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Enhanced effect of quark mass variation in 229Th and limits from Oklo data
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The effects of the variation of the dimensionless strong interaction parameter Xq = mq/�QCD (mq is the quark
mass, �QCD is the QCD scale) are enhanced about 1.5 × 105 times in the 7.6 eV “nuclear clock” transition
between the ground and first excited states in the 229Th nucleus and about 1 × 108 times in the relative shift of
the 0.1 eV compound resonance in 150Sm. The best terrestrial limit on the temporal variation of the fundamental
constants, |δXq/Xq | < 4 × 10−9 at 1.8 billion years ago (|Ẋq/Xq | < 2.2 × 10−18y−1), is obtained from the
shift of this Sm resonance derived from the Oklo natural nuclear reactor data. The results for 229Th and 150Sm
are obtained by extrapolation from light nuclei where the many-body calculations can be performed more
accurately. The errors produced by such extrapolation may be smaller than the errors of direct calculations in
heavy nuclei. The extrapolation results are compared with the “direct” estimates obtained using the Walecka
model. A number of numerical relations needed for the calculations of the variation effects in nuclear physics
and atomic spectroscopy have been obtained: for the nuclear binding energy δE/E ≈ −1.45 δmq/mq , for the
spin-orbit intervals δEso/Eso ≈ −0.22 δmq/mq , for the nuclear radius δr/r ≈ 0.3 δmq/mq (in units of �QCD);
for the shifts of nuclear resonances and weakly bound energy levels δEr ≈ 10 δXq/Xq MeV.
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I. INTRODUCTION

Unification theories applied to cosmology suggest the
possibility of variation of the fundamental constants in the
expanding Universe (see, e.g., the review [1]). A review of
recent results can be found, e.g., in Ref. [2]. In Ref. [3]
it was suggested that there may be a five orders of magni-
tude enhancement of the variation effects in the low-energy
transition between the ground and the first excited states
in the 229Th nucleus. This transition was suggested as a
possible nuclear clock in Ref. [4]. Indeed, the transition is very
narrow. The width of the excited state is estimated to be about
10−4 Hz [5]. The latest measurement of the transition energy
[6] gives 7.6 ± 0.5 eV, compared to earlier values of 5.5 ±
1 eV [7] and 3.5 ± 1 eV [8]. Therefore, this transition may
be investigated using laser spectroscopy where the relative
accuracy has already reached 10−16. Several experimental
groups have already started working on this possibility [9].
However, a recent paper [10] claims that there is not any
enhancement of the effects of the variation of the fundamental
constants in this transition. The main aim of the present note is
to demonstrate that the enhancement exists. We also estimate
the relative shift of the 0.1 eV compound resonance in 150Sm to
obtain new limits on the variation of the fundamental constants
from the Oklo natural nuclear reactor data [11–13].

We can measure only the variation of dimensionless
parameters which do not depend on which units we use. In
the standard model, the two most important dimensionless
parameters are the fine structure constant α = e2/h̄c and
the ratio of the electroweak unification scale determined by
the Higgs vacuum expectation value (VEV) to the quantum
chromodynamics (QCD) scale �QCD [defined as the position
of the Landau pole in the logarithm for the running strong
coupling constant, αs(r) ∼ constant/ ln (�QCDr/h̄c)]. The

variation of the Higgs VEV leads to the variation of the
fundamental masses which are proportional to the Higgs
VEV. The present work considers mainly effects produced by
the variation of Xq = mq/�QCD where mq = (mu + md )/2
is the average light quark mass. Within grand unification
theories the relative variation of Xq may be 1–2 orders of
magnitude larger than the variation of α [14]. Note that in
the present work we do not consider effects of variation of
the strange quark mass since they have larger uncertainty and
should be treated separately. These effects were estimated in
Refs. [3,15].

The results depend on the dimensionless parameter Xq =
mq/�QCD. In all calculations it is convenient to assume that
�QCD is constant and calculate the dependence on the small
parameter mq . In other words, we measure all masses and
energies in units of �QCD and will simply restore �QCD in the
final results. Note that when a relative effect of the variation is
enhanced it does not matter what units we use. The variation
of the ratio of different units may be neglected anyway.

To study the time dependence of the fundamental constants
in a laboratory one should measure the time dependence of the
ratio of the 229Th frequency ω to any other standard frequency
ωs (for example, to the frequency of the Cs primary standard
or any optical standard) and extract the time dependence of
the fundamental constants using the relation for the relative
variations of dimensionless ratios:

d ln (ω/ωs)

dt
= Kα

d ln α

dt
+ Kq

d ln Xq

dt
. (1)

The coefficients Kα and Kq must be calculated. If they are
large, Kα,q � 1, (as we find in Secs. II C, II D) it does not
matter what standard ωs we use since dependence of standards
on the fundamental constants is not enhanced.
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The shift of the resonance in 150Sm has been found from the
comparison of the abundances of 149Sm and 150Sm [11–13].
The isotope 149Sm was transformed to 150Sm by the neutron
flux from from the Oklo natural nuclear reactor. The cross
section of this reaction is very sensitive to the position of the
low-energy (Er ≈ 0.1 eV) compound resonance. The value of
Er extracted from the Oklo data is compared with the present
value. To find the variation of the fundamental constants
between the Oklo reactor time (1.8 billion years ago) and
present time we use the formula for the shift of the resonance

δEr =
(

kq

δXq

Xq

+ kα

δα

α

)
MeV. (2)

The coefficients kq and kα must be calculated (see Sec. III).
There is no doubt that the calculations in light nuclei

may be performed with higher accuracy and more reliably
than in heavy nuclei. The results are obtained starting from
nucleon-nucleon interaction in vacuum, therefore, it is much
easier to establish links with the fundamental QCD physics.
On the other hand, such properties as the average nucleon
binding energy and the spin-orbit interaction constant can
be approximately predicted for all nuclei basing solely on
the calculations in light nuclei (using well-known theoretical
dependence on the number of neutrons and protons). This is the
idea of our approach which is independent and complementary
to the direct calculations in heavy nuclei, so it may be used
as a general test of the accuracy of the theoretical predictions.
Possibly, it is more accurate than the direct calculations in
heavy nuclei based on the phenomenological forces (since
it would be very hard to establish dependence of these
phenomenological forces on quark mass).

II. THORIUM

To explain the origin of the enhancement we should present
the small 7.6 eV interval between the ground and excited states
in the 229Th nucleus as a sum of a few components which
nearly cancel each other and have different dependence on
the fundamental constants. For example, to study dependence
on α we should separate the Coulomb energy from the
remaining contributions to the energy. To study dependence on
Xq = mq/�QCD it is convenient to separate out the spin-orbit
interaction energy:

ω = Eb + Eso = 7.6 eV. (3)

Here Eb is the difference in bulk binding energies of the
excited and ground states (including kinetic and potential
energy but excluding the spin-orbit interaction) and Eso is
the difference in the spin-orbit interaction energies Vls〈l · s〉
in the excited and ground states. We make this separation
because we expect Eb and Eso to have a very different depen-
dence on Xq = mq/�QCD, as discussed below. In 229Th the
strength of the spin-orbit interaction is estimated to be Vls =
−0.85 MeV from Table 5-1 of Ref. [16]. The difference of
〈l · s〉 between the excited and ground states can be easily
calculated using the expansion of the wave functions over
Nilsson orbitals presented in Table 4 of Ref. [17]: Eso ≈
1.22 Vls ≈ −1.04 MeV. (Note that without configuration

mixing, for the “pure” Nilsson excited state [631]3/2+ and
ground state [633]5/2+, Eso = 2 Vls .) Then Eq. (3) gives us
Eb ≈ −Eso ≈ 1 MeV and

δω

ω
≈ Eso

ω

(
δEso

Eso

− δEb

Eb

)
= 1.3 × 105

(
δEso

Eso

− δEb

Eb

)
.

(4)

Qualitatively, we expect Eb and Eso to have a rather
different dependence on Xq . In the Walecka model (which
was used in Ref. [3] to estimate the enhancement factor)
there is a significant cancellation between the σ and ω meson
contributions to the mean-field potential and the total binding
energy E, while the σ and ω mesons contribute with equal
sign to the spin-orbit interaction constant Vls [18]. A similar
argument may be made from the variational Monte Carlo
(VMC) calculations with realistic interactions used in Ref. [19]
to evaluate binding energy dependence on Xq . These calcu-
lations use nucleon-nucleon potentials that fit NN scattering
data together with three-nucleon potentials that reproduce the
binding energies of light nuclei. The binding energy is the
result of a significant cancellation between intermediate-range
attraction due to two-pion exchange and short-range repulsion
arising from heavy vector-meson exchange. However, spin-
orbit splitting between nuclear levels has been found to be a
coherent addition of short-range two-nucleon l · s interaction
and multiple-pion exchange between three or more nucleons
[20]. Thus if meson masses move in the same direction
due to an underlying quark mass shift, contributions from
pion exchange and heavy vector-meson exchange will cancel
against each other in the binding energy, but reinforce each
other in spin-orbit splittings.

A. Binding energies

The binding energy per nucleon and the spin-orbit interac-
tion constant have a slow dependence on the nucleon number
A. The total binding is dominated by the bulk terms, so we
make the reasonable assumption that the relative variation of
the bulk energy δE/E with Xq is the same for the two levels
in 229Th and thus the relative variation of the bulk energy
difference between this levels is δEb/Eb ≈ δE/E. Moreover,
common factors in the theoretical dependence of the average
nuclear parameters on the nucleon numbers cancel out in
the relative variations. For example, the factor A−1/3 in the
dependence of the spin-orbit constant Vls on A [16] cancels
out in the relative variation δEso/Eso and the relative variation
of Vls is approximately the same in all nuclei. Therefore, it
may be plausible to extract these relative variations from the
type of calculations in light nuclei performed in Ref. [19].
The advantage of the light nuclei is that the calculations can
be performed quite accurately, including different many-body
effects. Their accuracy has been tested by comparison with the
experimental data for the binding energies and by comparison
of the results obtained using several sophisticated interactions
(AV14, AV28, AV18 + UIX—see [19]). As the first step, the
variations of the nuclear binding energies have been expressed
in terms of the variations of nucleon, �, pion and vector-meson
masses. The dependence of these masses on quark masses
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TABLE I. Dimensionless derivatives K = δE/E

δXq/Xq
of the binding energy over Xq = mq/�QCD .

2H 3H 3He 4He 5He 6He 6Li 7He 7Li 7Be 8Be 9Be

−1.39 −1.44 −1.55 −1.08 −1.24 −1.50 −1.36 −1.93 −1.50 −1.57 −1.35 −1.59

have been taken from Refs. [21,22]. The results for the
relative variations of the total binding energies are presented in
Table I (in the present work we add 6He, 7He, and 9Be to this
table). We see that all the results are close to the average
value δE/E ≈ −1.45 δXq/Xq . The maximal deviations are
for 4He, which is especially tightly bound, and for 7He, which
is a resonant state.

B. Spin-orbit intervals

To find the dependence of the spin-orbit constant Vls on
mq/�QCD we calculate the spin-orbit splitting between the
p1/2 and p3/2 levels in 5He, 7He, 7Li, and 9Be in the present
work. We use the Argonne v18 two-nucleon and Urbana IX
three-nucleon (AV18 + UIX) interaction which provides our
best results for small nuclei (see Ref. [19] for details and
references). In all calculations it is convenient to keep �QCD =
constant, i.e., measure the quark mass mq in units of �QCD. We
restore �QCD in the final answers. As the first step we calculate
the binding energies of the ground and excited states shown
in Table II and their dependence on the nucleon, �, pion, and
vector-meson masses, �E(mH ) = δE/E

δmH /mH
, shown in Table III.

To find the dependence of these energies on the quark mass,
we utilize the results of a Dyson-Schwinger equation (DSE)
study of sigma terms in light-quark hadrons [21]. Equations
(85–86) of that work give the rate of hadron mass variation as a
function of the average light current-quark mass mq = (mu +
md )/2 as

δmH

mH

= σH

mH

δmq

mq

, (5)

with σH/mH values of 0.498 for the pion, 0.030 for the ρ-
meson, 0.043 for the ω-meson, 0.064 for the nucleon, and
0.041 for the �. The values for the ρ and ω-mesons were
reduced to 0.021 and 0.034 in subsequent work [22]. We use
an average of the ρ and ω terms of 0.030 for our short-range
mass parameter mV .

It is convenient to present the result for the variation of the
spin-orbit splitting in the following form:

δEso = δE1/2 − δE3/2 = E1/2
δE1/2

E1/2
− E3/2

δE3/2

E3/2
. (6)

Accidentally, the calculated spin-orbit constant in 5He is the
same as in 229Th, Vls = −0.83 MeV (the p1/2-p3/2 splitting
in 5He is 1.5Vls). The spin-orbit constant in 9Be is larger than
in 229Th, in accord with the expected dependence A−1/3 (see,
e.g., Ref. [16]). The spin-orbit interval sensitivity coefficients
Kso defined from

δEso

Eso

= Kso

δmq

mq

(7)

for the quark mass variation in 5He, 7He, 7Li, and 9Be are
−0.27,−0.16,−2.58, and −0.22, respectively. The 5He, 7He,
and 9Be values are all very similar, as all these nuclei are
essentially one nucleon outside a 0+ core. The 7Li value is
anomalously large because its ground and first excited states
are primarily a triton outside an alpha core, so although δEso

is comparable to 9Be, Eso is very small and not typical of
the single-particle spin-orbit interaction we seek. Excluding
the 7Li result gives us an average value of Kso = −0.22 to
use in 229Th. Note that the estimate based on the Walecka
model, outlined in Sec. V below, gives a very similar value
Kso = −0.2.

C. Frequency shift

Substituting δEso/Eso = −0.22 δXq/Xq and δEb/Eb =
−1.45 δXq/Xq into Eq. (4) we obtain the following energy
shift for the 7.6 eV transition in 229Th:

δω = 1.2
δXq

Xq

MeV. (8)

This corresponds to the frequency shift δν = 3 × 1020 δXq/

Xq Hz. The width of this transition is 10−4 Hz so one may hope
to get the sensitivity to the variation of Xq about 10−25 per year.
This is 1011 times better than the current atomic clock limit on
the variation of Xq,∼ 10−14 per year (see, e.g., Ref. [2]).

The corresponding relative energy shift is

δω

ω
= 1.5 × 105 δXq

Xq

. (9)

This enhancement coefficient may be compared with the
coefficient 0.4 × 105 from Ref. [3] and 0.7 × 105 from

TABLE II. Experimental and calculated energies for the ground (p3/2) and first excited (p1/2) states of A = 5, 7, 9
nuclei in MeV.

5He( 3
2

−
) 5He∗( 1

2

−
) 7He( 3

2

−
) 7He∗( 1

2

−
) 7Li( 3

2

−
) 7Li∗( 1

2

−
) 9Be( 3

2

−
) 9Be∗( 1

2

−
)

AV18 + UIX −25.26 −24.02 −21.77 −19.56 −33.33 −33.02 −45.39 −42.01
Expt. −27.41 −26.23 −28.83 −26.23 −39.24 −38.77 −58.16 −55.38
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TABLE III. Dimensionless derivatives �E(mH ) = δE/E

δmH /mH
of the binding energy to the different hadron masses

and the sensitivity K after folding in the DSE values of δmH /mH .

5He( 3
2

−
) 5He∗( 1

2

−
) 7He( 3

2

−
) 7He∗( 1

2

−
) 7Li( 3

2

−
) 7Li∗( 1

2

−
) 9Be( 3

2

−
) 9Be∗( 1

2

−
)

mN + δN 13.31 13.83 19.34 21.34 15.53 15.48 16.09 17.12
δ� −10.24 −10.72 −14.92 −16.63 −11.96 −11.88 −12.39 −13.27
mπ (+TNI) −5.82 −6.07 −8.78 −9.73 −6.91 −6.88 −7.27 −7.76
mV 40.87 42.84 60.46 67.54 48.11 47.81 50.21 53.85
K = δE/E

δmq/mq
−1.24 −1.29 −1.93 −2.13 −1.50 −1.49 −1.59 −1.70

Ref. [23]. The calculations in Ref. [23] have been done using
the relativistic mean field theory (extended Walecka model)
and some basic ideas from Ref. [3]. Thus, in this work we
obtain an even larger enhancement. Here we present the
relative variations from Refs. [3,23] for the new measured
value 7.6 eV of the frequency ω (the old value was 3.5 eV, and
we multiplied the numbers from [3,23] by (3.5 eV)/ω). The
difference between the results of different approaches looks
pretty large. However, this is only a reflection of the current
accuracy of all three calculations. The present aim is to show
that the enhancement does exist.

Note that because of the huge enhancement it does not
matter what units one will use to measure the frequency ω. In
the calculations above we assumed that ω is measured in units
of �QCD. However, the variation of the ratio of any popular
frequency standard to �QCD does not have such enhancement
and may be neglected.

D. Coulomb energy and effect of α variation

We also would like to comment about the possible en-
hancement of α variation. Reference [10] claims that this
enhancement is impossible since the ground and excited
states differ in the neutron state only and the neutron is
neutral. Therefore, the ground and excited states have the
same Coulomb energy and the interval does not change when
α varies. We do not agree with this conclusion. Indeed, the
total Coulomb energy of the 229Th nucleus is 900 MeV (see,
e.g., [16]) which is 108 times larger than the energy difference
ω = 7.6 eV. Therefore, to have an enhancement it is enough to
change the proton density distribution (deformation parameter)
by more than 10−8. Any change in the neutron state influences
the nuclear mean field and proton distribution. For example,
neutron removal changes the Coulomb energy of 229Th by
1.3 MeV [16]. This gives us an upper estimate (and a natural
scale) for the change of the Coulomb energy in the 7.6 eV
229Th transition. One should expect a fraction of MeV change
in any neutron transition in heavy nuclei. According to [17]
the weight of admixed octupole vibrations to the 7.6 eV
state exceeds 20%. Octupole vibrations involve both protons
and neutrons. Therefore, the proton density distribution in
the excited state is different from the ground state and this
difference is only an order of magnitude smaller than the
difference in neutron distribution.

The existence of the enhancement was confirmed by the
direct calculation in Ref. [23]. The authors performed the

calculation of the change of the nuclear mean field acting
on neutrons induced by the change of the proton density
due to the variation of α. They obtained the enhancement
coefficient 4 × 103. This corresponds to the Coulomb energy
difference 0.03 MeV. As it was mentioned above, an additional
enhancement may come from the change of the nuclear
deformation. Anyway, there is no doubt that the enhancement
of the sensitivity to α variation in 229Th does exist.

III. SHIFT OF THE RESONANCE IN SAMARIUM AND
LIMITS FROM THE OKLO NATURAL NUCLEAR

REACTOR DATA

In Refs. [24,25] we derived a simple formula to estimate
the shift of the resonance or weakly bound energy level due
to the variation of the fundamental constants. Let us assume
a Fermi gas model in a square well nuclear potential of the
radius R and depth V0. The energy of a single-particle energy
level or resonance is determined as

Er ≈
〈

p2

2m

〉
− V0. (10)

The momentum p in the square well is quantized, p ≈
constant/R. Therefore,

Er = K

2mR2
− V0. (11)

For a resonance or a weakly bound level Er ≈ 0 (Er � V0)
and the constant K ≈ 2mR2V0. Then we have

δEr = − K

2mR2

(
δm

m
+ 2δR

R

)
− δV0

≈ −V0

(
δm

m
+ 2δR

R
+ δV0

V0

)
. (12)

This equation is also valid for a compound state with several
excited particles. Indeed, the position of the compound state
or resonance relative to the bottom of the potential well is
determined mainly by the kinetic energy which scales as 1/R2

(both the Fermi energy and sum of the single-particle excitation
energies scale this way). The shift of the resonance due to the
residual interaction between excited particles (∼ 0.1 MeV)
is small in comparison with the depth of the potential well
(V0 ≈ 50 MeV) and may be neglected. Note that the depth of
the potential V0 is approximately the same in light and heavy
nuclei. The radius of the well R ≈ 1.2A1/3r0, therefore, the
relative variation δR/R = δr0/r0 is the same too. Thus, the
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TABLE IV. Binding energies S of the valence nucleon and the shift of the energy level − δS

δmq/mq
due to quark

mass variation in MeV.

5He 6He 6Li 7He 7Li 7Be 8Be 9Be

Sexpt −0.89 1.86 4.59 −0.43 7.25 5.61 18.90 1.67
Scalc −2.24 −0.30 2.96 −3.19 5.11 3.52 16.89 −3.24
− δSexpt

δmq/mq
3.42 9.92 9.52 11.73 15.35 15.53 17.24 16.19

− δScalc
δmq/mq

1.62 6.12 7.06 4.58 11.62 11.45 15.82 6.52

resulting shift of the resonance both in light and heavy nuclei
is given by Eq. (12) and we may extrapolate the accurate result
for light nuclei to the resonance in 150Sm.

In Table IV we present binding energies of the valence
nucleon, S = −E (in MeV), and shift of the energy level
(resonance), δE

δmq/mq
= − δS

δmq/mq
, due to the variation of the

quark mass (in units MeV δXq/Xq) in light nuclei with
A = 5, 6, 7, 8, 9. In the derivation of Eq. (12) it was assumed
that the valence nucleon is localized inside the potential well.
This is not the case for 5He where the valence nucleon is
localized mainly outside the narrow potential well produced
by the 4He core. As a result the potential 〈V 〉 averaged over the
valence neutron wave function 1p3/2 is significantly smaller
than the depth of the potential V0. This explains why the shift
in 5He (proportional to 〈V 〉—see Eq. (12) and Ref. [25]) is
much smaller than the shift in other nuclei. Another extreme
case is 8Be where |Er | is too large and the condition Er � V

is not fulfilled. The results for other nuclei are reasonably close
to the average value

δEr ≈ 10
δXq

Xq

MeV. (13)

We assume this shift for the 0.1 eV resonance in 150Sm. This
value does not contradict the order-of-magnitude estimates
in Refs. [2,24,25]. Finally, we can add to this shift the
contribution of α variation from Ref. [26] (δEr = −1.1 ±
0.1 MeV δα/α). The total shift of the resonance in 150Sm
is

δEr = 10

(
δXq

Xq

− 0.1
δα

α

)
MeV. (14)

Now we can can extract limits on the variation of Xq from
the measurements of δEr . Pioneering work in this area was
done in Ref. [26]. We will use recent measurements [11–13]
where the accuracy is higher. Reference [13] has given |δEr | <

20 meV. Then Eq. (14) gives

∣∣∣∣δXq

Xq

− 0.1
δα

α

∣∣∣∣ < 2 × 10−9. (15)

Reference [12] has given −73 < δEr < 62 meV. This gives

∣∣∣∣δXq

Xq

− 0.1
δα

α

∣∣∣∣ < 7 × 10−9. (16)

Reference [11] has given −11.6 < δEr < 26.0 meV. This
gives ∣∣∣∣δXq

Xq

− 0.1
δα

α

∣∣∣∣ < 2.6 × 10−9. (17)

The limits on δEr have been been presented with 2σ range.
Note that Ref. [11] has presented also the second, nonzero
solution (it exists since the resonance has two tails): −101.9 <

δEr < −79.6 meV. However, Ref. [13] tentatively ruled out
this solution based on the data for the shift of a similar
resonance in the Gd nucleus.

Based on the results above we conclude that | δXq

Xq
| <

4 × 10−9 (for simplicity, we omit the small contribution of
α variation here). Assuming linear time dependence during
the last 1.8 billion years we obtain the best terrestrial limit on
the variation of the fundamental constants∣∣∣∣ Ẋq

Xq

∣∣∣∣ < 2.2 × 10−18y−1. (18)

IV. VARIATION OF NUCLEAR RADIUS

Variation of the nuclear radius is needed to calculate effects
of the fundamental constant variation in microwave atomic
clocks where the transition frequency depends on a probability
of the electron to be inside the nucleus. Indeed, the hyperfine
interaction constant in heavy atoms has some sensitivity to
the nuclear radius (including the Cs hyperfine transition which
defines the unit of time, the second, and is used as a reference
in numerous atomic and molecular clock experiments). This
dependence was also requested by Schiller who proposed new
experiments with hydrogen-like ions to search for the variation
of the fundamental constants [27].

In Table V we present a comparison of calculated and
measured charge nuclear radii for the stable A = 2, 7 nuclei.
Determination of the sensitivity of the nuclear radius to
quark mass variation is a more involved calculation than for
the energy. While the deuteron can be solved exactly, the
VMC calculations for A � 3 nuclei of Ref. [19] have to be
modified. This is because the variational bound for the energy
is a quadratic function near its minimum in the space of
variational parameters, but the radius is a linear function. In the
previous VMC calculations, the variational parameters were
fixed at the energy minimum for the nominal hadron masses
corresponding to δmq = 0, and then not allowed to vary as
the energy was evaluated for different δmH . Consequently the
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TABLE V. Experimental and calculated point proton rms radii for stable A = 2–9 nuclei in fm.

2H 3H 3He 4He 6He 6Li 7Li 7Be 9Be

AV18 + UIX 1.967 1.58 1.77 1.45 1.92 2.46 2.34 2.45 2.40
Expt. 1.953 1.59 1.75 1.45 1.93 2.39 2.25 2.38

“size” of the trial wave function was essentially unchanged.
For the radius determination, we must allow this size to vary.
We do this by multiplying a set of variational parameters
(those to which the radius is most sensitive) by a scale
factor, and then carefully reminimize this scale factor for each
δmH . This allows us to determine �r(mH ) = δr/r

δmH /mH
. The

�E(mH ) = δE/E

δmH /mH
reported in Ref. [19] are unchanged in

this new minimization.
This procedure works well for the A = 3, 4 nuclei, and

the �r(mH ) is presented in Table VI, along with the total
sensitivity to the quark mass, Kr ≡ δr/r

δmq/mq
, obtained by folding

in the DSE values for δmH/mH . However, because our trial
functions for A = 6–9 nuclei are not inherently stable against
breakup into subclusters, we need to make an additional
constraint when calculating their sensitivity. For some of these
nuclei, we have trial functions that asymptotically look like
the appropriate subclusters bound in a Coulomb well with
the experimental separation energy: 6Li is asymptotically an
alpha and a deuteron bound by 1.47 MeV, 7Li is asymptotically
an alpha and a triton bound by 2.47 MeV, and 7Be is
asymptotically an alpha and a 3He bound by 1.59 MeV. (6He
is asymptotically a three-body α + n + n cluster and 9Be is an
α + α + n cluster, so they cannot be treated this way.) For a
quark mass shift δmq/mq = ±0.01, we know the total energy
shift expected from our previous calculations. We subtract that
portion attributable to the alpha and deuteron or trinucleon
subclusters, and use the remaining energy shift to adjust the
asymptotic separation energy of our trial function. This allows
the size of both the subclusters and the well binding them to
vary. For A = 6, 7, we have carried out this calculation for the
total sensitivity Kr only, and not for the individual �r(mH );
these results are also given in Table VI.

The average value of Kr is about 0.3, which may serve as an
estimate of the sensitivity for all nuclei. There are significant
deviations from this value for the very weakly bound deuteron
2H and very strongly bound 4He; the latter is probably a solid
lower bound.

The dependence of the nuclear radius on fundamental
constants manifests itself in microwave transitions in atomic
clocks which are used to search for the variation of the fun-
damental constants (see, e.g., Refs. [2,27]). The dependence
of the hyperfine transition frequency ωh on nuclear radius r in
atoms with an external s-wave electron is approximately given
by the following expressions (in units of �QCD):

δωh

ωh

= Khr

δr

r
= KhrKr

δmq

mq

≈ 0.3 Khr

δmq

mq

, (19)

Khr ≈ − (2γ − 1)δh

1 − δh

, (20)

δh ≈ 2 (3 × 10−5Z4/3)2γ−1, (21)

where γ = (1 − Z2α2)1/2. For the Cs atom microwave stan-
dard the nuclear charge Z = 55 and Khr = −0.03; for the Hg+
microwave clock Z = 80 and Khr = −0.09.

We also calculated the dependence of the 4He radius on
α: δr/r

δα/α
= 0.0034. For heavy nuclei the relative role of the

Coulomb repulsion increases and the sensitivity to the α

variation should be larger.

V. ESTIMATES IN WALECKA MODEL

It is instructive to compare the results obtained by the ex-
trapolation from light nuclei with some “direct” calculations.
In this section we estimate the variations of the resonance
positions and spin-orbit splittings in heavy nuclei using the
Walecka model [28] where the strong nuclear potential is
produced by scalar and vector meson exchanges:

V = − g2
s

4π

e−rmS

r
+ g2

v

4π

e−rmV

r
. (22)

Averaging Eq. (22) over the nuclear volume we can find the
depth of the potential well [24]

V0 = 3

4πr3
0

(
g2

s

m2
S

− g2
v

m2
V

)
. (23)

TABLE VI. Dimensionless derivatives �r(mH ) = δr/r

δmH /mH
of the point proton rms radii to the

different hadron masses and the sensitivity Kr with respect to mq after folding in the DSE values
of δmH /mH .

2H 3H 3He 4He 6Li 7Li 7Be

mN + δN −7.32 −4.81 −4.73 −3.04
δ� 4.07 3.32 3.28 2.18
mπ (+TNI) 2.57 1.80 1.77 1.11
mV −16.39 −12.97 −12.79 −8.50
Kr = δr/r

δmq/mq
0.48 0.34 0.33 0.20 0.35 0.27 0.22
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Here 2r0 = 2.4 fm is an internucleon distance. The result for
the variation of the potential is

δV0

V0
≈ −7.5

δmS

mS

+ 5.5
δmV

mV

− 3
δr0

r0
. (24)

Here we have used g2
s

m2
S

/
g2

v

m2
V

= 266.9/195.7 = 1.364 from

Ref. [18]. There is an order of magnitude enhancement of the
meson mass variation contributions due to the cancellation
of the vector and scalar contributions in the denominator
V0. Equation (12) for the variation of the resonance position
becomes

δEr ≈ V0

(
7.5

δmS

mS

− 5.5
δmV

mV

− δmN

mN

+ δr0

r0

)
. (25)

We do not know the variation of r0 in the Walecka model,
therefore, to make a rough numerical estimate we neglect this
term. As above we take dependence of the nucleon and meson
masses on the current light quark mass mq = (mu + md )/2
from Refs. [21,22]: δmω

mω
= 0.034 δmq

mq
, δmN

mN
= 0.064 δmq

mq
, δmσ

mσ
=

0.013 δmq

mq
, δmπ

mπ
= 0.498 δmq

mq
. The vector meson in the Walecka

model is usually identified with the ω-meson so δmV

mV
=

0.034 δmq

mq
. The scalar meson exchange, in fact, imitates both

the σ meson exchange and two-pion exchange. Even if we
neglect the two-pion exchange in zero approximation, there
is virtual σ decay to two π . These virtual decays (loops on σ

line in the NN -interaction diagrams with intermediate σ ) very
strongly modify the σ propagator and change its large distance
asymptotics from e−mσ r to e−2mπ r [29]. The mixing between σ

and two π in mS should increase the sensitivity coefficient for
the variation of mS . For an estimate we take an intermediate
value between the neutron and vector meson mass sensitivity,
δmS

mS
∼ 0.05 δmq

mq
. [Note that the positive contribution of δr0

r0
in

Eq. (25) produces an effect similar to that of an increase of
δmS

mS
.] Then Eq. (25) gives

δEr ∼ 10
δXq

Xq

MeV. (26)

This rough estimate agrees with the result extrapolated from
light nuclei. Note, however, that the accuracy of this estimate
is very low due to the cancellations of different terms.

The scalar and vector mesons contribute with equal sign to
the spin-orbit interaction constant Vls [18]. Also, the spin-orbit
interaction is inversely proportional to the nucleon mass mN

squared. Thus, we have

Vls ∝ 1

m2
N

(
g2

s

m2
S

+ g2
v

m2
V

)
, (27)

δEso

Eso

= −2

(
δmN

mN

+ 0.58 δmS

mS

+ 0.42 δmV

mV

)
≈ −0.2

δmq

mq

.

(28)

This estimate is close to the result (−0.22 δmq

mq
) obtained by the

extrapolation from light nuclei. Note, however, that here we
neglected the effect of variation of r0 which probably should
increase the absolute value of the sensitivity coefficient.

VI. CONCLUSION

At the moment one can hardly calculate the sensitivity
coefficient for the dependence of the strong interaction on
the quark mass mq with an accuracy better than a factor of 2.
Moreover, it is hard to identify this dependence in phenomeno-
logical interactions which are used for the calculations in
heavy nuclei. For example, it is not obvious that the scalar and
vector mesons in the Walecka model are actually equivalent
to free σ and ω mesons in particle physics. Therefore, to test
conclusions obtained using the Walecka model, we explored
a complementary approach. We performed the calculations in
light nuclei where the interactions are well-known and the
accuracy of the calculations is high. The binding energy per
nucleon Eb, the spin-orbit interaction constant Vls and the
nuclear radius r have a slow dependence as a function of
the nucleon number A. Moreover, the common factors (like
A−1/3 in the spin-orbit constant Vls and A1/3 in the nuclear
radius) cancel out in the relative variations δr/r, δVls/Vls , and
δEb/Eb. Therefore, we can extract these relative variations
from the calculations in light nuclei and use them in heavy
nuclei. The errors produced by such extrapolation may be
smaller than the errors of direct calculations in heavy nuclei.
So far, this extrapolation and direct calculations using Walecka
model give comparable values of the enhancement factors in
229Th and 150Sm.
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