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Description of the giant monopole resonance in the even-A 112–124Sn isotopes within a
microscopic model including quasiparticle-phonon coupling
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We have calculated the strength distributions of the isoscalar giant monopole resonance (ISGMR) in the even-A
tin isotopes (A = 112–124) that were recently measured in inelastic α scattering. The calculations were performed
within two microscopic models: the quasiparticle random phase approximation (QRPA) and the quasiparticle
time blocking approximation (QTBA), which is an extension of the QRPA including quasiparticle-phonon
coupling. We used a self-consistent calculational scheme based on the Hartree-Fock+Bardeen-Cooper-Schrieffer
approximation. Within the RPA the self-consistency is full. The single-particle continuum is also exactly included
at the RPA level. The self-consistent mean field and the effective interaction are derived from the Skyrme energy
functional. In the calculations, two Skyrme force parametrizations were used: T5 with a comparatively low value
of the incompressibility modulus of infinite nuclear matter (K∞ = 202 MeV) and T6 with K∞ = 236 MeV.
The T5 parametrization gives theoretical results for tin isotopes in good agreement with the experimental data
including the resonance widths. The results of the ISGMR calculations in 90Zr, 144Sm, and 208Pb performed with
these Skyrme forces are discussed and compared with the experiment.
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I. INTRODUCTION

The investigation of the isoscalar giant monopole resonance
(ISGMR), the so-called breathing mode, is one of the funda-
mental problems of nuclear physics. The energy of the ISGMR
enables one to determine parameters characterizing the incom-
pressibility of infinite nuclear matter (INM), in particular, the
value of the incompressibility modulus K∞, which in turn
is a universal characteristic of the effective nuclear forces.
These collective resonances can be studied experimentally
in inelastic α scattering at small angles (see, e.g., Ref. [1]
and references therein). Theoretical investigations of these
states are based mainly on (i) the self-consistent microscopic
approaches (see, e.g., Refs. [2–12]), including scaling and
constrained Hartree-Fock (HF) methods and the random phase
approximation (RPA), and (ii) the Landau-Migdal approach,
which starts with a phenomenological single-particle basis and
with the independently parametrized particle-hole zero-range
interaction (see, e.g., Refs. [13–15] and references therein).
It is important to note that the incompressibility modulus
K∞ cannot be measured directly but it can be deduced
theoretically by comparing the experimental energies of the
ISGMR with the corresponding calculated values. The most
widely used approach is based on the self-consistent HF
or RPA calculations of the mean energies of the ISGMR
using effective Skyrme or Gogny forces. Because K∞ can
be calculated from the known parameters of the given force,
its value is estimated as the one corresponding to the force
that gives the best description of the experimental data. The
nonrelativistic estimates obtained in such a way lead to the

value K∞ = 210 ± 30 MeV (see, e.g., Refs. [2,4–10]), though
the recent results testify to the upper limit of this estimate (see
Refs. [11,12]). In the Landau-Migdal approach one obtains
K∞ from the scalar-isoscalar Landau-Migdal parameter f0.
Here K∞ was always of the order of 240 MeV [13].

Note that within the relativistic mean-field (RMF) theory
the INM incompressibility is usually restricted to the in-
terval K∞ = 260 ± 10 MeV (see, e.g., Ref. [16]), which is
considerably higher than the nonrelativistic limits. However,
recently a zero-range (point-coupling) representation of the
effective nuclear interactions in the RMF framework was
found to lead to the reduction of K∞ up to the value of
230 MeV [17].

In the present paper we investigate theoretically the
experimental data [18] on the strength distributions of the
ISGMR in the even-A tin isotopes (A = 112–124) that were
recently measured with inelastic scattering of α particles at
RCNP (Osaka University). This is the main goal of our work.
The calculations are performed within the framework of the
recently developed microscopic model that takes into account
the effects of the quasiparticle-phonon coupling (QPC) in
addition to the usual correlations included in the conventional
RPA.

The paper is organized as follows. In Sec. II the model is
described, with particular attention paid to dynamical pairing
effects, which are important for solving the problem of the 0+
spurious state in the ISGMR calculations in open-shell nuclei.
In Sec. III we describe the details of our calculational scheme
and present and discuss the results. Conclusions are drawn in
the last section. Appendices contain auxiliary formulas.
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II. THE MODEL

A. General scheme

Two microscopic models were used in our calculations.
The first is the well-known quasiparticle RPA (QRPA). The
basic ingredients of this approximation are the nuclear mean
field (including the pairing field operator) and the residual
particle-hole (ph) interaction. In the self-consistent QRPA
these ingredients are related to each other by the consistency
condition. The nuclear excitations are treated as superpositions
of the two-quasiparticle (2q) configurations. This model is
applicable to a wide range of nuclei including open-shell ones
as the pairing correlations of nucleons are taken into account.
The QRPA reproduces well the centroid energies and total
strengths of giant multipole resonances but not their widths.
To reproduce the total widths of the resonances it is necessary
to enlarge the configuration space by adding 4q configurations
[i.e., to extend the (Q)RPA]. The most successful approaches
in this direction are the models that take into account the QPC
in addition to the correlations included in the (Q)RPA (see,
e.g., Refs. [15,19,20] and references therein).

In the present investigation the QPC contributions are
included within the framework of the recently developed
quasiparticle time blocking approximation (QTBA), which is
an extension of the QRPA in this sense. On the other hand,
since in the QTBA the pairing correlations are also included,
this model is a generalization of the method of chronological
decoupling of diagrams [21], which is a base of the extended
theory of finite Fermi systems [15]. Details of the QTBA
model are described in Refs. [22,23]. The basic equation of our
approach (both in the QRPA and in the QTBA) is the equation
for the effective response function Reff(ω). In the shorthand
notation following that of Ref. [23] it reads

Reff(ω) = A(ω) − A(ω)FReff(ω), (1)

where A(ω) is a correlated propagator and F is an amplitude
of the effective residual interaction. In the case of the QRPA,
A(ω) reduces to the uncorrelated 2q propagator Ã(ω). In the
general case including pairing correlations, the amplitude F
can be represented as a sum of two terms,

F = F (ph) + F (pp), (2)

where the amplitude F (ph) represents interaction in the ph
channel andF (pp) includes contributions of the interaction both
in the particle-particle (pp) and in the hole-hole (hh) channels.
(In the following for brevity we will use the unified term pp
channel, implying also the hh-channel contributions.)

Let us emphasize that the general formulas of the QTBA
derived in Ref. [22] are valid both in the self-consistent and
in the non-self-consistent approaches. In the present paper,
we use a self-consistent calculational scheme based on the
HF and Bardeen-Cooper-Schrieffer (BCS) approximations
(henceforth referred to as the HF+BCS approximation). The
self-consistent mean field and the effective residual interaction
are derived from the Skyrme energy functional by means of
the known variational equations. In the calculations, the T5
and T6 Skyrme forces (see Ref. [24]) are used.

An important property of these parametrizations is that
they produce the nucleon effective mass m∗ equal to the bare

nucleon mass m. This is a consequence of the fact that the
T5 and T6 Skyrme-force parameters are constrained by the
relations (see Ref. [25])

t2 = −1

3
t1 (5 + 4x1), x2 = −4 + 5 x1

5 + 4 x1
. (3)

In this case the contribution of the velocity-dependent terms
(except for the spin-orbital ones) to the energy functional
and the mean field reduces to the derivatives of the nucleon
density (i.e., to the simple surface terms). As a consequence,
the contribution of these terms into the effective interaction
derived from such an energy functional also has a very simple
form. To see this, consider the energy density H of the Skyrme
energy functional E defined as

E =
∫
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where HCoul is the Coulomb energy density including the
exchange part in the Slater approximation, that is,

HCoul(r) = e2

2

∫
d r ′ ρp(r) ρp(r ′)

|r − r ′| − e2 3

4

(
3

π

)1/3

ρ4/3
p (r), (6)

andHpair is the density of the pairing energy. In the applications
of the models based on the Skyrme energy functionals it is
frequently taken in the simplest form

Hpair = 1
4 V0 (κ∗

nκn + κ
∗
pκp), (7)

which was also used in our calculations. In Eqs. (5)–(7), ρq, τq ,
and Jq are the normal densities and κq is the anomalous
local density of the nucleons of the type q = n, p (neutrons
or protons); ρ = ρn + ρp and J = Jn + Jp. In particular, ρq

is the local particle density, τq is the kinetic-energy density,
and Jq is the spin density. They are defined in the usual way
(see, e.g., Ref. [26]). In the case of the spherically symmetric
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nucleus and within the HF+BCS approximation they have the
form

ρq(r) =
∑
(1)

δq1, q

2j1 + 1

4π
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(1) R
2
(1)(r), (8)
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κq(r) =
∑
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δq1, q

2j1 + 1

4π
u(1) v(1)R

2
(1)(r). (11)

Here and in the following we use the notation of Refs. [22,23]
for the single-quasiparticle basis functions in the doubled space
ψ̃1, which are labeled by the composite indices 1 = {[1],m1},
where [1] = {(1), η1}, (1) = {q1, n1, l1, j1}, and η1 = ±1 is
the sign of the quasiparticle energy E1 = η1E(1). That is,
the symbol “(1)” stands for the set of the single-particle
quantum numbers except for the projection of the total angular
momentum m1, R(1)(r) is the radial part of the single-particle
wave function, v2

(1) is the occupation probability, and u(1) =√
1 − v2

(1).

Equations (4) and (5) result in the following equality:

δE
δτq(r)

= h̄2

2m
= constant. (12)

In particular, this means that the equations of motion derived
from such an energy functional E contain the nucleon effective
mass m∗

q(r) = m. The spin-scalar part of the effective residual
interaction in the ph channel corresponding to E is determined
by the relation

F (ph)
0, qq ′ (r, r ′) = δ2E

δρq(r) δρq ′ (r ′)
. (13)

This ansatz completely includes velocity-dependent contribu-
tions because of Eq. (12). The explicit form of this part of the
interaction in the case of the functional [Eq. (5)] is shown in
Appendix A.

As can be seen from Eqs. (A1) and (A2), the density-
dependence power of the effective nuclear forces is set
by the parameter α of the Skyrme energy functional. There
exists the following simple relationship between this parameter
and the INM incompressibility modulus K∞:

K∞ = K (0)
∞ + K (1)

∞ α, (14)

where
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F

2m
+ 9
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A
, (16)

with kF and B/A being the Fermi momentum and the binding
energy per nucleon in nuclear matter, respectively. Putting

kF = 1.35 fm−1, B/A = 16 MeV, and m∗ = m one gets (see
Ref. [4])

K∞ = 167 + 212 α (MeV). (17)

Thus, for the typical values of α we have K∞ = 202 MeV for
α = 1/6 and K∞ = 237 MeV for α = 1/3.

Let us note that in addition to the simplicity of the formulas
for the residual interaction there are physical reasons to use
the effective forces with m∗ = m. It is known that for heavy
and medium mass nuclei the single-particle spectra obtained
in the HF calculations with such forces better reproduce the
experimental energies as compared with the case of the forces
with m∗/m ∼ 0.7. As a rule, this results in better description of
the excitations of the even-mass nuclei in the RPA and QRPA.
The same is true for the QTBA if the subtraction procedure
(see Eq. (21) in the next section and Refs. [22,23]) is used.

The spin-vector components of the effective interaction
are not determined uniquely from Eq. (5), which is valid
only for the spin-saturated nuclei. However, these components
do not enter equations for the 0+ excitations. The spin-
orbital components of the residual interaction in the general
case lead to considerable complication of the formulas. But
for the monopole excitations the situation is simplified. In
our calculations the spin-orbital components are included
in the coordinate representation (see the following) by the
method described in Appendix B. The effective interaction
in the pp channel and the gap equation within the HF+BCS
approximation are determined by the formulas of Appendix A
of Ref. [23] with F ξ (r) = 1

2V0 (see also Appendix C of the
present paper).

B. Dynamical pairing effects in QRPA and QTBA

One of the important questions arising in the QRPA and
QTBA calculations is the question of completeness of the
configuration space. The size of the basis in this space has an
impact practically on all the calculated quantities. In particular,
configurations with a particle in the continuum are responsible
for the formation of the escape widths of the resonances.
The well-known method to include these configurations on
the RPA level is the use of the coordinate representation
within the Green function formalism (see Ref. [27]). We
use this method in our approach as described in Ref. [23].
However, incorporation of the pp-channel contributions in
the coordinate representation leads to considerable numerical
difficulties. At the same time, the pp-channel contributions
(so-called dynamical pairing effects) are very important in
the calculations of 0+ excitations in the open-shell nuclei,
primarily because of the problem of the 0+ spurious state. For
this reason we have developed a combined method, which is a
modification of the so-called (r, λ) representation proposed in
Ref. [28] for the QRPA problem. Within this method only the
ph channel is treated in the coordinate space; the dynamical
pairing effects are included in the discrete basis representation.

Consider the general case of the QTBA. By taking into
account the decomposition of Eq. (2) one can rewrite Eq. (1)
in the form

Reff(ω) = A(res+pp)(ω) − A(res+pp)(ω)F (ph)Reff(ω), (18)
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where propagator A(res+pp)(ω) is a solution of the equation

A(res+pp)(ω) = A(ω) − A(ω)F (pp)A(res+pp)(ω). (19)

In the present work we use the version of the QTBA in which
the ground-state correlations caused by the QPC are neglected.
In this case the correlated propagator A(ω) is defined by the
equation

A(ω) = Ã(ω) − Ã(ω) �̄(ω) A(ω), (20)

where Ã(ω) is the uncorrelated QRPA propagator,

�̄(ω) = �(res)(ω) − �(res)(0), (21)

and �(res)(ω) is a resonant part of the interaction amplitude
responsible for the QPC in our model (see Refs. [22,23]
for details). Combining Eqs. (19) and (20) leads to the new
equation for A(res+pp)(ω):

A(res+pp)(ω) = Ã(ω) − Ã(ω)[�̄(ω) + F (pp)]A(res+pp)(ω).

(22)

As a result we find that the pp-channel contributions can be
included by modification of the equation for the correlated
propagator [i.e., by replacing Eq. (20) by Eq. (22)]. The
modification is reduced to the additional term F (pp) added
to the amplitude �̄(ω). The respective equations in terms of
the reduced matrix elements are derived in Appendix C. It
is worth noting that the QPC in the QTBA is included both
in the ph channel and in the pp channel because there is no
difference between these channels in the representation of the
single-quasiparticle basis functions in the doubled space (ψ̃1;
see Ref. [23]) used in Eqs. (19), (20), and (22). This is true for
both the system of equations given by Eqs. (1) and (20) and
the system given by Eqs. (18) and (22).

In practice Eq. (18) for Reff(ω) is solved in the coordi-
nate representation (to take into account the single-particle
continuum), whereas Eq. (22) is solved in the restricted
discrete basis representation. This fact greatly simplifies the
problem as compared with the initial Eq. (1) in which both the
ph-channel contribution and the pp-channel one are included
in the coordinate representation. At the same time, the use of
the restricted discrete basis representation for the pp channel
is fully consistent with the BCS approximation in which the
gap equation is solved in the same restricted basis.

The general scheme described here ensures that the energy
of the 0+ spurious state (the so-called ghost state) is equal to
zero both in the QRPA and in the QTBA. However, there still
remains the following problem: In the QTBA the ghost state
can be fragmented owing to its coupling to the 2q ⊗ phonon
configurations, despite the energy of the dominant ghost state
being equal to zero. This can lead to the spurious states at low
energies. The appearance of these states can distort respective
strength functions. In particular, these fragmented spurious
states will produce nonzero response to the particle-number
operator, which has to be exactly equal to zero in a correct
theory (as, for instance, in the QRPA including the pp channel
that was proved by Migdal [29]). In the present calculations
this additional problem arising in the QTBA is solved with the
help of a special projection technique, which will be described
in a forthcoming publication.

III. CALCULATIONS OF THE GIANT MONOPOLE
RESONANCE IN THE TIN ISOTOPES

A. Numerical details

The method just described has been applied to calculate
the strength distributions of the isoscalar giant monopole
resonance in the even-A tin isotopes (A = 112–124) that were
recently measured experimentally at RCNP (see Ref. [18]).
The ground-state properties of these nuclei were calculated
within the HF+BCS approximation using T5 and T6 Skyrme
forces with the parameters taken from Ref. [24] including
the pairing-force strength V0 = −210 MeV fm3 in Eq. (7).
The same forces were used to calculate the effective residual
interaction as described in Sec. II. For all tin isotopes under
consideration, the pairing window for the neutrons contains 22
states including all the discrete states and one (1i13/2) or two
(1h9/2 and 1i13/2) quasidiscrete states. The criterion to select
quasidiscrete states is described in Ref. [23].

To calculate the strength function of the ISGMR, Eq. (1)
for the effective response function Reff(ω) was solved by using
its reduction to the system of Eqs. (18) and (22). The strength
function S(E) is determined by Reff(ω) via the formulas

S(E) = − 1

π
Im �(E + i), (23)

�(ω) = −1

2

∑
1234

(eV 0)∗21 R eff
12,34(ω)(eV 0)43, (24)

where �(ω) is the nuclear polarizability, E is an excitation
energy,  is a smearing parameter, V 0 is an external field, and
e is an effective charge operator. In the case of the isoscalar 0+
excitations the one-body operator eV 0 is proportional to the
identity matrices both in the spin and in the isospin indices.
Its radial dependence is taken in our calculations in the form
eV 0 = r2. The smearing parameter was taken to be equal to
500 keV, which approximately corresponds to the experimental
resolution for the data presented in Ref. [18].

In the calculation of the QTBA correlated propagator A(ω)
entering Eq. (1), the valence zone for the neutrons coincides
with the pairing window. The valence zone for the protons
contains 20 states including all the discrete states and several
quasidiscrete states as described in Ref. [23]. Let us emphasize
that the restricted valence zone is used only in the calculation of
the discrete part of the propagator A(ω) including QPC effects
and in the calculation of the phonons (see the following). In
the ISGMR calculations, the configurations with the particle
in the continuum are included completely in the RPA-like part
of A(ω) (see Ref. [23] for details).

The set of phonons in the QTBA calculations included col-
lective modes with values of the spin L in the interval 2 � L � 9
and with natural parity π = (−1)L. The phonon characteristics
were calculated within the QRPA by using configuration space
restricted by the valence zone just described. The maximal
energy of the phonon was adopted to be equal to the value
10 MeV, which is approximately equal to the nucleon sepa-
ration energy for the given tin isotopes. The second criterion
to include the phonon into the phonon space was its reduced
transition probability B(EL), which should be more than 10%
of the maximal B(EL) for the given spin. According to these
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TABLE I. Mean energies and Lorentzian-fit parameters for the ISGMR strength distributions in the even-A 112–124Sn isotopes. The
mean energies are calculated for the 10.5–20.5 MeV energy interval. Theoretical results are obtained within the QRPA and the QTBA,
which is an extension of the QRPA including quasiparticle-phonon coupling. The self-consistent HF+BCS calculational scheme based
on the T5 (K∞ = 202 MeV) and T6 (K∞ = 236 MeV) Skyrme forces is used. The RPA results for 100,132Sn are shown for comparison.
Experimental values are taken from Ref. [18] (RCNP).

Method Force
√

m1/m−1 (MeV) m1/m0 (MeV)
√

m3/m1 (MeV) EGMR (MeV) � (MeV)

100Sn RPA T6 17.2 17.3 17.5 17.5 1.9
RPA T5 16.0 16.1 16.3 16.1 1.7

112Sn QRPA T6 17.0 17.1 17.3 17.3 1.9
QRPA T5 15.8 15.9 16.1 15.9 1.8
QTBA T5 15.7 15.8 16.2 15.8 3.7
Exp. 16.1 ± 0.1 16.2 ± 0.1 16.7 ± 0.2 16.1 ± 0.1 4.0 ± 0.4

114Sn QRPA T6 16.9 17.0 17.2 17.3 2.0
QRPA T5 15.7 15.8 16.0 15.8 1.8
QTBA T5 15.6 15.7 16.1 15.7 3.7
Exp. 15.9 ± 0.1 16.1 ± 0.1 16.5 ± 0.2 15.9 ± 0.1 4.1 ± 0.4

116Sn QRPA T6 16.8 16.9 17.1 17.2 2.1
QRPA T5 15.6 15.6 15.9 15.7 1.9
QTBA T5 15.5 15.6 16.0 15.6 3.8
Exp. 15.7 ± 0.1 15.8 ± 0.1 16.3 ± 0.2 15.8 ± 0.1 4.1 ± 0.3

118Sn QRPA T6 16.6 16.7 17.0 17.1 2.1
QRPA T5 15.4 15.5 15.8 15.6 2.0
QTBA T5 15.4 15.5 15.9 15.5 3.9
Exp. 15.6 ± 0.1 15.8 ± 0.1 16.3 ± 0.1 15.6 ± 0.1 4.3 ± 0.4

120Sn QRPA T6 16.5 16.6 16.9 17.0 2.2
QRPA T5 15.3 15.4 15.7 15.5 2.1
QTBA T5 15.3 15.4 15.8 15.3 3.9
Exp. 15.5 ± 0.1 15.7 ± 0.1 16.2 ± 0.2 15.4 ± 0.2 4.9 ± 0.5

122Sn QRPA T6 16.4 16.5 16.8 16.9 2.3
QRPA T5 15.2 15.3 15.5 15.4 2.1
QTBA T5 15.1 15.3 15.7 15.2 3.8
Exp. 15.2 ± 0.1 15.4 ± 0.1 15.9 ± 0.2 15.0 ± 0.2 4.4 ± 0.4

124Sn QRPA T6 16.2 16.4 16.7 16.7 2.3
QRPA T5 15.0 15.1 15.4 15.2 2.2
QTBA T5 15.0 15.2 15.5 15.1 3.8
Exp. 15.1 ± 0.1 15.3 ± 0.1 15.8 ± 0.1 14.8 ± 0.2 4.5 ± 0.5

132Sn RPA T6 15.7 15.8 16.1 16.0 2.5
RPA T5 14.4 14.5 14.8 14.5 2.2

criteria, the total number of phonons included in the QTBA
calculations is equal to 21 for 112Sn, 19 for 114Sn, 23 for 116Sn,
26 for 118Sn, 29 for 120Sn, 27 for 122Sn, and 31 for 124Sn.

To describe correctly effects of a fragmentation of the
resonances in the QTBA arising from the QPC it is very
important to use the phonon space with the phonon character-
istics close to the experimental ones. However, neither the T5
nor the T6 Skyrme force provides a satisfactory description
of the experimental energies and transition probabilities
within the self-consistent QRPA scheme presented in Sec. II.
For this reason, in the calculation of the phonons (and
only in this calculation) we have used the QRPA scheme
that is self-consistent only on the mean-field level. More
specifically, the mean field was calculated within the HF+BCS
approximation based on the T5 Skyrme force, whereas the

effective residual interaction was taken in the form of the
Landau-Migdal zero-range force with the standard set of the
parameters (see, e.g., Ref. [30]), except for the parameter fex .
This parameter was adjusted for the each nucleus to reproduce
the experimental energies of the 2+

1 and 3−
1 levels. As a result,

the parameter fex takes the values in the interval −1.54 ± 0.11
for phonons with positive parity and the values in the interval
−1.83 ± 0.06 for phonons with negative parity.

B. Results and discussion

The results for the ISGMR strength distributions in the
even-A 112–124Sn isotopes are presented in Fig. 1 and in Table I.
The mean energies of the ISGMR shown in the tables are
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FIG. 1. (Color online) Isoscalar giant monopole resonance in the
even-A 112–124Sn isotopes calculated within QRPA (dashed line) and
QTBA (solid line). The results are obtained within the self-consistent
HF+BCS approach based on the T5 Skyrme force. The smearing
parameter  is equal to 500 keV. Experimental data (solid squares)
are taken from Ref. [18].

defined via the ratios of the energy-weighted moments mk

determined as

mk =
∫ E2

E1

EkS(E) dE. (25)

The energy interval limited by E1 = 10.5 MeV and E2 =
20.5 MeV was taken to be the same as in Ref. [18]. The peak
energies EGMR and the widths � of the ISGMR were obtained
from the Lorentzian fit of the calculated functions S(E). As
can be seen from Table I, the agreement of the theoretical
results with the experimental mean and peak energies in the
case of the T5 Skyrme force is fairly good both in the QRPA
and in the QTBA. The fact that the mean and peak energies
obtained in the QRPA and in the QTBA are very close to each
other is explained by the subtraction procedure used in our
calculations (see Eq. (21) and Ref. [23] for a discussion). The
main reason for the agreement with experiment in this case is
the comparatively low value of the incompressibility modulus
of INM (K∞ = 202 MeV) produced by the T5 Skyrme-force
parametrization. The other parametrizations with K∞ around
240 MeV give mean energies of the ISGMR that are too
large for the considered tin isotopes as compared with the
experimental values.

For comparison, in Table I we show the QRPA results
obtained with the T6 Skyrme force (K∞ = 236 MeV). As
can be seen, the T6 peak energies EGMR are greater than the

experimental values for the tin isotopes by 1.2–1.9 MeV. This
fact agrees with the results of Ref. [31], where the relativistic
RPA calculations based on the force with K∞ = 230 MeV
were shown to consistently overestimate the centroid energies
of the ISGMR in the same tin isotopes.

These results can be expressed in terms of the Skyrme force
parameter α, which determines the density-dependence power
of the effective nuclear forces. Namely, according to Eq. (17)
we find that the value α = 1/6 leads to the best description of
the experimental data for the tin isotopes in our calculations
in which the Skyrme forces with m∗ = m were used. On
the other hand, from Eqs. (14)–(16) it follows that if we fix
the values kF , B/A, and K∞ while decreasing the effective
mass we get a smaller value of the parameter α. In particular,
putting K∞ = 202 MeV and m∗ = 0.8 m we obtain α ≈ 0.07,
which is substantially less than the conventional values of
this parameter. As m∗ → m∗

crit, where m∗
crit ≈ 0.72 m, the

parameter α tends to the singular point α = 0, where, in the
general case, the aforementioned conditions on the values of
kF , B/A, and K∞ cannot be satisfied simultaneously. This fact
indicates that the value m∗ = m is a fairly reasonable choice
in the case when the INM incompressibility modulus is set to
K∞ = 202 MeV.

It is worth noting that the value K∞ = 202 MeV corre-
sponding to the T5 Skyrme force (α = 1/6) lies within the
interval 210 ± 30 MeV, which was long considered as the
nonrelativistic estimate for this quantity. The recent results
[11,12] inferring K∞ to be 230–240 MeV were obtained
within the RPA and the constrained HF method on the basis
of experimental data in fact for only the one nucleus 208Pb.
Our RPA result for the mean energy m1/m0 obtained with the
T6 Skyrme force (K∞ = 236 MeV and α = 1/3) also nicely
agrees with TAMU experimental data [32] for this nucleus
(see Table II). At the same time, the T5 force gives the RPA
value m1/m0 for 208Pb that is smaller by 1.3 MeV as compared
with the value from this experiment. Note, however, that the
ISGMR data even for the well-studied nucleus 208Pb are not
quite unambiguous. In particular, the experimental value of
the ISGMR peak energy in 208Pb measured in the RCNP
experiment [33] is smaller by 0.6 MeV as compared with the
value m1/m0 from Ref. [32] and lies between the RPA values
of EGMR obtained with the T5 and T6 Skyrme forces.

In Table II, we also show the QRPA results for 90Zr and
144Sm nuclei in comparison with the available ISGMR data.
The experimental value of the ISGMR peak energy in 90Zr
obtained by the RCNP [33] is fairly well reproduced by the
calculation with the T5 Skyrme force. In the other cases, the
experimental values lie between ones calculated with the T5
and T6 forces. These results show that the question of the
precise value of K∞ is not resolved within the framework of
our approach.

In contrast to the mean energies, the QRPA and the QTBA
give substantially different values for the width of the ISGMR.
It is well known that the spreading width �↓ is a considerable
part of the total width of the giant resonance. The QRPA does
not produce �↓, whereas in the QTBA it is formed by the
2q ⊗ phonon configurations. This is the reason why the QRPA
strongly underestimates the experimental values of �, while
reasonably good agreement is achieved in the QTBA.
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TABLE II. The same as in Table I, but for the (Q)RPA calculations in 90Zr, 144Sm, and 208Pb nuclei. The mean energies are obtained
for the 5–25 MeV energy interval. Experimental data are taken from Refs. [33,34] (RCNP, Osaka University) and Refs. [1,32] (TAMU,
Texas A&M University).

Method Force
√

m1/m−1 (MeV) m1/m0 (MeV)
√

m3/m1 (MeV) EGMR (MeV) � (MeV)

90Zr QRPA T6 18.0 18.2 18.6 18.0 3.0
QRPA T5 16.6 16.8 17.2 16.5 2.0

Exp. [33] 16.6 ± 0.1 4.9 ± 0.2
Exp. [1] 17.89 ± 0.20

144Sm QRPA T6 15.8 16.0 16.4 15.8 2.0
QRPA T5 14.6 14.7 15.1 14.5 1.5

Exp. [34] 15.30+0.11
−0.12 3.71+0.12

−0.63

Exp. [32] 15.40 ± 0.30 3.40 ± 0.20
208Pb RPA T6 13.8 14.0 14.5 13.9 1.9

RPA T5 12.6 12.7 13.2 12.6 1.6
Exp. [33] 13.4 ± 0.2 4.0 ± 0.4
Exp. [32] 13.96 ± 0.20 2.88 ± 0.20

To investigate the nature of the dependence of the ISGMR
mean energies on the neutron excess (N − Z) we calculated
the unperturbed 0+

IS
response by substituting the (Q)RPA un-

correlated propagator Ã(ω) in Eq. (24) instead of R eff(ω). This
response corresponds to the independent quasiparticle model
(IQM). The results are presented in Table III in comparison
with the (Q)RPA results obtained in the same energy interval of
10–30 MeV. This interval was chosen to exclude contribution
of the low-lying strength arising in the IQM response. As can
be seen from Table III, the (N − Z) dependence of the (Q)RPA
mean energies practically follows the dependence of the IQM
energies. In particular, the difference between the m1/m0

TABLE III. Mean energies for the 0+
IS

strength distributions in
the even-A 100,112–124,132Sn isotopes calculated for the 10–30 MeV
energy interval within the self-consistent HF+BCS approach based
on the T5 Skyrme force. See text for details.

Method
√

m1/m−1 m1/m0
√

m3/m1

(MeV) (MeV) (MeV)

100Sn IQM 19.1 19.3 19.9
RPA 16.3 16.4 16.8

112Sn IQM 18.5 18.7 19.4
QRPA 16.1 16.2 16.7

114Sn IQM 18.3 18.5 19.3
QRPA 15.9 16.1 16.6

116Sn IQM 18.1 18.4 19.1
QRPA 15.8 15.9 16.5

118Sn IQM 17.9 18.2 19.0
QRPA 15.7 15.8 16.3

120Sn IQM 17.8 18.1 18.9
QRPA 15.5 15.7 16.2
RPA 15.2 15.4 15.9

122Sn IQM 17.6 17.9 18.7
QRPA 15.4 15.5 16.1

124Sn IQM 17.5 17.8 18.6
QRPA 15.2 15.4 15.9

132Sn IQM 17.1 17.4 18.2
RPA 14.6 14.7 15.2

values for 112Sn and 124Sn in the QRPA is equal to 0.8 MeV
and approximately the same difference 0.9 MeV is obtained
in the IQM calculation. Since the poles of the uncorrelated
propagator Ã(ω) are equal to the sums of the quasiparticle
energies E(1) + E(2) [see Eq. (C3)], this result means that the
(N − Z) dependence of the ISGMR mean energies is mainly
determined by the level density of the single-quasiparticle
spectrum. Including the residual interaction in the (Q)RPA,
we obtain the following redistribution of the isoscalar
monopole strength: The low-lying part of the strength dis-
appears, and the mean energy of the high-lying states (which
form the ISGMR) is reduced by approximately 2.4 MeV.

In Table III, we also include the ISGMR mean energies
obtained within the RPA for the 120Sn nucleus. In this
calculation, the pairing correlations are neglected both in
the mean field and in the residual interaction. The respective
strength function is shown in Fig. 2 in comparison with the
IQM and QRPA strength functions. These results demonstrate
that the influence of the pairing correlations on the ISGMR
mean energies is appreciable. In the QRPA, where the pairing

FIG. 2. (Color online) Isoscalar E0 response in 120Sn calculated
within the independent quasiparticle model (IQM, dashed line), RPA
(dashed-dotted line), and QRPA (solid line), making use of the T5
Skyrme force. See text for details. The smearing parameter  is equal
to 500 keV.
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correlations are included, the mean energies increase by
0.27 MeV as compared with the RPA. On the other hand,
the QRPA mean energies calculated with the T6 Skyrme force
for 120Sn in the energy interval 10–30 MeV are greater than the
respective T5 values listed in Table III by 1.37 MeV. Since the
difference between the values of K∞ for the T5 and T6 forces
is equal to 34 MeV, the shift of the ISGMR mean energies by
0.27 MeV in this nucleus corresponds to δK∞ ≈ 7 MeV.

Note also that the energy shift induced by the pairing
correlations in the considered tin isotopes is greater than
the total shift caused by the spin-orbital and the Coulomb
components of the effective interaction. In our previous
calculations of the ISGMR (see Ref. [35]) these components
were not included. As a result, the calculated ISGMR mean
energies in the 112–124Sn nuclei were shifted upward by about
0.1–0.2 MeV. This relatively small difference is a consequence
of the near cancellation between the spin-orbital and the
Coulomb contributions in the interaction (see also Ref. [36],
where these effects were investigated in more detail).

IV. CONCLUSIONS

In the paper the results of the theoretical analysis of
the ISGMR strength distributions in the even-A 112–124Sn
isotopes were presented. The calculations were performed
within two microscopic models: the quasiparticle random
phase approximation and the quasiparticle time blocking
approximation, which is an extension of the QRPA includ-
ing quasiparticle-phonon coupling. We used a calculational
scheme based on the HF+BCS approximation, which is fully
self-consistent on the RPA level. The self-consistent mean field
and the effective interaction (including the spin-orbital and the
Coulomb contributions in both quantities) were derived from
the Skyrme energy functional. In the calculations, two Skyrme
force parametrizations were used. The T5 parametrization with
comparatively low value of the incompressibility modulus of
infinite nuclear matter (K∞ = 202 MeV) allowed us to achieve
good agreement with the experimental data for tin isotopes
within the QTBA including resonance widths. However,
this parametrization underestimates the experimental ISGMR
mean energy for the 208Pb nucleus, which is usually used in
the fit of the Skyrme force parameters. The T6 Skyrme force
with K∞ = 236 MeV nicely reproduces the ISGMR mean
energy for 208Pb but overestimates the energies for 112–124Sn
isotopes by more than one MeV. The experimental data on
the ISGMR energies in 90Zr and 144Sm nuclei lie between the
values calculated by us with the T5 and T6 forces, though the
T6 Skyrme force leads on average to a better description of
the experiment. On the whole, these results do not allow us to
decrease the ambiguity in the value of K∞ as compared with
the previous known estimates. Note, however, that the main
goal of our work is not to solve the problem of the nuclear
matter incompressibility but to find under which conditions
one can obtain reasonable description of the experimental
data for the considered tin isotopes within the framework of
the self-consistent approach including correlations beyond the
QRPA.
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APPENDIX A: SPIN-SCALAR COMPONENTS OF THE
EFFECTIVE RESIDUAL INTERACTION IN THE

COORDINATE REPRESENTATION

Equations (5) and (13) lead to the following explicit form of
the spin-scalar components of the effective residual interaction
in the ph channel:

F (ph)
0, nn(r, r ′) = (

1
2 t0 (1 − x0) + 1

12 t3
{(

1 + 1
2 x3

)
(1 + α)

× (2 + α) ρα − (
x3 + 1

2

) [
2ρα + 4αρnρ

α−1

+α(α − 1)
(
ρ2

n + ρ2
p

)
ρα−2]}) δ(r − r ′)

+ 3
16 [t2 (1 + x2) − t1 (1 − x1)]δ(r − r ′),

(A1)

F (ph)
0, np(r, r ′) = (

t0
(
1 + 1

2 x0
) + 1

12 t3
{(

1 + 1
2 x3

)
(1 + α)

× (2 + α) ρα − (
x3 + 1

2

)
α [(α + 1)ρα

− 2(α − 1)ρn ρp ρα−2]
})

δ(r − r ′)

+ 1
8

[
t2

(
1 + 1

2x2
) − 3t1

(
1 + 1

2x1
)]

δ(r − r ′).
(A2)

The formulas for the componentsF (ph)
0, pp andF (ph)

0, pn are obtained
from Eqs. (A1) and (A2) by replacing indices n by p and p by
n and by adding the Coulomb interaction to F (ph)

0, pp. The radial
parts of these functions entering the QTBA equation (33) of
Ref. [23] are defined as follows:

FJ (ph,ph)
L0q, L′0q ′ (r, r ′) = δLL′

2L + 1

∑
M

∫
dn dn′ Y ∗

LM (n)

×F (ph)
0, qq ′ (r, r ′)YLM (n′). (A3)

APPENDIX B: SPIN-ORBITAL COMPONENTS IN THE
CASE OF THE 0+ EXCITATIONS

To include the spin-orbital components of the effective
residual interaction in the QRPA and the QTBA equations
written in the coordinate representation one has to extend the
set of quantum numbers related to the angular momentum.
If we restrict ourselves to the case of the 0+ excitations,
the following procedure is applicable. Using the notation
of Ref. [23], we formally introduce one additional value of
the quantum number S entering the set {J,L, S}, where J

is the total angular momentum of the excited state, L = J

for the natural-parity excitations, and S = 0, 1. Namely, we
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introduce the value S = 2 for the spin-orbital components of
the quantities entering the QTBA equation (33) of Ref. [23].
Thus, in the case of the 0+ excitations we have J = L = 0
and S = 0, 2. The components of the correlated propagator
A

J (ph,ph)
LSq,L′S ′q ′ (r, r ′; ω) with S, S ′ = 0, 2 are defined by Eqs. (41)–

(44) of Ref. [23] in which we formally set

〈 j l || T002 || j l 〉 = 〈lσ 〉j l 〈 j l || T000 || j l 〉, (B1)

where 〈 j l || TJLS || j ′l′ 〉 on the right-hand side of Eq. (B1) is
the reduced matrix element of the spherical tensor operator
and

〈lσ 〉j l = j (j + 1) − l(l + 1) − 3
4 . (B2)

The respective components of the interaction F (ph)
SS ′, qq ′ (r, r ′) =

FJ=0 (ph,ph)
0Sq,0S ′q ′ (r, r ′) in Eq. (33) of Ref. [23] are defined as follows:

F (ph)
02, qq ′ (r, r ′) = F (ph)

20, q ′q(r ′, r)

= −1

2
W0 (1 + δqq ′ )

1

r ′r2

∂

∂r
δ(r − r ′), (B3)

F (ph)
22, qq ′ (r, r ′) = −1

8
[t1x1 + t2x2 − δqq ′ (t1 − t2)]

× 1

(rr ′)2
δ(r − r ′). (B4)

To check the accuracy of our method we have calculated the
ISGMR mean energy

√
m1/m−1 in three nuclei, 100Sn, 120Sn,

and 208Pb, within the RPA and have compared the results with
the values obtained using the constrained HF (CHF) method
described in Ref. [3] (see also Ref. [10] for details of our
calculational scheme). In the calculations the T5 Skyrme force
was used. The CHF method yields the values 16.25 MeV
for 100Sn, 15.08 MeV for 120Sn, and 12.65 MeV for 208Pb.
The energy-weighted moments m1 and m−1 in the RPA were
calculated by the method described in Ref. [37]. According to
this method, the values of the moments mk for the odd k are
defined by the formula

mk = sgn(k)

2N
Re

(
N∑

n=1

�k+1
n �(�n)

)
, (B5)

where �(ω) is defined by Eq. (24) and

�n = �ei(2n−1)π/4N . (B6)

As N → ∞ and � → ∞ for k > 0 (� → 0 for k < 0) this
definition coincides with Eq. (25) for the case E1 = 0, E2 =
∞, and  → + 0 in Eq. (23) (i.e., for the case corresponding
to the CHF result). In our calculations, the following param-
eters entering Eqs. (B5) and (B6) were taken: N = 7, � =
150 MeV for m1, and � = 0.1 MeV for m−1. The RPA
equation was solved in coordinate space using a mesh size
of 0.2 fm. In this way we have obtained in the self-consistent
RPA for all three nuclei the values

√
m1/m−1 coinciding with

the CHF results listed here within the accuracy of our CHF
calculations (i.e., with a relative error of about 10−4). Note that
the energy-weighted sum rule represented by the moment m1

is exhausted in these RPA calculations with the same relative
error of about 10−4.

APPENDIX C: MODIFICATION OF THE QTBA
EQUATIONS INCLUDING CONTRIBUTION OF THE

PARTICLE-PARTICLE CHANNEL IN TERMS OF THE
REDUCED MATRIX ELEMENTS

In the detailed form using the notation of Ref. [23] for
the reduced matrix elements, our method to include the pp-
channel contribution in the QTBA equations consists of the
following. In Eq. (33) of Ref. [23] only the ph channel is kept,
but in Eq. (42) for A

J (ph,ph) LS,L′S ′
[12,34] (r, r ′; ω) the matrix element

AJ
[12,34](ω) is replaced by A

J (res+pp)
[12,34] (ω), where

A
J (res+pp)
[12,34] (ω) = δη1,−η2 δη3,−η4A

J (res+pp)
(12)η1, (34)η3

(ω). (C1)

Propagator A
J (res+pp)
(12)η, (34)η′ (ω) is a solution of the equation

A
J (res+pp)
(12)η, (34)η′ (ω) = ÃJ

(12)η, (34)η′ (ω)

+
∑
η′′

∑
(56)

θ(65) K̄
J (res+pp)
(12)η, (56)η′′ (ω)

×A
J (res+pp)
(56)η′′, (34)η′ (ω), (C2)

where

ÃJ
(12)η, (34)η′ (ω) = −η δη,η′

[
δ(13) δ(24) + sJ

(12) δ(14) δ(23)
]

2 (ω − η [E(1) + E(2)])
, (C3)

K̄J (res+pp)
(12)η, (34)η′ (ω) = η

[
�̄

J (res+pp)
(12)η, (34)η′ (ω) + sJ

(12) �̄
J (res+pp)
(21)η, (34)η′ (ω)

]
ω − η [E(1) + E(2)]

,

(C4)

�̄
J (res+pp)
(12)η, (34)η′ (ω) =

∑
η1η2η3η4

δη1, η δη2,−η δη3, η′ δη4,−η′ �̄
J (res+pp)
[12,34] (ω),

(C5)

�̄
J (res+pp)
[12,34] (ω) = �

J (res)
[12,34](ω) − �

J (res)
[12,34](0) + FJ (pp)

[12,34], (C6)

and sJ
(12) = (−1)J+l1−l2+j1−j2 . The order-bounding factors θ(21)

in Eq. (C2) are defined as follows: θ(21) = 1 if the ordinal
number of the state (1) is less than the number of (2) [(1) <

(2)], θ(21) = 1
2 if (1) = (2), and θ(21) = 0 if (1) > (2). The

interaction amplitude �
J (res)
[12,34](ω) responsible for the QPC is

defined by Eq. (B14) of Ref. [23]. Introducing the notation

FJ (pp)
(12)η, (34)η′ =

∑
η1η2η3η4

δη1, η δη2,−η δη3, η′ δη4,−η′FJ (pp)
[12,34] (C7)

and using Eqs. (C2)–(C4) of Ref. [23] we obtain the following
ansatz for this matrix element:

FJ (pp)
(12)η, (34)η′ = δq1, q2 δq3, q4 δq1, q3

1

2J + 1
〈j2l2|| TJJ 0 ||j1l1〉

× 〈j4l4|| TJJ 0 ||j3l3〉
[
δη,η′ (u(1)u(2)u(3)u(4)

+ v(1)v(2)v(3)v(4)) − δη,−η′ (u(1)u(2)v(3)v(4)

+ v(1)v(2)u(3)u(4))
] ∫ ∞

0
dr r2R(1)(r) R(2)(r)

×R(3)(r) R(4)(r)F ξ (r). (C8)

Note that the value of FJ (pp)
(12)η, (34)η′ in Eq. (C8) of the present

paper differs from the corresponding value derived from
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Eqs. (C2) and (C3) of Ref. [23] by a factor of 1/2 ow-
ing to the shorthand summation used in Eq. (C1) [(3) �
(4)]. In addition, in the case J = 0 one should set
FJ (pp)

(12)η, (34)η′ = δ(12) δ(34) FJ (pp)
(11)η, (33)η′ to obtain consistency with

the gap equation (A25) of Ref. [23] written in the diagonal
approximation. Note that this method is applicable both in
the QTBA and in the QRPA. In the latter case the amplitudes
�J (res) in Eq. (C6) are set to be equal to zero.
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