32S derived from
Ref. [30]. As seen on Fig. 4 of Ref. [30], the measured charge
density for 30Si does not present a significant dip at the interior
of the nucleus and looks similar to that of 32S. This feature
comes from the modest change in occupancy of the π2s1/2

between 32S(1.35) and 30Si(0.65), which is ascribed to the large
nuclear correlations existing in the N = 16 isotones. These
experimental occupation numbers are in excellent agreement
with the presently calculated ones, reinforcing the reliability
of the SM description to model the nuclei of interest.

The reduction of proton correlations between the N = 16
and N = 20 isotones can be ascribed to the increase of
the Z = 14 shell gap formed between the proton d5/2 and
s1/2 orbits. While growing in size, excitations across it are
progressively hampered. This results in calculated occupancies
of the π2s1/2 orbit of 0.65 in 30Si16 and 0.09 in 34Si20.
The driving mechanism to increase the Z = 14 gap is likely
the strongly attractive πd5/2-νd3/2 proton-neutron interaction.
Adding four neutrons from N = 16 to N = 20 into the νd3/2

orbit strongly binds the πd5/2 orbit in 34Si, thus increasing the
size of the Z = 14 shell gap.

To conclude this section, using SM calculations we have
determined occupation numbers of the proton and neutron
2s1/2 shells in the (36S, 34Si) and (24O, 22O) nuclei, respectively.
From these values, proton or neutron density distributions
have been derived using Woods-Saxon wave functions. The
large depletion of the 2s1/2 orbit gives rise to a central
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density depletion and the appearance of bubble phenomena.
We stress the good agreement between experimental and
calculated occupation numbers for the known nuclei 36S, 32S,
and 30Si. This gives us confidence in the results obtained for
the other nuclei under study. Even though the present method
to derive density distributions is approximate, a reasonable
agreement is found with experimental results for 36S. The
density profiles will be examined in the following section
within a self-consistent microscopic treatment.

III. MEAN-FIELD CALCULATIONS

Self-consistent mean-field approaches enable us to de-
termine microscopically the density distributions of nuclei.
We solve the self-consistent mean-field equations directly in
coordinate space. As in the previous section, we consider
neutron densities for 22O and proton densities for 34Si. These
densities should be corrected for CM effects inherent to the
mean-field procedure. Since we calculate the point proton
and neutron densities directly in coordinate space, we can
use the Campi and Sprung procedure (see Eqs. (3.1) and
(3.2) of Ref. [31]) to obtain the CM-corrected charge density
of 34Si, the finite proton size being treated by a Gaussian
form factor as in Ref. [31]. The Fourier transform of the
CM-corrected charge densities could eventually be compared
with the form factors measured by electron scattering (not
available so far), but accurate predictions for this kind of
comparison are beyond the scope of this article. For this
reason, we keep using the Gaussian finite-size form factor of
Ref. [31] rather than adopting more sophisticated form factors.
To obtain the radial profiles of the CM-corrected neutron
densities in 22O we should transform to k-space the mean-field
point neutron densities, correct them with the proper CM
factor, and transform back to r-space. However, the strongly
model dependent results that we have obtained for 22O with
our mean-field treatments indicate that further refinements of
the mean-field neutron densities will not help us to reach a
conclusion on the issue of a possible neutron bubble in this
nucleus.

For the calculation of nucleon occupation factors, pairing
correlations have to be eventually taken into account. As a first
step before describing the density distributions, we discuss
whether pairing correlations are expected to play some role in
the development of proton and neutron bubbles in 34Si and 22O
nuclei, respectively.

A. Pairing effects

As already alluded to in Sec. I, 22O is expected to
behave almost as a doubly-magic nucleus, being that the
N = 14 subshell closure has been experimentally determined.
However, as shown in the previous section, SM calculations
predict an 18% occupancy of the 2s neutron state, suggesting
that pairing correlations are likely to have some effect on this
nucleus. Pairing correlations will be then included and their
effect on the neutron density profile of 22O will be shown in
the following for both the nonrelativistic and the relativistic
mean-field cases.

Let us now consider the case of 34Si. As an illustration,
we discuss the role of pairing in the nonrelativistic case.
Pairing correlations can be modeled in the Skyrme-Hartree-
Fock-Bogoliubov (Skyrme-HFB) framework by adopting the
following zero-range density-dependent pairing interaction:

Vpair = V0

[
1 − η

(
ρ(r)

ρ0

)α]
δ (r1 − r2) , (2)

with η = 0.5 (mixed surface-volume interaction), α = 1, and
ρ0 = 0.16 fm−3. In the particle-hole channel, we employ the
SLy4 Skyrme parametrization, which is well suited to describe
neutron-rich nuclei. We fix the parameter V0 in Eq. (2) to
reproduce the two-proton separation energy in 34Si. Note that
the two-proton separation energy is defined as

S2p = E(N,Z) − E(N,Z − 2), (3)

where E(N,Z) is the total binding energy of the (N,Z)
nucleus. It should be noted that the experimental value of
S2p = 33.74 MeV is already reasonably well reproduced
without pairing: The HF value is equal to 35.19 MeV. Moreover
the HFB calculations—which include the pairing interaction—
yield negligible corrections, as Z = 14 is predicted by the HFB
approach to be a robust subshell closure in agreement with the
shell-model spectroscopic factors (see Table II where the SM
occupation of the s state is only 4.5%). Our conclusion is that
we can safely perform the analysis of this nucleus by neglecting
pairing since the associated correlations are expected to be
practically zero.

B. Nonrelativistic mean-field approach

Figure 3 displays neutron density profiles in 22O (full line)
and 24O (dashed line) calculated self-consistently within the
SLy4-HF approach. The depletion of the central density in 22O
relative to 24O is clearly visible. However, the bubble profile
is not obvious: Since the central neutron density in 24O is
strongly enhanced, the depletion in 22O does not lead to the
development of a significant central hole. The central depletion
fraction F is ∼13%, much weaker than the SM result. As one
switches on pairing and chooses the same parameters as in
Ref. [32] for the pairing interaction, the central hole is seen
to be partially washed out (dotted line in Fig. 3; F = 3.4%).
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FIG. 3. HF neutron densities (in units of fm−3) of 22O (full line)
and 24O (dashed line) calculated with the Skyrme interaction SLy4.
The dotted line represents the SLy4-HFB neutron density of 22O.
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FIG. 4. HF charge densities (in units of fm−3) of 36S (dashed line)
and 34Si (solid line) calculated with the Skyrme interaction SLy4.

Note that the density profile of 24O remains unchanged when
pairing is switched on.

The SLy4-HF charge density profiles calculated in 34Si
and 36S (where the s state is fully occupied) are shown in
Fig. 4. One observes that the bubble is more prominent in
this case than in 22O. The depletion fraction F is ∼23%
(38% for the proton density without CM and proton finite-size
corrections). The confidence in this result is enhanced by the
good agreement between the predicted density profile for 36S
and the experimental one shown in Fig. 2. We should mention
that pairing is expected to modify the density profile of 36S.
By comparing the HF proton point density in 34Si (F = 38%)
with the HF neutron density in 22O (F = 13%), one observes
that the central value in 34Si is much lower than in 22O. The
contribution to the central value of the density is entirely
due to the first s wave function (i.e., the 1s). The difference
between the two central values may be related to the presence
of a neutron excess at the surface of 34Si. The effect of this
neutron skin on the proton 1s1/2 wave function is to attract
and push it toward the surface, thereby lowering its value at
the center. This effect is obviously absent for the neutron 1s

wave function in 22O because the proton density in this nucleus
is well concentrated in the interior. This can be observed in
Fig. 5 where the neutron (proton) 1s contribution to the HF
density is plotted for 22O (34Si).

C. Relativistic mean-field approach

As in the previous section, calculations are performed for
the two oxygen isotopes 22O and 24O as well as for the two N =
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FIG. 5. Neutron (proton) 1s contributions to the density (in units
of fm−3) for 22O (34Si).

TABLE III. Binding energy per nucleon, charge radii, and
neutron skin thickness for 34Si (upper block) and 36S (lower block) as
predicted by the two RMF models used in this work. When available,
experimental data are provided for comparison.

Model B/A (MeV) Rch (fm) Rn − Rp (fm)

NL3 8.36 3.13 0.25
FSUGold 8.28 3.13 0.21
Experiment 8.34 – –
NL3 8.50 3.26 0.12
FSUGold 8.42 3.26 0.09
Experiment 8.58 3.28 –

20 isotones 34Si and 36S, but now using an RMF approach.
Pairing effects are evaluated within the RHB model. In one
particular realization of the relativistic formalism the dynamics
of the system is dictated by an interacting Lagrangian density
of the following form:

Lint = ψ̄
[
gsφ −

(
gvVµ + gρ

2
τ · bµ + e

2
(1 + τ3)Aµ

)
γ µ

]
ψ

− κ

3!
(gsφ)3 − λ

4!
(gsφ)4 + ζ

4!

(
g2

vVµV µ
)2

+�v
(
g2

ρ bµ · bµ
)(

g2
vVµV µ

)
, (4)

where ψ represents an isodoublet nucleon field interacting
via the exchange of two isoscalar mesons—a scalar (φ) and
a vector (V µ), one isovector meson (bµ), and the photon
(Aµ) [33,34]. In addition to meson-nucleon interactions, the
Lagrangian density is supplemented by nonlinear meson
interactions with coupling constants denoted by κ, λ, ζ , and
�v that are responsible for a softening of the nuclear-matter
equation of state, both for symmetric and pure-neutron matter.
For the RMF case we consider two parametrizations: the very
successful NL3 parameter set [35,36] and a more recent set
known as FSUGold [37]. The main difference between these
two models lies in the prediction of the density dependence
of the symmetry energy. This difference manifests itself in
significantly larger neutron skins for NL3 than for FSUGold
[37]. Neutron skins for the two isotones of interest in the
present work, alongside other ground-state properties, have
been listed in Table III for 34Si and 36S.

RMF neutron densities for the two neutron-rich isotopes
22O and 24O are displayed in Fig. 6. Whereas the RMF results
show a mild model dependence, differences between the
relativistic and nonrelativistic models are significant. Indeed,
in contrast to the nonrelativistic case, the relativistic results
display no enhancement of the central neutron density in
24O. Moreover, the removal of both 2s1/2 neutrons from 24O
yields a strong depletion of the interior neutron density in
22O. As a result, central depletion fractions of F = 34%
F = 28% are predicted for 22O by the FSUGold and NL3
models, respectively. These values are significantly larger
than the 13% depletion fraction obtained with the SLy4-HF
parametrization.
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FIG. 6. RMF neutron densities of 22O and 24O calculated with the
two RMF models described in the text.

In the case of 34Si and 36S one observes, now in agreement
with the nonrelativistic results, how the charge density of 34Si
is significantly depleted in the nuclear interior and how the
proton bubble disappears as soon as the 2s1/2 proton orbital
is filled in 36S (see Fig. 7). This behavior results in central
depletion factors for 34Si of F = 29% and F =25% for the
FSUGold and NL3 parameter sets, respectively. For the proton
densities of 34Si the values of F are 42% and 37% for FSUGold
and NL3, respectively.

Let us quantify now the effects of pairing correlations
within the RHB model. A medium dependence for a relativistic
mean-field interaction can either be introduced by including
nonlinear meson self-interaction terms in the Lagrangian, as
in the case of NL3 and FSUGold, or by assuming an explicit
density dependence for the meson-nucleon couplings. This is
the case of the DD-ME2 model [38] that we adopt to perform
RHB calculations. The couplings of the σ meson and ω meson
to the nucleon are assumed to be of the form

gi(ρ) = gi(ρsat)fi(x) for i = σ, ω, (5)
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FIG. 7. RMF charge densities of 36S and 34Si calculated with the
two RMF models described in the text.
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FIG. 8. Neutron density profiles of 22O and 24O calculated in the
RHB model with the density-dependent interaction DD-ME2 and
Gogny pairing.

where

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
(6)

is a function of x = ρ/ρsat, and ρsat denotes the nucleon
density at saturation in symmetric nuclear matter. Constraints
at nuclear matter saturation density and at zero density are used
to reduce the number of independent parameters in Eq. (6) to
three. Three additional parameters in the isoscalar channel are
gσ (ρsat), gω(ρsat), and mσ —the mass of the phenomenological
σ meson. For the ρ meson coupling the functional form
of the density dependence is suggested by Dirac-Brueckner
calculations of asymmetric nuclear matter:

gρ(ρ) = gρ(ρsat) exp[−aρ(x − 1)], (7)

and the isovector channel is parametrized by gρ(ρsat) and aρ .
Bare values are used for the masses of the ω and ρ mesons:
mω = 783 MeV and mρ = 763 MeV. DD-ME2 is determined
by eight independent parameters, adjusted to the properties of
symmetric and asymmetric nuclear matter, binding energies,
charge radii, and neutron radii of spherical nuclei [38]. The
interaction has been tested in the calculation of ground-state
properties of a large set of spherical and deformed nuclei.
When used in the relativistic RPA, DD-ME2 reproduces
with high accuracy data on isoscalar and isovector collective
excitations [38].

In Figs. 8 and 9 we display, respectively, the neutron and
charge density profiles for 22,24O (34Si and 36S) calculated in
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FIG. 9. Charge densities of 36S and 34Si calculated in the RHB
model with the DD-ME2 interaction plus Gogny D1S pairing. The
charge density of 36S has been calculated by neglecting pairing.
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TABLE IV. Central fraction of depletion F for neutron densities in 22O (first line) and proton and
charge densities in 34Si (second and third lines, respectively).

Nucleus SM SLy4 SLy4 NL3 FSUGold DDME2 DDME2
HF HFB RMF RMF RMF RHB

22O 24% 13% 3.4% 28% 34% 29% 10%
34Si 41% 38% 38% 37% 42% 36% 36%
34Si (ch.) 28% 23% 23% 25% 29% 25% 25%

the RHB model [39] with the DD-ME2 effective interaction in
the particle-hole channel, and with the Gogny interaction [40]
in the pairing channel,

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/µi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σ P τ ), (8)

with the set D1S [41] for the parameters µi,Wi, Bi,Hi , and
Mi (i = 1, 2).

For 24O and 34Si the RHB calculation with the DD-ME2
interaction predicts neutron and charge density profiles similar
to those calculated with NL3 and FSUGold. Because of the
large gaps between νs1/2 and νd3/2 in 24O, and between πd5/2

and πs1/2 in 34Si, we find a pairing collapse in these nuclei,
in agreement with nonrelativistic predictions. However, the
inclusion of pairing correlations has a pronounced effect on
the neutron density profile in 22O. When pairing is set to zero
(dash-dot curve in Fig. 8) the νs1/2 orbital is empty in 22O.
The resulting DD-ME2 density profile is again very similar to
that calculated with the two other RMF interactions. However,
the pairing interaction in the RHB model calculation modifies
the occupancy of the two 2s1/2 orbitals, thus reducing the
pronounced bubble in the neutron density of 22O. For an easier
and coherent comparison between Figs. 4 and 9, the charge
density of 36S shown in Fig. 9 has been calculated by neglecting
pairing.

In the DD-ME2 model the F values are found equal to 29%,
10%, and 25% for 22O (without pairing), 22O (with pairing),
and charge density of 34Si (giving the same result with and
without pairing), respectively. For the proton density of 34Si
F = 36%.

IV. SUMMARY AND CONCLUSIONS

The occurrence of proton and neutron bubbles in 34Si and
22O, respectively, has been investigated using three different
theoretical approaches: (i) the shell model, (ii) the Skyrme
mean-field model, and (iii) the relativistic mean-field model.
This occurrence can be quantified by the values of the depletion
fraction F, which we have evaluated in these different
approaches and which are summarized in Table IV.

For the 22O nucleus the CM correction has been performed
only in the SM framework. The strongly model dependent
results that we have obtained for this nucleus with our

mean-field treatments indicate that further refinements of
the mean-field neutron densities will not help us to reach
a conclusion on the issue of a possible neutron bubble. To
compare in a coherent way all the values of F for 22O in
Table IV, the SM values without CM correction have been
used. Indeed, a very significant model dependence has been
found for this nucleus. Moreover, in both nonrelativistic and
relativistic cases, pairing correlations have been shown to
weaken the bubble phenomenon. It would be worth having
experimental confirmation of this prediction. In contrast, for
34Si an overall agreement exists: A central depletion fraction of
∼40% is predicted by all the models for the proton densities.
In the last line of Table IV, the values of F for the charge
density are shown (F ∼ 25%–30%).

The strong model dependence for 22O and the overall
agreement for 34Si are easy to explain. For both nuclei
the single-particle spectra are sensibly model dependent.
However, the gap N = 14 is predicted by all the models to
be much smaller than the gap Z = 14. The very large gap
Z = 14 prevents pairing and other correlations from being
active in 34Si, providing thus density profiles that are not
sensible to the differences of the models. In contrast, for 22O,
pairing plays some role and, consequently, the density profiles
show a dependence on the model (based on single-particle
spectra and intensity of pairing interaction). This reinforces
the conclusion that 34Si is indeed a good candidate for a bubble
density profile. The measurement of the charge density in 34Si
could be undertaken, for instance, by electron scattering in an
exotic beam collider, such as EXL in FAIR and RIBF in Riken.
The bubble impact on the momentum distribution in these
experiment has been investigated in Ref. [8]. The fraction F

for the charge densities is equal to ∼25%–30%. The effect is
reduced with respect to what is found for the proton densities,
but it is still important and could be observed experimentally.
The study of 34Si, either by high-energy proton scattering (to
focus on the matter distribution) or by direct reactions (to
determine whether the occupancy of the 2s1/2 proton orbit has
dropped to nearly zero, thus confirming the SM predictions
shown in Sec. II.), is already feasible [8].

ACKNOWLEDGMENTS

The authors thank J. F. Berger, A. E. L. Dieperink,
F. Nowacki, A. Poves, and K. Yoshida for valuable discussions.
The research of J.P. is supported in part by the United States
DOE Grant No. DE-FD05-92ER40750.

034318-7



M. GRASSO et al. PHYSICAL REVIEW C 79, 034318 (2009)

[1] H. A. Wilson, Phys. Rev. 69, 538 (1946).
[2] X. Campi and D. W. L. Sprung, Phys. Lett. B46, 291 (1973).
[3] M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and

W. Greiner, Phys. Rev. C 60, 034304 (1999).
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