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Further examination of prolate-shape dominance in nuclear deformation
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The observed almost complete dominance of prolate over oblate deformations in the ground states of deformed
even-even nuclei is related to the splitting of high � “surface” orbits in the Nilsson diagram: on the oblate side the
occurrence of numerous strongly avoided crossings which reduce the fanning out of the low � orbits, while on the
prolate side the same interactions increase the fanning out. It is further demonstrated that the prolate dominance
is rather special for the restricted particle number of available nuclei and is not generic for finite systems with
mean-field potentials resembling those in atomic nuclei.
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I. INTRODUCTION

The ground states of some nuclei are spherical, while others
are deformed as a result of the latent anisotropy inherent in the
ground state of a Fermi gas. In a very simplified view of the
filling of particle orbits in the shell model based on spherical
symmetry, the ground state configurations at the beginning and
end of major shells are related by a particle-hole symmetry.
Since the quadrupole moment of hole states has the opposite
signs from that of particle states one might have expected
the number of prolate and oblate shapes to be equal. In fact,
almost all known deformed nuclei can be interpreted in terms
of prolate axially-symmetric dominantly quadrupole deformed
shape. The observed dominance of prolate over oblate shape is
indeed overwhelming: Of the 98 known deformed even-even
nuclei identified in Fig. 4.3 of Ref. [1], only one (12C) is oblate.
Additional experimental work since the review in Ref. [1] has
not provided evidence for more than a few possibly oblate
deformations.

Calculating one-particle spectra of the quadrupole-
deformed infinite-well potential (spheroidal cavity) which
simulates the potential for clusters of metallic atoms, we have
obtained in Ref. [2] the result that the number of prolate
systems is considerably larger than that of oblate systems. A
number of publications using both quantum-mechanical and
semiclassical treatments are available in which one tried to pin
down the origin of the dominance of prolate nuclear shape over
oblate shape. For example, when Hartree-Fock (HF) calcula-
tions with appropriate effective interactions are performed in
many nuclei, the dominance of prolate shape except for very
light nuclei is obtained in agreement with the experimental
observations. Nevertheless, in our opinion, the nature of the
parameters responsible for the prolate dominance has not yet
been adequately understood. In particular we are concerned
with the generality of the argument for prolate dominance: is
it a universal property of saturating Fermi systems bound by
short-range interactions? It is the purpose of the present article
to extend the calculations of Ref. [2] with the aim of obtaining
additional evidence concerning prolate dominance.

In the present work only one kind of particles, neutrons or
protons, are considered. For simplicity, we neglect both spin-

orbit potential and pairing correlation which are important in
the understanding of nuclear ground states, since an essential
element in producing more prolate systems than oblate ones
can be shown without them. In the spectra of both the harmonic
oscillator potential and an isolated single-j -shell (or single-�-
shell) model there is a particle-hole symmetry, while in both of
them the surface effect is absent. The particle-hole symmetry
leads to the number of prolate systems equal to that of
oblate ones. However, the presence of a more sharply defined
surface leads to the presence of “surface states” that break
the particle-hole symmetry. Even in the case of the deformed
harmonic oscillator, the deformations in mid-shell become so
large that there occurs crossing between the one-particle levels
in adjacent shells that violates particle-hole symmetry for the
ground state occupations. We perform numerical calculations,
choosing two models which can be easily solvable taking
exactly into account the volume conservation when the system
is quadrupole deformed; the pure harmonic oscillator potential
and the infinite-well potential (cavity). The numerical results
of the two models are used to elucidate the important role
played by the surface of one-body potentials.

In Sec. II A we study the quadrupole deformation preferred
by the pure harmonic oscillator model, while in Sec. II B the
preference for prolate over oblate shape in the spheroidal cavity
is examined. In Sec. III the origin of the dominance of prolate
systems is explained using the numerical results presented in
Sec. II. In Sec. IV we present considerably extended numerical
results of calculations of ground states of independent particle
motion in spheroidal cavities. In Sec. V comments on some
other approaches to the present subject are briefly described,
while conclusion and discussions are given in Sec. VI.

II. MODEL CALCULATION

A. Harmonic oscillator potential

We parametrize the axially-symmetric quadrupole-
deformed oscillator potential by

ω⊥ = ω0 eα, (1)

ωz = ω0 e−2α, (2)
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TABLE I. Relation between parameters.

α −0.15 −0.10 −0.05 0 0.05 0.10 0.15

Rz/R⊥ 0.638 0.741 0.861 1.000 1.162 1.349 1.568
δosc −0.477 −0.313 −0.153 0 0.146 0.283 0.412

so that the volume conservation

ω2
⊥ωz = ω3

0 (3)

is exactly satisfied. α > 0 (α < 0) corresponds to prolate
(oblate) shape. For reference, in Table I a numerical com-
parison between α, the ratio of radii Rz/R⊥ (aspect ratio) and
the commonly employed deformation parameter δosc [1] is
tabulated, where

δosc ≡ 3
ω⊥ − ωz

2ω⊥ + ωz

= 3
Rz − R⊥
2Rz + R⊥

. (4)

The one-particle spectrum of the axially-symmetric
quadrupole-deformed oscillator potential can be found in many
references. See, for example, Fig. 6-48 of Ref. [1] or Fig. 1 of
Ref. [3]. Choosing the energy unit h̄ω̄ where

ω̄ = 1
3 (2ω⊥ + ωz), (5)

one-particle energies can be drawn by straight lines as a
function of δosc. We note that a given level specified by quantum
numbers (nz, n⊥) has a degeneracy 2(n⊥ + 1) including the
nucleon spin. The magic numbers of the spherical harmonic
oscillator potential are 2, 8, 20, 40, 70, 112, 168, 240, . . . . For
a given nucleon (proton or neutron) number we numerically
search for the total energy minimum on prolate and oblate
sides, respectively. The total energy of the system in the
present work is defined as the sum of the lowest-lying one-
particle energies for a given deformation and a given particle
number

E(α) =
NF∑

i=1

εi
�(α), (6)

where the conserved one-particle quantum-number � is the
projection of the particle orbital angular-momentum onto the
symmetry axis.

The one-particle spectrum originating from a given major
N = nz + n⊥ shell has a symmetry between the prolate and
oblate sides. Therefore, if for a given particle number we
keep adiabatically the configuration consisting of the orbits
occupied at a very small |δosc| value and look for the total
energy minimum as |δosc| further increases, the shape of the
total energy minimum is prolate for the Fermi level lying in the
first half of the major shell while it is oblate for the second half
of the major shell. Namely, the number of prolate systems is
equal to that of oblate systems. This prolate-oblate symmetry
may be broken, in the case that the energy minimum occurs at
|α| values larger than those at which one-particle levels coming
from adjacent major shells cross each other, namely in the case
that the adiabatic configuration defined above is no longer the
configuration at the total energy minimum. In practice, this
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FIG. 1. (a) Total energies at the prolate and oblate minima,
respectively, relative to the energy of the spherical shape as a function
of particle number. The harmonic oscillator potential is used and the
energy unit is h̄ω0. (b) Absolute values of the deformation parameter
α at the total energy minimum as a function of particle number.
Around the middle of respective major shells the |α| values of both
prolate and oblate minima are shown.

situation occurs only in a limited number of systems, in which
the major shell is almost half filled.

In Fig. 1(a) the total energy of the prolate and oblate
minima, respectively, relative to the energy of the spherical
shape is plotted as a function of the particle number, of
which the Fermi levels lie within the N = 5 and 6 shells
in the spherical limit. It is seen that in the beginning (end)
of the respective N shells the prolate (oblate) minimum is
deeper than the oblate (prolate) minimum, and as a total the
number of prolate systems is approximately equal to that of
oblate systems. In a few systems in which a given major
shell is almost half filled, the lowest lying curves in Fig. 1(a)
look somewhat irregular, however, the curves become much
smoother when a deviation from axial symmetry is taken into
account. Similarly, in the region of the particle number for
which the curve in Fig. 1(a) locally resembles a straight line,
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taking into account a deviation from axial symmetry makes the
curve more smoothly varying. In all these cases, the deviation
from respective axially-symmetric deformations is relatively
small.

In Fig. 1(b) absolute values of α at the total energy minimum
for a given particle number are plotted, except around the
middle of respective major shells in which the |α| values
of both prolate and oblate minima are shown. In the latter
cases, precisely speaking for the particle number 84–90 and
134–136, the energy minimum is obtained at |α| which is
larger than that of the crossing of one-particle levels coming
from adjacent major shells. The presence of those few systems
provides a small deviation from the exact equality of the
number of prolate and oblate shapes in the harmonic oscillator
potential.

B. Infinite-well potential (cavity)

The eigenvalue of spherical cavity εn� is obtained from
the nth zero of the spherical Bessel function of order �. In
Fig. 2(a) eigenvalues of relatively small spherical cavities
together with the total particle number A for several Fermi
levels are plotted as a function of orbital angular momentum
�, while in Fig. 2(b) eigenvalues of a much broader region are
shown.

From Fig. 2(b) two kinds of families of one-particle
levels (n�) are easily identified; (a) a family with �� = 2
originating from a given harmonic-oscillator major shell,
of which the one-particle energies decrease as � increases.
This decrease of one-particle energies in realistic potentials
is approximated by introducing the ��2 term in the modified
oscillator potential [4]; (b) families defined by the number of
radial nodes n = 0, 1, 2, . . . and each comprising all possible
�-values � = 0, 1, 2, . . . . These families are referred to as
n = 0 = yrast, n = 1 = yrare, . . ..

It is seen that in the family (a) the �� = 2 approximate
degeneracy around � = 0 remains all the way to very large
systems, corresponding to elliptical orbits in terms of closed
classical orbits [1]. Since the total degeneracy of those �� = 2
close-lying levels in the family is small compared with the
degeneracy of all possible open shells around the Fermi levels,
those levels do not play an important role in the present
discussion of the prolate-oblate competition. In contrast, orbits
close to the yrast line have the largest � values and thus the
largest degeneracies among orbits around a given Fermi level.
Thus, the splitting or the shell structure of those large � shells
for quadrupole deformation may govern the preferred prolate
or oblate shape.

As seen in Fig. 2(a), for 138 < A < 186 almost degenerate
1j and 2g shells are considerably separated from other n�

shells. The near degeneracy of these two shells with �� = 3
may lead to octupole deformations. In Ref. [2] this possibility
is examined under the assumption of deformations involving
only a single spherical harmonic mode. It is found that
quadrupole mode dominates except for the particle number
A = 152–156 where Y32 deformation provides the lowest total
energy.

One-particle spectrum of spherical infinite-well potential 
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FIG. 2. (a) Eigenvalues of smaller spherical cavity in units of
h̄2/2mR2

0 as a function of one-particle orbital angular momentum.
The total particle number including the factor 2 due to the nucleon
spin is shown for several Fermi levels. (b) Eigenvalues of spherical
cavity of a region much broader than that plotted in (a). An example
of the family (a) coming from a given harmonic-oscillator major shell
is denoted by a dotted curve, while the yrast �� = 1 family (b) with
no radial node is connected by a dashed curve.

The radii of the spheroidal cavity are parametrized as

R⊥ = R0 e−α, (7)

Rz = R0 e2α, (8)

so that the volume conservation is exactly satisfied under
deformation. The numerical relation between α and Rz/R⊥
is given in Table I. Eigenvalues of spheroidal cavity are
calculated using the method described by Moszkowski [5].
The Nilsson diagram for the spheroidal cavity is shown in
Figs. 3(a) and 3(b), in which one-particle levels with � = 0
are doubly degenerate while those with � �= 0 are four-fold
degenerate. It is noted that Figs. 3(a) and 3(b) cover a region
of the deformation which is as much as a factor of two larger
than that of possible ground states. See Fig. 4(b).

In Fig. 4(a) the total energies at the minima of the
prolate and oblate shapes, respectively, relative to the energy
of the spherical shape are plotted for systems with even
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FIG. 3. (a) One-particle energies of spheroidal cavity as a
function of deformation parameter. At spherical point α = 0 the
quantum numbers, n�, are written. The particle number of the system
obtained by filling all lower-lying levels is written with a circle in
several places. Positive-parity levels are plotted by solid curves, while
negative-parity levels by dotted curves. (b) One-particle energies of
spheroidal cavity as a function of deformation parameter, for the
system larger than that plotted in (a).

particle-number 92–186. What is shown in Fig. 4(a) is indeed
identical to a part of Fig. 23 of Ref. [2]. As already stated in
Ref. [2], we have found: (a) at the beginning of the two major
shells (the particle number 92–138 and 138–186) the optimum
oblate shape is energetically more favorable than the optimum
prolate shape while at the end of the shells the optimum prolate
shape is more favorable; (b) the number of systems in which a
prolate shape is favorable is much larger than the number for
which an oblate shape has a lower energy. For example, for
the major shell with the particle number 138–186 only six
systems prefer oblate while the prolate minimum is lower than
the oblate minimum in seventeen systems.

Absolute values of α at the energy minima of prolate and
oblate shapes, respectively, are plotted in Fig. 4(b). It is seen
that in the midshell region the absolute magnitudes of the
deformations are appreciably larger for the prolate than for the
oblate deformations.
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FIG. 4. (a) Total energies at the prolate and oblate minima,
respectively, relative to the energy of the spherical shape as a function
of particle number of the system. The infinite-well potential is
used and the energy unit is h̄2/2mR2

0 . (b) Absolute values of the
deformation parameter α at the energy minima of prolate and oblate
shapes, respectively.

III. ORIGIN OF THE DOMINANCE OF PROLATE
SYSTEMS

The origin of the dominance of prolate systems obtained
in the spheroidal cavity comes from an asymmetry in the
splitting of one-particle levels on the prolate and oblate sides,
which is absent in the axially-symmetric quadrupole-deformed
harmonic oscillator model. The asymmetry originates from
the fact that already in the spherical shape the presence of the
surface in the potential implies that the higher � subshells have
lower energies than the lower � orbits of the same oscillator
shell. When the potential is moderately deformed, around the
Fermi level of the system where high � shells are partially filled
the local one-particle level density is considerably higher on
the oblate side than on the prolate side. The origin of the
different splittings of one-particle levels coming from high �

shells on prolate and oblate sides can be understood in terms
of the asymptotic quantum numbers which have been found
useful in the deformed oscillator model.

As an example of the splitting of the yrast family orbits,
in Fig. 5 we reproduce the one-particle levels originating
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Splitting of levels coming from 1h-shell in spheroidal cavity 
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FIG. 5. Splitting of levels originating from the 1h shell in
spheroidal cavity. The asymptotic quantum numbers [N nz �] are
assigned to the levels on both prolate and oblate sides. See the text
for details.

from the 1h shell which are taken from Fig. 3(b). It is noted
that the splitting of � orbits belonging to the yrast family in
Fig. 2(b) is all very similar. Two characteristic features in the
level splitting are noted; (a) on the oblate side strongly avoided
crossings among the low � orbits with resulting reduction in
fanning out; (b) on the prolate side increased fanning out of
the low � levels due to the same inter-shell interactions.

In Fig. 5 the quantum numbers [N nz �], which are called
the asymptotic quantum numbers in the deformed oscillator
model [1], are assigned to respective one-particle levels, where
� is a good quantum number also in the spheroidal cavity.
The quantum number nz in the deformed oscillator potential
is usually known as the number of oscillator quanta in the
direction of the symmetry axis (z-axis). Generally speaking,
for a prolate (oblate) shape the kinetic energy is energetically
cheaper (more expensive) in the direction of the symmetry axis.
In the spheroidal infinite-well potential nz can be interpreted
as the number of the node of the wave function in the direction
of the symmetry axis, while N represents the sum of the
nodes of the wave functions in the directions of the symmetry
axis and the x and y axes. Defining the meaning of the
quantum numbers, N and nz, in this way, one obtains the
asymptotic behavior of one-particle levels in the spheroidal
cavity as follows: (i) For a large deformation the quantum
numbers [N nz �] become good quantum numbers; (ii) For
a large deformation the slope of the one-particle energies in
Figs. 3(a), 3(b), and 5 is determined by the quantum numbers N

and nz; (iii) Levels with larger nz for a given N lie energetically
lower (higher) in prolate (oblate) shape; (iv) The presence of
the surface in the potential makes the levels with larger �

values for given N and nz lower, since already in the spherical
shape higher � shells are energetically pushed down compared
with lower � shells.

On the prolate side (i.e., α > 0) of Fig. 5 the levels split
for a small α value have already the internal structure which
smoothly changes to respective asymptotic quantum numbers
and, thus, the splitting grows smoothly and monotonically as α

further increases. In contrast, on the oblate side (i.e., α < 0) the
levels except two levels with [505] and [514] have to change
drastically the internal structure to approach their asymptotic
quantum numbers as |α| increases. The drastic change of the
internal structure comes from the interaction (or the avoided
crossing) with the one-particle levels originating from the 2f

and 3p shells. Consequently, it produces the strongly nonlinear
behavior for those one-particle levels on the oblate side, in
striking contrast to the prolate side, in the deformation region
relevant to that of the ground states. More generally speaking,
for a given N � 1 the splitting of one-particle levels coming
from the highest � (= N ) subshell grows monotonically on the
prolate side, while on the oblate side all levels except the two
levels with [N 0 N ] and [N 1 N − 1] have to change drastically
the internal structure very soon after |α| increases from zero.
From Fig. 3(b) one can indeed see that the splitting structure
of one-particle levels originating from the 1i and 1j shells is
very similar to Fig. 5 on both prolate and oblate sides.

The similar asymmetry of the splitting of one-particle
levels on the prolate and oblate sides can be identified also
for one-particle levels coming from the � = N − 2 shell (the
yrare family in Fig. 2(b)) if N is sufficiently large, though
the asymmetry is less striking. If we take an example of
the one-particle levels coming from the N = 5, 2f shell in
Fig. 3(b), the one-particle levels on the prolate side have the
asymptotic quantum numbers, [530], [521], [512], and [503],
from the bottom to the top, and the level splitting grows
monotonically as α increases from zero. In contrast, on the
oblate side the asymptotic quantum numbers are [523], [521],
[532], and [530], from the bottom to the top. That means, two
levels starting with [512] and [503] at very small values of |α|
on the oblate side have to change the internal structure soon
after |α| increases from zero. Consequently, in the deformation
region relevant to the ground states the local one-particle level
density on the oblate side is higher than that on the prolate
side. This helps further the prolate dominance produced by
the level splitting of the 1i (� = N = 6) shell in the region of
particle number 94–130.

The level splitting of the � � N orbits does not play an
important role in the present discussion, since the degeneracy
of these subshells is small.

For reference, in Fig. 6 the level splitting of an isolated
single � = 5 shell in cavity is shown, which is obtained
by switching off the coupling to other shells. The volume
conservation taken into account is the same as the one in Fig. 5
and leads to the curves in Fig. 6 instead of straight lines which
may often be seen in the literatures as the splitting of an
isolated single � shell. In the case of this isolated single � shell
the wave functions of all one-particle levels are independent
of deformation, and there is a particle-hole symmetry or a
symmetry between the prolate and oblate sides. The shape of
the total energy minimum is oblate for the Fermi level lying in
the first half of the shell while it is prolate in the second half
of the shell. The preference for prolate or oblate shape in the
beginning and the end of the shell, respectively, is opposite to
that in a major shell of the pure harmonic oscillator potential.

From the comparison of the splitting on the prolate side
of Fig. 6 with that of Fig. 5, it is noted that the interaction
with the normal-parity states in the next shell above implies
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Splitting of levels coming from isolated 1h-shell in spheroidal cavity 
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FIG. 6. Splitting of levels coming from an isolated 1h shell, which
is obtained by switching off the coupling to other shells in spheroidal
cavity.

non-linear convexity in the lower � orbits in Fig. 5. This
increase of fanning out is another important factor favoring
prolate dominance.

So far, using the cavity potential we have explained the
dominance of prolate shape in terms of the prolate-oblate
difference of the bunching of high-� “surface” states, which
are recognized as a surface mode bound to surface by the
large centrifugal potential. The characteristic feature of the
bunching of those high � one-particle levels, can be found in
all realistic nuclear potentials. It comes from the presence of
the surface in the Woods-Saxon potential and Hartree-Fock
potentials and is parametrized by the �2 term in the modified
oscillator potential. The bunching unique to the prolate and
oblate shapes, respectively, described above can be found
already in the Nilsson diagram of a small system such as
the sd-shell in realistic nuclear potentials. For example, see
the splitting of the levels originating from the 1d5/2 shell in
Fig. 5-1 of Ref. [1], where the additional effect of the spin-orbit
potential included should be also noticed.

IV. PROLATE-OBLATE COMPETITION IN SPHEROIDAL
CAVITY FOR LARGER SYSTEMS

In previous sections we have shown that the different
bunching of Nilsson levels for cavity on the prolate and oblate
sides, which come from high � shells, leads to the prolate
dominance in deformed nuclei. While the number of particles
which can be accommodated in the highest � shell (the yrast
family in Fig. 2(b)) is a large portion of the particle number
accommodated in one major shell of smaller systems, the
portion becomes smaller in a larger system. This is because the
number of particles accommodated in the highest � shell in a
spherical potential is the order of A1/3 where the total number
of particles is expressed by A, while the degeneracy of one
major shell is the order of A2/3(A1/2) in the harmonic oscillator
potential (in potentials such as an infinite-well potential).

One-particle spectrum of spherical infinite-well potential 
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FIG. 7. Eigenvalues of spherical cavity, which are larger than
those in Fig. 2(a), in units of h̄2/2mR2

0 as a function of one-particle
orbital angular momentum. The total particle number including the
factor 2 due to the spin 1/2 is shown for several Fermi levels.

The calculation of Ref. [2] of equilibrium shapes of inde-
pendent particles in a spheroidal cavity have been extended
to particle number up to 850 with a view to examine the
prolate-oblate competition in a more general context.1

In Fig. 7 we show eigenvalues of spherical cavity for
systems larger than those in Fig. 2(a) and up to those
investigated in Ref. [6]. As some numerical examples, in
Figs. 8(a) and 9(a) the total energies at the energy minima
relative to the energies of the spherical shape as a function
of particle number are plotted for systems with the particle
number 338–440 and 676–832, respectively. In Figs. 8(b)
and 9(b) the absolute values of α at the total energy minima are
shown. The close relation between the prolate or oblate minima
and the location of high-� orbits can be easily seen in the same
way as that in the smaller systems described previously. In
Table II we tabulate the calculated number of prolate and
oblate systems, and the ratio of the number of oblate system
to that of all deformed (namely oblate plus prolate) systems.
From Table II it is seen that the dominance of prolate shape
over oblate shape is gradually reduced as the particle number
increases. The decrease of deformation with particle number
shown in Table II follows rather well the expected power law
A−1/2.

V. COMMENTS ON SOME OTHER APPROACHES

Exploiting the theory of periodic orbits, Frisk [7] has
suggested that the dominance of prolate systems over oblate
systems originates in the landscape of the locally averaged
one-particle level density considered as a function of particle

1Motivated by the issue of deformations in the sodium clusters,
similar calculations based on the shell correction method without a
detailed discussion of prolate-oblate competition have been carried
out by Reimann and Brack in Ref. [6].
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TABLE II. The number of the prolate- and oblate-deformed
systems and the maximum deformation for an infinite-well potential
(spheroidal cavity). The first column shows the region of the particle
number, of which only the system with even particle-number is
examined. The second column denotes the number of prolate-
deformed system, while the number of oblate-deformed system
is given in the third column. The ratio of the number of oblate-
deformed system to the sum of the prolate- and oblate-deformed
systems is shown in the fourth column, while the α value of the
maximum |α| in respective regions of the particle number is given
in the fifth column.

Particle Prolate Oblate Ratio of oblate α of
number to total |αmax|

58–92 11 4 0.27 0.081
92–138 15 6 0.29 0.072

138–186 17 6 0.26 0.059
186–254 24 7 0.23 0.064
254–338 28 13 0.32 0.060
338–440 38 11 0.22 0.050
440–556 35 20 0.36 0.043
556–676 38 19 0.33 −0.029
676–832 45 29 0.39 −0.027

number and spheroidal deformation parameters in the po-
tential. It is however difficult for us to assess the scope
of the approach in Ref. [7] because it fails to provide
quantitative measures for the relative number of prolate and
oblate deformations.

A variety of theoretical models, some of which are fully
microscopic while others are some combinations of macro-
scopic (or phenomenological) and microscopic approaches,
have been used in the study of the prolate-oblate competition
of the ground states of deformed nuclei. Here, as an example,
we take the work by Tajima et al. in Ref. [8], which is an
HF plus BCS calculation with the SIII interaction as the HF
effective interaction. The ground states of even-even nuclei
with the proton number 2 � Z � 114 and the neutron number
N ranging from outside the proton drip line to beyond the
experimental frontier on the neutron-rich side are considered.
In Ref. [8] it is found that in heavier nuclei the oblate ground
states are very rare. They state that the dominance of prolate
deformation for N > 50 may be attributed to the change of the
nature of the major shells from the harmonic-oscillator shell
to the Mayer-Jensen shell. This statement can be interpreted
as that the spin-orbit splitting is an essential element in the
dominance of prolate systems. In order to clarify the role by
the spin-orbit potential in the prolate-oblate competition, let us
briefly consider a model consisting of the harmonic oscillator
plus spin-orbit potentials. In the spherical limit of this simple
model the splitting of one-particle energies in a given major N

shell comes only from the spin-orbit potential. As an example,
we take the N = 5 major shell. Then, taking the sign of the
spin-orbit potential in nuclear physics, in the spherical limit
the lowest-lying shell among j shells belonging to the major
shell is 1h11/2, while the highest is the 1h9/2 shell. It is easy
to find that in both prolate and oblate sides the level splitting
of the 1h11/2 shell is similar to that shown in Fig. 5, when
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FIG. 8. (a) Total energies at the energy minima relative to the
energy of the spherical shape as a function of particle number 338–440
of the system. The infinite-well potential is used and the energy unit
is h̄2/2mR2

0 . (b) Absolute values of the deformation parameter α at
the energy minima of (a).

� is replaced by � = � + sz where � expresses the nucleon
angular-momentum component along the symmetry axis.In
contrast, the splitting of the levels of the highest-lying 1h9/2

shell is quite different. On the oblate side the splitting for a
small |α| grows smoothly and monotonically as |α| further
increases (just like the level splitting on the prolate side of
Fig. 5), while on the prolate side all one-particle levels must
have asymptotically N = 5 and nz = 0 or 1. Namely, all levels
originating from the 1h9/2 shell on the prolate side must be
asymptotically up-sloping as α increases. That means, on the
prolate side three levels other than the two levels, [505 9/2] and
[514 7/2], have to change the internal structure from that for
very small α values as α further increases, in order to approach
the asymptotic behavior. Thus, we expect more prolate systems
for the Fermi level lying at the beginning of the N = 5 major
shell (due to the levels coming from the 1h11/2 shell), while
more oblate systems may be obtained for the Fermi level lying
at the end of the major shell (due to the levels coming from
the 1h9/2 shell). As a total, we conclude that the spin-orbit
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FIG. 9. (a) Total energies at the energy minima relative to the
energy of the spherical shape as a function of particle number 676–832
of the system. The infinite-well potential is used and the energy unit
is h̄2/2mR2

0 . (b) Absolute values of the deformation parameter α at
the energy minima of (a).

potential alone may not have any strong preference for prolate
shape over oblate shape.

VI. CONCLUSION AND DISCUSSIONS

This article began with the question of why almost all
deformed nuclei are prolate in their ground state rather than
an equal division between prolate and oblate as suggested by
the particle-hole symmetry that follows if we ignore subshell
structure of spherical major shells. We have only been able to
identify a mechanism that leads to a significant dominance of
prolate over oblate shapes in the range of particle number up to
those experimentally examined. This mechanism involves the
transition from harmonic oscillator mean field to systems with
a much more sharply defined surface, modeled by a deformed
cavity. In the latter region there occur surface states with orbital
angular momentum and degeneracy appreciably greater than
any other in the shell. This pattern leads to the occurrence of

avoided crossings on the oblate side of the Nilsson diagram.
This leads to shell filling in which the deformation is oblate in
the beginning of the shell, but changes to prolate well before
midshell because of the energy gain implied by the fanning out
of the prolate orbits that is increased by the interaction with
the normal-parity subshells in the next higher major shell. The
role played by the surface becomes less important for much
larger systems. Thus, the observed overwhelming dominance
of prolate shape in deformed nuclei may be identified as
the feature of the system with a relatively small number of
particles.

In the present work we focus our attention on the prolate
shape dominance in the ground states of stable or well-bound
nuclei. In drip line nuclei with weakly bound nucleons,
especially neutrons, the shell structure around the Fermi
level as well as the role played by the nuclear surface can
be different [9]. Therefore, the prolate-oblate competition
in drip line nuclei has to be separately and more carefully
examined.

We recognize that the origin of the prolate dominance
presented in this work is the essential element but it does
not immediately lead to the observed overwhelming prolate
dominance in the ground states of deformed nuclei. Thus, in
the following we make comments on some elements which
have not been taken into account in our present work. First, we
have not included the spin-orbit potential, which is important
in nuclear spectroscopy. We conclude that already in the
absence of the spin-orbit potential the dominance of prolate
systems is obtained and the spin-orbit potential alone has no
strong preference for prolate or oblate systems. However, it
is possible that a particular combination of the surface effect
of the nuclear potential with the spin-orbit splitting may make
a further contribution to the prolate dominance. In particular,
Tajima and Suzuki in Ref. [10] have identified an interesting
coherence in the contributions of the �2 and the spin-orbit
terms to the prolate/oblate competition. It is noted that the
spin-orbit potential is closely related to the surface property of
systems.

Second, we have not taken into account the pairing correla-
tion. It is reported in Ref. [11] that the inclusion of the pairing
correlation may enhance the prolate dominance, depending on
the pairing strength. As seen in Figs. 4(a) and 4(b), the systems
with oblate minima occur in the neighborhood of closed shells
and the deformation is relatively small. Therefore, some of
those oblate systems may easily become spherical when pair
correlation is included. Then, the ratio of prolate systems
to oblate ones may become larger, in agreement with the
numerical results of Ref. [11].

Third, the Coulomb interaction between protons clearly
prefers prolate shape to oblate shape as exhibited by the cubic
term, α3, in the Coulomb energy of a deformed uniformly-
charged ellipsoid. However, for the moderate deformation such
as that of nuclear ground states the preference is expected to
play a minor role.

Fourthly, only one kind of nucleons (protons or neutrons)
are considered in our present work. Different shapes may be
preferred by protons and neutrons in some nuclei with N �= Z,
and the possible difference may make a minor modification of
the degree of the dominance of prolate systems.
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