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We survey odd-even nuclear binding energy staggering using density functional theory with several treatments
of the pairing interaction including the BCS, Hartree-Fock-Bogoliubov, and the Hartree-Fock-Bogoliubov with
the Lipkin-Nogami approximation. We calculate the second difference of binding energies and compare the results
with 443 measured neutron energy differences in isotope chains and 418 measured proton energy differences
in isotone chains. The particle-hole part of the energy functional is taken as the SLy4 Skyrme parametrization,
and the pairing part of the functional is based on a contact interaction with possible density dependence. An
important feature of the data, reproduced by the theory, is the sharp gap quenching at magic numbers. With
the strength of the interaction as a free parameter, the theory can reproduce the data to an rms accuracy of
about 0.25 MeV. This is slightly better than a single-parameter phenomenological description but slightly poorer
than the usual two-parameter phenomenological form c/Aα . The following conclusions can be made about
the performance of common parametrization of the pairing interaction: (i) there is a weak preference for a
surface-peaked neutron-neutron pairing, which might be attributable to many-body effects, (ii) a larger strength
is required in the proton pairing channel than in the neutron pairing channel, and (iii) pairing strengths adjusted
to the well-known spherical isotope chains are too weak to give a good overall fit to the mass differences.
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I. INTRODUCTION

The theory of nuclear masses or binding energies has
attracted renewed interest with the advent of computational
resources sufficient to performed global calculations based on
self-consistent mean field theory, also called density functional
theory (DFT) [1–3]. A long-term goal is an improved reliability
for a theory that avoids ad hoc phenomenological parametriza-
tions. One particular aspect of the nuclear binding problem is
the ubiquitous phenomenon of odd-even staggering (OES) of
binding energy. Since the early days of BCS theory [4], OES
has been largely attributed to BCS pairing, but there are in fact
a number of mechanisms that can contribute [5–12]. In this
work, we want to study the performance of BCS theory and
its Hartree-Fock-Bogoliubov (HFB) extension to the global
body of data, taking an energy density functional and pairing
functionals that are in common use. In that way, we hope to
provide a benchmark for assessing future improvements in the
theory. Since we do not consider all mechanisms to generate
the OES, our conclusions must be tentative.

There are many DFT surveys that treat individual isotope
chains, e.g., Refs. [13,14], and the Z = 50 isotope chain
is a favorite for the calculation of pairing properties. We
shall see, however, that it can be quite misleading to draw
general conclusions without examining the whole body of
OES data. Also, in much of the literature, OES values were
not obtained from differences of calculated binding energy
but rather inferred from the average HFB gap parameters, as,
e.g., in Ref. [15]. We also mention the global mass tables by
the Brussels-Montreal Collaboration [16–18]. While this work

achieves a good performance on binding energies, it deviates
from the framework of DFT by adding phenomenological
modifications to the theory. In particular, the pairing strength
may depend on local densities, but it is hard to justify an
explicit dependence on the number parity as is assumed in
Ref. [18].

There are numerous measures of the OES in the literature,
including 3-point, 4-point, and 5-point difference formulas
[9,19–22]. In this work, we will use the 3-point formula �(3)

o

as advocated in Ref. [6] and also used in Refs. [10,15]. For
odd neutron number N , it is defined by the binding energy
difference

�(3)
o (N ) = 1

2 [B(N + 1) + B(N − 1) − 2B(N )] . (1)

In the following, we will call this quantity the “neutron
OES.” Our survey will cover the proton OES as well. One
advantage of the �(3)

o statistic is that it can be applied to
more experimental data than the higher order ones. Another
advantage is that it suppresses the smooth contributions from
the mean field to the gap. The other 3-point indicator, �(3)

e (N )
with N even, is less interesting for our purposes, because it is
more sensitive to single-particle energies.

This paper is organized as follows. Section II outlines the
theoretical DFT framework employed in this work. In Sec. III
the selection of experimental data used in the survey is
discussed. The results for selected spherical and deformed
isotopic/isotonic chains are presented in Sec. IV, while the
global performance of our pairing models is analyzed in
Sec. V. Finally, Sec. VI contains the main conclusions and
perspectives.
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II. METHODOLOGIES

We carry out two independent surveys with the same
Skyrme functional SLy4 [23] in the particle-hole channel.
The pairing functional uses the zero-range density-dependent
δ interaction:

V (r, r′) = V0

(
1 − η

ρ(r)

ρ0

)
δ(r − r′). (2)

Here V0 < 0 is the pairing strength, ρ(r) is the isoscalar
nucleonic density, and ρ0 = 0.16 fm−3. We have performed
global calculations for η = 0, 0.5, and 1, called volume,
mixed, and surface pairing, respectively. The volume pairing
interaction acts primarily inside the nuclear volume, whereas
the surface pairing generates pairing fields peaked around or
outside the nuclear surface. As discussed in Refs. [24,25],
different assumptions about the density dependence can result
in notable differences of pairing fields in neutron-rich nuclei.

The two surveys were carried out assuming two different
theoretical frameworks for the pairing channel: the BCS and
the Hartree-Fock-Bogoliubov (HFB). The details are described
in the two subsections below.

A. HF-BCS with EV8

The HF-BCS extension of the nuclear DFT can be defined
very concisely. The ordinary variables in the theory, namely,
the orbital wave functions φi expressed in some basis, are
augmented by the BCS amplitudes vi . Specifically, one defines
the BCS vi and ui amplitudes for each orbital and calculates
the ordinary DFT energy from its functional using the density
matrix ρ(r, r′) = ∑

i v
2
i φ

∗
i (r)φi(r′). To this is added the pairing

energy functional, given by

Epair =
∑
i �=j

Vijuiviujvj +
∑

i

Viiv
2
i , (3)

where Vij are the matrix elements of the pairing interaction.
We use the code EV8 [26] to carry out the HF+BCS com-

putations. EV8 solves the HF+BCS equations for Skyrme-type
functionals via a discretization of the individual wave functions
on a three-dimensional Cartesian mesh and the imaginary time
method. [In EV8, the pairing functional (3) is approximated as∑

i,j Vijuiviujvj .] The pairing interaction matrix elements are
those of the density-dependent contact interaction (2). Contact
interactions can only be used in truncated orbitals spaces; the
calculations use the same truncation as is Ref. [27], namely,
an energy window of 10 MeV around the Fermi level.

As we will see later, the OES only fluctuates about an
average trend by ∼0.3 MeV, putting a high demand on
the accuracy and the nucleus-to-nucleus consistency of the
self-consistent mean field calculations. The usual iteration
procedure in EV8 appears to be adequate to achieve accuracy
at the 100 keV level in several hundred iterations at a fixed
deformation.1 Finding the minima irrespective of deformation

1Here “accuracy” means with respect to the fully converged
minimum of the numerically implemented energy functional. This
numerical functional may contain approximations that give a larger
error with respect to the mathematically defined functional. In the

is less straightforward. We adopted the following protocol to
determine them. We first build a table of DFT energies and
orbital wave functions of the relevant even-even nuclei, using
the minimum energy deformations from the table calculated
in Ref. [27]. The relative energies of spherical and deformed
configurations are quite sensitive to the pairing interaction, so
when the spherical configuration in that table has an energy
close to the deformed minimum, the spherical is also tested.
When it comes out lower with the new pairing interaction, it
replaces the old entry in the new table. Next, the table is refined
in an iterative way, using only the deformation information
about neighboring even-even nuclei. If two neighboring nuclei
have substantially different deformations in the table, each
configuration must be tested in both nuclei. If taking the
lower energy configuration results in a change, the process
is repeated on the neighbors of the replaced nucleus. This is
continued until there are no further changes in the even-even
DFT solutions.

Once the DFT table of even-even nucleus is finalized, the
odd-A nuclei are calculated starting from the DFT solutions for
the neighboring even-even nuclei. We perform the calculations
using the so-called filling approximation for the odd particle
[28,29]. The odd particle is assumed to occupy an orbital
defined by its position in the list of orbitals ordered by single-
particle energy. That orbital is blocked by setting v2 = u2 =
0.5 in the calculation of all ordinary densities and omitting the
orbital in the summation in Eq. (3). During the self-consistency
iterations, the blocked orbital evolves along with the others
and thus may change character if the relative ordering of
the levels changes. Note that the filling approximation gives
equal occupation numbers to both time-reversed partners and
therefore misses the effects of time-odd fields on the OES.

Our protocol to find the most favorable orbital to block
was to examine the five orbitals around the Fermi level of the
neighboring even-even system. We also tested configurations
generated from the DFT solution for the even-even nucleus
with one more nucleon than the target odd-A nucleus. Thus
the total number of odd-A configurations tested was ten: five
starting from the lighter even-even core and five starting from
the heavier one.

Since the objective was to determine the level of accuracy
that could be achieved, the calculations were carried out for
the nuclei in the data set for a number of values of the pairing
strength V0. The results below are reported for a value V0 close
to that which minimizes the average residual in the �(3)

o data
sets, taking neutron and protons independently.

B. HFB with HFBTHO

The HFB calculations were carried out with the axial two-
dimensional HFB solver HFBTHO [30] that has recently been
improved by implementing the modified Broyden mixing [31]
to accelerate the convergence rate.

The even-even nuclei are calculated first. An initial set
of configurations is generated by performing constrained

case of EV8, the lattice representation of the kinetic operator results
in an error of the order of 1 MeV in heavy nuclei, which varies very
smoothly with A. Thus it largely cancels in the calculation of �(3)

o .
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minimizations on a quadrupole deformation mesh. Typically,
there are 20 calculations having deformations in the range
−0.5 < β < 0.5 with a mesh spacing �β = 0.05. Next, we
turn off the constraint to find the local minima of the energy
as a function of β. When there are multiple minima, we select
up to three for further processing, taking no more than one of
oblate and one of prolate deformation and also the spherical
solution if it is a local minimum. The final step is to perform
unconstrained minimizations on the selected configurations.
The iterative minimization is carried out until the maximum
change of the HFB matrix elements falls below 0.0001 MeV.
However, in one case, the iteration converges to a limit cycle
with energies oscillating by 0.004 MeV. Since this is well
below the accuracy needed here, we accepted the (lowest)
calculated energy.

The minimization for odd N or Z is started from the
candidate configurations produced at the second stage of the
even-even calculations. As in the BCS, the odd nucleus is
treated in the filling approximation, by blocking one of the
orbitals. Here one has to specify which orbitals to block
to generate the odd-nucleon configurations. The blocking
candidates are determined by examining the HFB quasiparticle
spectrum of the smaller neighboring even-even nucleus. Tested
are all one-quasiparticle configurations with quasiparticle
energies below the energy cutoff E1qp,cut, which is not smaller
than 2 MeV for heavy nuclei and not bigger than 8 MeV
for very light systems. For most nuclei, we take E1qp,cut =
25/

√
A MeV. As in the last step for even-even nuclei,

unconstrained calculations are performed for all candidate
configurations to find the absolute minimum energy.

In the second variant of HFB calculations (HFB+LN), we
performed an approximate particle number projection (before
variation) using the Lipkin-Nogami (LN) method [32,33].
The practical implementation of the LN treatment follows
Ref. [34], where the method was compared with the full
particle number projection.

In HFB and HFB+LN calculations, we employed the
orbital space extending to 20 major harmonic oscillator shells.
For the pairing interaction, there is no lower energy orbital
cutoff; and for the upper equivalent energy cutoff ,we adopted
the commonly used value of 60 MeV [35]. The calculations
were first performed with a standard pairing strength V std

0
adjusted to the average pairing gap in 120Sn according to the
procedure of Ref. [36]. The values obtained are V std

0 = −258.2
and −284.57 for the HFB and the HFB+LN calculations.
However, following our first survey, we found these strengths
to be too small to make a good global fit to OES. We
then increased the pairing strength by a factor of 1.2 and
recalculated the mass table from scratch. Both sets of tables
are available through the UNEDF SciDAC Collaboration [37].
Our fit to the global systematics is then made using a linear fit
of the data sets of the two mass tables:

M(x) = xM
(
V std

0

) + (1 − x)M
(
1.2V std

0

)
. (4)

The effective pairing strength obtained in this way is given by

V eff
0 = (1.2 − 0.2x)V std

0 . (5)

The values of x and the derived pairing strengths are reported
in Table I.

TABLE I. Effective strengths for the pairing interactions derived
in the present study by means of Eq. (4). Units of V0 are MeV fm3.
Also the values of the fit parameter x are given in parentheses.

Theory Density
dependence

V nn
0 (x) V

pp

0 (x)

BCS Volume 465.0 490.0
Mixed 700.0 755.0
Surface 1300.0 1462.0

HFB Mixed 318.1(0.41) 352.0(−0.18)
HFB+LN Mixed 300.5(0.18) 332.6(−0.44)

C. Other methodological aspects

In setting up the calculational protocols for the survey, we of
course scrutinized cases in which the residuals between theory
and experiment were large. The residuals are very sensitive
to numerical inaccuracies, and their detailed analysis often
brought to our attention problems with calculated numbers
due to, e.g., incorrectly assigned configurations or the lack
of convergence in self-consistent iterations. We could then
refine the protocols by making a broader screen or demanding
higher precision to produce more accurate tables. From this
standpoint, we found �(3)

o to be a very useful indicator. Also,
the fact that the theory is variational is a tremendous help: any
change in protocol that gives lower energies is necessarily an
improvement.

Apart from the numerics, it should be noted that the pairing
gap is a very strong function of the pairing strength. For
example, for the HFB calculations, we found that increasing
the pairing strength by 20% from the value fitted to 120Sn
caused the average neutron pairing gap to increase by a factor
of 2.3. This sensitivity is not surprising. A typical nucleus
in our set has some deformation and does not have a large
single-particle degeneracy at the Fermi level. This implies
that its BCS condensate is weak. Under these conditions,
the BCS gap increases very quickly from a zero value at
some finite strength of the interaction. In fact, we find that
roughly 20–30% of the calculated OESs contain a nucleus
whose BCS or HFB condensate has collapsed. Even in infinite
systems having no single-particle gap at the Fermi energy, the
condensate � grows exponentially with interaction strength in
the well-known BCS formula.

An exact implementation of HFB requires the breaking
of the time-reversal symmetry in the intrinsic frame of an
odd-A nucleus. The resulting time-odd mean fields contribute
to the binding energy of the odd-A system; hence, the OES
�(3)

o depends on whether these time-odd terms are included
or not [7,8,11,12,38]. In general, time-odd mean fields are
poorly known, and their effects differ from model to model. For
instance, in the Skyrme DFT calculations of Ref. [38], the time-
odd polarizations systematically shift the hole states down and
particle states up in energy, while a different result has been
obtained in the relativistic mean field approach [7,8]. For the
purpose of illustration, Fig. 1 shows the OES values calculated
in the HFB for isotonic chains including the effects of time-odd
fields. A detailed analysis of resulting polarizations will be
published elsewhere [40]. It appears that the contribution is
less that 100 keV in heavy elements such as the rare earths and
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FIG. 1. (Color online) Impact of time-odd terms on the proton
OES �(3)

o in the N = 90 and 100 isotonic chains calculated in the
HFB theory with SLy4 functional and mixed pairing. Solid lines
connect the values of proton OESs including time-odd fields; dashed
lines show the OES values omitting the time-odd fields. Calculations
were performed with the code HFODD of Ref. [39] in a deformed
harmonic oscillator (HO) basis containing 680 deformed HO states.

actinides, but larger values have been found with other models,
e.g., Refs. [8,12], and in light nuclei. In any case, the density
functional has not been fitted to time-odd properties, so no
quantitative evaluation of their effect is possible. In this work,
we employ the filling approximation, neglecting all time-odd
interactions.

III. EXPERIMENTAL DATA BASE

The data base for our survey derives from the 2003 atomic
mass evaluation [41]. The accuracy requirements for our
purposes is of the order of 100 keV, so we only use the masses
whose evaluated experimental errors are less than 200 keV.
This gives 908 mass triplets for the neutron OESs and 864 for
protons. However, we made additional cuts to remove nuclei
for which some physics is obviously missing from our BCS or
HFB theory. First of all, in odd-odd nuclei there is an additional
neutron-proton pairing effect. Its origin is not completely
clear [42], but it is obviously beyond the scope of the pairing
theory we use here. We therefore do not include binding energy
triplets containing odd-odd nuclei. Another phenomenon in
nuclear binding that affects the OES is the so-called Wigner
energy, an increased binding at N = Z. This might also be
a neutron-proton pairing effect (see, e.g., Refs. [43,44]). We
therefore eliminate triplets that contain N = Z nuclei. More
generally, mean field approximations become doubtful when
the number of particles is small. Some restriction of light nuclei
is imposed by a cut on particle numbers, requiring that the
neutron and proton numbers be greater than 8, corresponding
to nuclei heavier than 16O. Finally, we only include nuclei
with N > Z. There are only a few OESs on the proton-rich
side satisfying our other criteria, and keeping a fixed sign of
the isospin will permit us to make some qualitative statement
about the isospin dependence of the interaction. With all these
cuts, 443 triplets are left for the neutron OES and 418 for the
proton in our final data set.

The sets of neutron and proton �(3)
o are plotted as a function

of neutron and proton number in the top panels of Fig. 2. Lines
connect the OES values for the same number of nucleons of

the opposite kind. It is common to plot OES as a function of
A, but plotting it with respect to nucleons of the same kind
makes clearer the origin of fluctuations. Probably the largest
cause of fluctuation is the variation in single-particle level
densities and the character of the level at the Fermi energy.
This obviously depends strongly on the number of nucleons of
the same kind, and this motivates the choice of abscissa
variable. The single-particle level densities may also change
with the different numbers of nucleons of the other kind,
particular if the additional nucleons causes a large change in
deformation. Such effects should be visible in the variation
of OES at fixed value of the abscissa. To emphasize the
like-nucleon fluctuations, we also show as solid circles the
average with respect to nucleons of the opposite kind.

One can see that the shell effects are large, and there are
large fluctuations on the scale of major shell spacings. For the
neutron values of �(3)

o , there are strong dips in the Z-averaged
values at N = 15, 29, 51, 83, and 125, i.e., in the vicinity of
shell closures. We call this phenomenon “gap quenching.”
Obviously, the OES is reduced when one of the three nuclei
is at a magic number where the gap in single-particle energies
is large. We will examine the effect in more detail below,
in presenting the theoretical OES. In Table II, we show the
extreme OES cases—either the largest or the smallest in our
experimental data sets.

Another observation that can be made about the neutron
OES is that the variations with respect to Z are particularly
large in the regions N = 50 and 95–110. For the protons, the
regions of strongest N dependence are N = 35 and 60–70. We
will see that this is associated, at least in part, with changing
deformations.

The averages and variances for neutron and proton OES
�(3)

o in the data set are 1.04 ± 0.31 and 0.96 ± 0.27 MeV,
respectively. The lower average for the protons can be largely
attributed to the Coulomb interaction: in the liquid-drop for-
mula, the term acZ

2/A1/3 gives an average value of 0.11 MeV
for the proton �(3)

o in the data set. There is some overall
dependence of the OES on mass number A, which may be
seen by visual inspection of Fig. 2. For more discussion of
the global mass dependence of the OES, we refer the reader
to Refs. [6,15,22]. The smooth A dependence seems rather
weak compared to the local nucleus-to-nucleus fluctuations
caused by shell effects, but parametrizing it in some way
can give improved fits. For example, the phenomenological
parametrization [19,45]

�̃ = c

Aα
, (6)

with c = 4.66 (4.31) MeV and α = 0.31 gives an rms residual
of 0.25 MeV on the neutron (proton) data set. The global

TABLE II. Nuclei from the data base adopted for our survey with
the largest and smallest experimental values of �(3)

o (in MeV).

Largest Smallest

(N, Z) �(3)
o (N,Z) �(3)

o

Neutrons (21, 16) 1.87 (125, 82) 0.32
Protons (12, 9) 2.07 (126, 81) 0.31
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FIG. 2. OES �(3)
o as a function of nucleon number for experiment, HFB, HFB+LN, and BCS treatments. Solid circles show values obtained

by averaging over nucleon number of the opposite isospin to that of the OES. The calculation used the SLy4 Skyrme energy functional and a
pairing interaction with the mixed density dependence.

trends given by Eq. (6) are shown as the dashed lines in
Fig. 2. For the sake of the plot, we averaged over nucleon
number of the opposite kind just as was done to produce
experimental averages.

An important question about the global systematics is
whether there is an isospin dependence of the pairing
interaction. It is clear from Fig. 2 that there can be strong
interaction between the pairing of one kind on the numbers
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FIG. 3. (Color online) Calculated (HF+BCS, HFB, and
HFB+LN) and experimental values of �(3)

o for neutrons in the Sn
and Pb semimagic isotopic chains. In all calculations, the pairing
interaction was taken in the mixed pairing form (η = 0.5) with
strength V0 [or x in Eq. (4)] adjusted to global systematics.

of the other kind, but as mentioned it could be due to other
effects such as shape changes. The isospin dependence has
been examined in Ref. [22], but no significant effect has been
found (see also Refs. [46–48] for more discussion of isovector
trends). On the other hand, a recent study [49] of the OES
of nuclear masses for isotopic chains between the proton
shell closures at Z = 50 and Z = 82, including nuclei with
extreme isospins, has claimed a significant isospin dependence
of pairing. We will discuss in more detail the possible evidence
for an isovector dependence of the interaction in Sec. V C.

IV. RESULTS: LOCAL COMPARISONS

We begin our comparison between theory and experiment
with two spherical semimagic isotope chains, Sn and Pb. The
results of the calculations are shown in Fig. 3.

 0
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(3

)
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 Z 

N=102 neutron OES

FIG. 5. Experimental (filled circles) and HFB (open circles)
neutron OES for N = 102 as a function of Z. The chain starts in
the well-deformed lanthanides and ends next to the singly magic
184Pb.

For all three treatments of pairing, the trends of the predicted
OESs are consistent with the data, concerning both global and
local variations. In particular, theory reproduces the flatness
in the Sn isotopes up to the quenched gap at N = 83, and
the downsloping trend from the light Pb isotopes up to the
quenched gap at 207Pb. In the Sn isotope chain, there is a
small dip at N = 65, which might be attributed to a neutron
subshell closure at N = 64. In any case, the theories all
predict a shallow local minimum. When confronted with
experiment, HFB appears to do slightly better than HF+BCS.
As mentioned earlier, the strength of the pairing interaction
was fit to the overall systematics, giving a somewhat too high
average OES in both spherical chains.

The performance of the theories for long isotonic and
isotopic chains that include deformed nuclei is illustrated in
Figs. 4 and 5. Figure 4 shows the neutron values of OES
in the Dy isotopes (Z = 66) and proton OES values in the
N = 98 isotones. As for semimagic nuclei, the agreement
with experiment is good, particularly for well-deformed nuclei
where the mean field changes smoothly with particle number.
The effect of changing deformation is illustrated by the region
from A ∼ 160 to ∼ 190, which starts deformed and becomes
spherical as Z is increased from 66 to 82. The neutron values
of OES for N = 102 covering this transition region are shown
in Fig. 5 as a function of Z. The squares show the experimental
OES values, which increase from about 0.6–0.8 MeV for the
lower Z nuclei and goes up to ∼1.3 MeV for the singly
magic Z = 82 isotope. The circles show the corresponding
calculated HFB values of OES. The trend is very similar, but
the theoretical rise to Z = 82 is sharper and higher than is seen
experimentally. Very likely, the increase in single-particle level
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FIG. 4. Calculated and experimental
values of �(3)

o for neutrons (Z = 66) and
protons (N = 98) in rare earth nuclei, in-
cluding strongly deformed systems. Filled
circles: experiment; squares: BCS; open
circles HFB; triangles: HFB+LN.
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density going from deformed to spherical nuclei is responsible
for the increasing trend in the OES.

The fact that our calculations overestimate OES values in
spherical nuclei may be partly attributed to the particle number
fluctuations. The pairing gap exponentially depends on the
inverse of the single-particle level density at the Fermi level,
which is large in spherical open-shell nuclei because of the
2j + 1 degeneracy (the limit of pairing rotation). In deformed
systems, the level density is reduced because of the Jahn-
Teller effect [50,51], and this gives rise to the overall pairing
reduction; hence, a transition occurs toward the transitional
pairing regime, in which the particle number fluctuations are
more important. Since the original pairing strength V std

0 was
adjusted to the global data set containing far more nonspherical
nuclei than semimagic systems, the resulting deformation bias
results in too strong pairing correlations predicted for spherical
nuclei, as seen in Fig. 3. This can be partly cured by considering
particle number fluctuations. Indeed, as seen in Figs. 3 and
4, the LN procedure slightly improves the agreement with
experiment for spherical nuclei while still reproducing data
for deformed chains.

V. RESULTS: GLOBAL

A. Overview and shell effects

Figure 2 shows the distributions of neutron and proton OES
values for our three theoretical treatments: HFB, HFB+LN,
and BCS. To make the overall trends with respect to shell filling
more apparent, we also show the values of the OES obtained by
averaging over nucleons of the opposite isospin. Qualitatively,
the three methodologies give rather similar results. In all cases,
the trends of the predicted gaps are consistent with the data.
The strong neutron gap quenching seen in the experimental
OES at the numbers N = 83 and N = 125 is reproduced in all
three theoretical treatments. The gap quenching is obviously
dependent on the presence of shell closures, but the fact that it
does not invariably occur on both sides of the magic numbers
indicates that particular orbital properties must play a role.
Since the HFB calculations were performed in an axially
symmetric basis, we can examine the quantum numbers of
the blocked orbital.

In Table III, we show the quasiparticle orbital characteristics
for odd nuclei exhibiting quenched gaps. The large quenching
at N = 125 can be understood as a spherical shell effect
associated with the p1/2 shell at the Fermi level. A j = 1/2
shell will have reduced pairing for two reasons. First, there
is no degeneracy within the shell to correlate pairs, so all
of the pairing has to come from off-diagonal interactions to
other shells. Second, these couplings are reduced because
the spatial overlap of high-l and low-l orbitals is poor.
Similar considerations apply to N = 15 and Z = 81, where
the relevant spherical shell is s1/2.

While the location of the gap quenching is well reproduced
by theory, the magnitude of the effect is often exaggerated.
Most notably, all the experimental OES values are positive,
the theoretical ones at (N,Z) = (20, 15) even have a negative
sign.

TABLE III. Characteristics of nuclei with quenched gaps in the
HFB calculations. The listed nucleus is the one with the smallest
OES value at the given gap. The calculated deformation β is given in
the third column. The last columns give the quasiparticle quantum
numbers angular momentum and parity J π for spherical nuclei and
azimuthal angular momentum K and parity Kπ for deformed nuclei.

Nucleus β jπ or Kπ

N gap:
15 25Ne 0.00 1/2+

29 52Ti 0.08 1/2−

47–51 87Kr −0.09 5/2+

83 147Gd −0.03 7/2−

125 125Pb 0.00 1/2−

Z gap:
15 39P 0.21 1/2+

29 61Cu 0.10 3/2−

47–49 111Ag −0.22 1/2+

69 173Tm 0.33 7/2−

81 203Tl 0.01 1/2+

Comparing the different treatments of pairing, we see
fluctuations at the same positions in BCS and HFB+LN as
in the HFB. However, the amplitudes of the fluctuations seem
somewhat larger in the BCS treatment but somewhat smaller
in HFB+LN. It is not clear why the BCS should emphasize
the fluctuations, but the fact that they are damped in HFB+LN
is not surprising. In both BCS and HFB the static pairing
sometimes collapses in a significant fraction of nuclei, as
mentioned earlier. The pairing never collapses in the HFB+LN
treatment, so the OES should be smoother as one passes into
a region of weak pairing.

Large variations with proton number are found around
N ∼ 70 and in the region N = 100. As mentioned earlier,
the latter region is a transition region between spherical and
deformed ground states, and that will affect the OES. The HFB
theory has a spike as well as quenched-gap behavior at Z = 81
in the proton gap. The origin of the spike appears to be the
coexistence of spherical and deformed configurations in light
isotopes of Z = 81 and 82 nuclides. At the phase transition
point, there can be a large static polarization contribution to
the OES.

To see where theory performs best and where important
physics is missing, we show in Fig. 6 the isospin-averaged
residuals for our HFB model. As expected, the best agreement
is obtained for well-deformed rare earths and actinides whose
properties vary smoothly with particle number. The largest
deviations are seen around shell closures and in the regions of
shape coexistence (A ∼ 90 for neutrons and A = 110 and 190
for protons) where dynamic shape fluctuations are known to
strongly impact masses [27,52].

To analyze more quantitatively the improvement in accu-
racy for deformed nuclei, we examined the rms residuals for
the neutron OES values, separating the data into bins by the
calculated values of the deformation β. Figure 7 shows the
averaged HFB residuals. As expected, the residuals gradually
decrease with deformation. The transitional/coexisting nuclei
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FIG. 6. (Color online) Neutron and proton average variances σ

between HFB and experimental �(3)
o as a function of A. At each A, the

variance σ was obtained by averaging the residuals over all isobars
available.

with weakly oblate shapes show the largest deviations from
the data.

The fluctuations in OES are obviously suppressed when
one averages over nucleons of the opposite isospin. With that
averaging, the comparison between theory and experiment
looks much better. Figure 8 shows the theory vs experiment
comparison for the HFB methodology. Besides seeing the
shell effects discussed above, one also sees more clearly
how the theory performs with respect to the A dependence
of the pairing. The theoretical proton OES has an overall A

dependence that seems to accord well with the experimental
trend. For the neutron OES, however, the theory is flatter than
the experimental trend.

We carried out the survey with different assumptions about
the density dependence of the pairing interaction to observe
any sensitivity of the A dependence to that characteristic. The
results of the averaged neutron OES for volume and surface
pairing are shown in Fig. 9. The effect is very small, except for
the light nuclei. In view of the other possible contributions
to the staggering, we do not believe that one can reliably
extract the density dependence of the effective pairing inter-
action strength from the observed A dependence. We discuss

 0.2

 0.3

-0.1  0  0.1  0.2  0.3

σ 
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) 

quadrupole deformation β2

Neutron variances (HFB-exp)

FIG. 7. Neutron average variances σ between HFB and experi-
mental �(3)

o as a function of the calculated quadrupole deformation
β2. The deformation range −0.2 � β2 � 0.4 was divided into bins
with �β2 = 0.1, and for each bin the variance σ was obtained by
averaging the residuals over all nuclei available.

below another mechanism that could simulate the observed
trend in A, namely, an isospin dependence of the effective
pairing interaction.
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FIG. 8. (Color online) Comparison between calculated (HFB
with mixed pairing) and experimental �(3)

o values, plotting Z-
averaged values for neutrons and N -averaged values for protons.
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FIG. 9. Averaged BCS neutron OES values with the volume
(squares connected by dotted line) and surface (circles connected
by solid line) pairing interactions of Eq. (2). The dot-dashed curve is
the phenomenological fit to the data using the functional form (6).

B. Performance statistics

In Table IV, we report the rms residuals for the OES in the
various treatments, fitting the strength of the pairing interaction
separately for neutrons and protons. In the case of our HFB
and HFB+LN models, we carried out separate optimizations
for neutrons and protons with respect to the x parameter in
Eq. (4). The effective pairing strength obtained in this way is
given by Eq. (5). A more proper procedure would be to make
a two-dimensional optimization based on recalculated HFB
mass tables assuming different strengths of proton and neutron
pairing. Our experience with HF+BCS model, however, is that
the neutron pairing strength does not significantly affect the
proton �(3)

o and vice versa, at the level of changes considered
in this work. Therefore, for the purpose of a global survey, a
simplified treatment has been adopted.

From Table IV we see that all three treatments of the pairing
can achieve the performance of zeroth order description as
a constant (or phenomenological) gap, but only the Lipkin-
Nogami, shown on the next-to-last line, does significantly

TABLE IV. Root-mean-square residuals of �(3)
o obtained in

various models. All energies are in MeV. The last column shows
the ratio of proton and neutron effective pairing strengths obtained
through the optimization procedure. The mass predictions of the
HFB-14 model [17] were taken from Ref. [53].

Theory Pairing Residual Residual V eff
0 (p)/V eff

0 (n)
neutrons protons

Constant 0.31 0.27
c/Aα 0.24 0.22
HF+BCS Volume 0.31 0.38 1.05
HF+BCS Mixed 0.30 0.36 1.08
HF+BCS Surface 0.27 0.35 1.12
HFB Mixed 0.27 0.33 1.11
HFB+LN Mixed 0.23 0.28 1.11
HFB-14 0.46 0.44 1.10

better. In the HFB+LN, pairing correlations are always
present. This is particularly important for odd-A nuclei,
where the standard blocking procedure often gives rise to the
unphysical pairing collapse, artificially affecting the OES and
producing an exaggerated fluctuation. However, one should be
cautious in using the HFB+LN. While for open-shell systems
using it gives a good agreement with those of the HFB with the
full particle number projection before variation, the method is
inaccurate for closed-shell systems [34]. Consequently, it is
safest to use HFB+LN only away from the magic numbers.
In addition, the numerical procedure to find the solution
lacks stability when there is a large gap at the Fermi level.
Nevertheless, we obtained converged solutions for 440 of the
443 neutron triplets and 411 of the 418 proton triplets with our
HFB+LN implementation. The numbers in Table IV are for
those data sets. If we restrict the data set further to omit the
magic numbers 28, 50, 82, and 126, the rms residual of the
neutron OES is hardly affected, changing from 0.23 to 0.22.

One of the basic questions about nuclear pairing is the
role of induced interactions in the effective pairing interaction
[5,54–57]. Indirect information about this can in principle
be obtained by exhibiting the density dependence and the
isospin dependence of the effective interaction. It is therefore
of interest to examine interactions including a density depen-
dence to see the sensitivity. The rms residual for the neutron
OES with volume, mixed, and surface pairing in HF+BCS
theory are shown in Table IV. There is a slight favoring of
the surface interaction, but we deem that the difference in
the residuals (10%) is too slight to be significant. The weak
sensitivity to the density dependence confirms the results of
other studies [10,58].

C. Isospin dependence

A possible isospin dependence of the effective pairing
strength has been much discussed in the literature [22,46–48,
59,60]. The nuclear interaction may be assumed to conserve
isospin at a fundamental level, but the coupling to core
excitations can be different for neutrons and protons when the
core has a neutron excess. Another isospin-dependent contri-
bution to pairing comes from the Coulomb interaction. Indeed,
inclusion of the Coulomb has been found to substantially
suppress the pairing interaction energy [61] and the pairing
gaps [56]. In the last column of the Table IV, we report the ratio
of neutron and proton interaction strengths extracted from our
fits to �(3)

o . The effective proton strength, needed to reproduce
experimental �(3)

o , is larger than the neutron strength. If the
Coulomb were included explicitly, we would expect that
the needed nuclear interaction would be even larger for the
protons. Since the underlying strong interaction is isoscalar to a
good approximation, we believe that our inferred isospin effect
must arise from induced three-body interactions involving the
neutron excess. We note in passing that a number of mass table
fits by the Goriely group arrive at pairing strengths larger for
protons than neutrons. An example is the HFB-14 model [17],
shown in the last line of Table IV. However, since different
interactions are used for even and odd nuclei in HFB-14, the
results are not directly comparable.
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TABLE V. Average �(3)
o (in MeV) calculated in HFB+LN

sorted by neutron excess. See text for details.

Data set Low isospin High isospin Difference

Neutrons Exp 1.13 0.94 −0.19
HFB+LN 1.05 1.02 −0.03

Protons Exp 1.05 0.88 −0.17
HFB+LN 0.99 0.93 −0.06

As another way to test the data for an isospin-dependent
pairing interaction, we separate the nuclei into two subsets
according to neutron excess and compare the average residual
OESs. To define the subsets, we first divide the nuclei into
five A bins. For each bin, we make a cut at some value of
I = (N − Z)/A to have roughly equal numbers for the two
sets, which we designate “low isospin" and “high isospin.” In
that way, the effect of any A dependence in the OES will be
reduced. The binning for proton and neutron values of �(3)

o has
to be done separate to get balanced sets. The average values of
OES for the two sets are reported in Table V.

The empirical OES is lower for higher neutron excesses for
both protons and neutrons. The calculated �(3)

o for neutrons are
nearly equal, while the calculated �(3)

o for protons do show a
difference but much smaller than observed. For both cases, the
differences would require weakening the pairing interaction
for nuclei with larger neutron excesses. An isospin dependence
would have the opposite sign for proton and neutron gaps.

As a final plausibility check on whether the different
strengths could be attributable to some isoscalar three-body
interaction, we computed the OES values for nuclei on the
opposite side of the N = Z line (recall that our fitted data set
is restricted to N > Z). This comprises five neutron OESs
and six proton OESs, excluding as before cases involving
N = Z nuclei. Taking the pairing strengths from our global
fit, we find that the calculated average neutron OES is too low
(by 0.7 MeV), while the calculated average proton OES is too
high (by 0.24 MeV). This is precisely the expected direction of
the error if the difference in the effective strengths depends on
the sign of N − Z, as would be required by an overall isoscalar
energy functional.2

Thus, the main evidence for an isospin dependence in the
present theory is the need for different strengths for the overall
fits to neutron and proton data sets. This result supports the
recent attempts [59,60] to directly parametrize the pairing
functional in terms of isovector densities.

VI. PERSPECTIVE

The present study demonstrates that the current state of the
art in the nuclear DFT permits calculation of OES values to
an accuracy of the order of 0.25 MeV rms. This is not a trivial
outcome in two respects. First, the binding energies involved
range up to nearly four orders of magnitude larger, so there is
a high demand on computational precision in performing the

2We are indebted to A. Bulgac for calling our attention to this point.

DFT. Second, the pairing gap is a highly sensitive function of
the mean field properties such as level density, and so the
theory needs to have an accurate treatment of the single-
particle properties. In this work, we have only considered
the SLy4 functional, which has known deficiencies. Clearly,
further exploration of DFT functionals is warranted, perhaps
including ones having different (isoscalar and isovector)
effective masses.

We found no large differences between the BCS and
HFB treatments. This is not unexpected; it is only near the drip
lines that the HFB with its better treatment of spacial variations
of the anomalous density is needed. On the other hand, we
believe that the improvement we found for the HFB+LN
treatment is significant, showing that a number-conserving
treatment of the pairing correlations is needed. Many of the
nuclei, particularly the odd ones, are on the edge of collapse
of BCS pairing, and for these a number-conserving treatment
is essential to calculate the pairing correlation energy. Unfor-
tunately, the LN treatment of number violation is not reliable
near closed shells. We would therefore advocate in the future
using other treatments of number violation, perhaps HFB with
variation-after-projection [34], or mapping onto an exactly
soluble pairing Hamiltonian [62].

The global data on OES shows a weak A dependence that
is certainly not reproduced with a pairing interaction that is
density independent or has only a mild dependence on density.
In the calculations with the BCS theory, the sensitivity to
density dependence was explored, and it was found that there
were only small changes in the overall performance. It should
also be noted that the mean field contributions to the OES are
highly dependent on A. Thus, firm conclusions about the origin
of the A dependence must await surveys based on theory that
avoids the filling approximation.

A very interesting question related to density dependence
is whether there is an isospin dependence of the strength of the
effective pairing interaction. The question cannot be addressed
with confidence by examining individual isotope or isotone
chains, because the other species of nucleon can affect the
effective pairing Hamiltonian, particularly the single-particle
spectrum. However, from the global survey, we find what
seems to be a robust result, that the effective pairing strength
for protons OES is about 10% larger than for neutron OES. The
calculation does not take into account the Coulomb interaction
in the pairing channel, but naively that would be expected
to decrease the effect strength, not increase it. The other
possible explanation of the difference is an induced isospin
dependence.

It is perhaps disappointing that the overall performance of
the theory is only slightly better than the naive one-parameter
phenomenology attributing the staggering to a constant BCS
gap. The two-parameter phenomenological function c/Aα

does slightly better than the theory overall. But that form
has no justification, and the shell effects that are faithfully
reproduced by the theory are missing. So we conclude that the
rms residuals between theory and experiment do not tell the
whole story. In any case, the promising possibility to surpass
the performance of the present phenomenology is to continue
the DFT studies with better functionals, including mean field
contributions and number-conserving treatments of pairing.
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