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Effect of � hyperons on the nuclear equation of state in a Dirac-Brueckner-Hartree-Fock model
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We predict the energy per baryon in nuclear matter with non-zero fractions of � hyperons. We include Dirac
effects on the nucleon as well as the � and describe how the latter are implemented. We use the nucleon-hyperon
meson-exchange potentials from the Jülich group, the latest as well as an earlier version. The dependence of the
results on the many-body framework and on the nucleon-hyperon interaction model is discussed.
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I. INTRODUCTION

There are important motivations for including strange
baryons in nuclear matter. The presence of hyperons in the
interior of neutron stars is reported to soften the equation
of state (EoS), with the consequence that the predicted
neutron star maximum masses become considerably smaller
[1]. With recent constraints allowing maximum masses larger
than previously accepted limits [2], accurate microscopic
calculations which include strangeness (in addition to other
effects, such as those originating from relativity), become
especially important and timely.

Moreover, as far as terrestrial nuclear physics is concerned,
studies of hyperon energies in nuclear matter naturally
complement our knowledge of hypernuclei (see, for instance,
Refs. [3–6]). For example, the EoS of hypermatter is useful
in the development of generalized mass formulas depending
on density and hyperon fraction [4,7]. From the experimental
side, additional data are very much needed, especially on ��

hypernuclei, which would provide information on the �-�
interaction. Concerning single hypernuclei, analyses of data
on � binding energies constrain the depth of the single-�
potential to be 27–30 MeV [8]. The status of � hypernuclei
and the �-nucleus potential is more controversial (see Ref. [9]
and references therein).

Microscopic calculations of nuclear matter properties in-
cluding hyperons have been reported earlier within the non-
relativistic Brueckner-Hartree-Fock framework (BHF) (see,
for instance, Refs. [7,10]), using the Nijmegen [11] nucleon-
hyperon (NY ) meson-exchange potential. Extensive micro-
scopic work on hyperonic nuclear matter, again within the
nonrelativistic BHF framework, has also been published by
the Barcelona group (see, for instance, Refs. [14–17]).

It is one purpose of the present work to bring in the new
aspect of Dirac effects on the � hyperon as well as the nucleon.
By “Dirac effects” we mean that the single-baryon wave
function is calculated self-consistently with the appropriate
effective interaction. The importance of these effects on the
nucleonic equation of state cannot be overestimated [18]. They
can be seen both as relativistic effects and three-body forces
originating from nucleon-antinucleon excitations, and provide
an essential saturation mechanism missing from conventional
approaches.

Our previous calculation [19] of the binding energy of a �

impurity in nuclear matter showed that Dirac effects on the

� hyperon yield a moderate reduction of the binding energy.
In that calculation, we used the most recent nucleon-hyperon
(NY ) potential reported in Ref. [20] (thereafter referred to
as NY05), and observed that G-matrix predictions obtained
with NY05 are significantly different from calculations using
the previous (energy independent) version of the Jülich NY

potential [13]. Therefore, in this work we will use both
potentials, for comparison. The Bonn B potential [21] is used
throughout for the nucleon-nucleon (NN ) part.

Previous calculations of the EoS with hyperons have
typically been conducted within a nonrelativistic framework
together with r-space local NY potentials. Our approach uses
nonlocal relativistic momentum-space (NN and NY ) poten-
tials and a relativistic many-body method, and is therefore
fundamentally different.

The baseline work for our EoS’s was developed in Ref. [22].
The framework described there for isospin-asymmetric nuclear
matter has been further expanded and adjusted to include other
species of baryons in different concentrations. Our latest EoSs
for the NN sector can be found in Ref. [23].

In the next section, we describe some technical aspects
of the calculation. We then proceed to present and discuss our
results (Sec. III). Conclusions and future plans are summarized
in Sec. IV.

II. DESCRIPTION OF THE CALCULATIONS

A. General formalism

For a total density of baryons (nucleons and �’s), ρ, and
some specified � fraction, Y�, the densities of each species
are known and are related to their respective Fermi momenta
by

ρN = 1

3π2
(2)

(
kN
F

)3
, ρ� = 1

3π2

(
k�
F

)3
. (1)

For a nucleon and a � with momenta �kN and �k�, the total
and relative momenta are

�P = �kN + �k�, �k = MN
�k� − M�

�kN

MN + M�

= α�k� − β�kN, (2)

with α and β equal to MN

MN +M�
and M�

MN +M�
, respectively. Thus,

�k� = β �P + �k, �kN = α �P − �k. (3)
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Clearly, for the case of two nucleons we have

�P = �kN + �k′
N, �k =

�kN − �k′
N

2
. (4)

The single-nucleon and single-� potentials are obtained as

UN (�kN ) = UN�(�kN ) + UNN (�kN ), (5)

and

U�(�k�) = U�N (�k�), (6)

i.e., the �� interaction is neglected. In the equations above,
the various terms, UB1B2 , are the contributions to the potential
of baryon B1 from its interaction with all baryons of type B2.
They are given by

UN�(�kN ) =
∑

T ,L,S,J

(2T + 1)(2J + 1)

(2tN + 1)(2sN + 1)

×
∫ k�

F

0
G

T,L,S,J
N� (k(�kN, �k�), P (�kN, �k�))d3k�, (7)

UNN (�kN ) =
∑

T ,L,S,J

(2T + 1)(2J + 1)

(2tN + 1)(2sN + 1)

×
∫ kN

F

0
G

T,L,S,J
NN (k(�kN, �k′

N ), P (�kN, �k′
N ))d3k′

N, (8)

and

U�N (�k�)=
∑

T ,L,S,J

(2T + 1)(2J + 1)

(2t� + 1)(2s� + 1)

×
∫ kN

F

0
G

T,L,S,J
�N (k(�kN, �k�), P (�kN, �k�))d3kN, (9)

where the channel isospin T can be 0 or 1 for the NN case
and is equal to 1/2 for the N� case, and si, ti(i = N,�) are
the spin and isospin of the nucleon or �.

Notice that
UN�

U�N

≈ ρ�

ρN

, (10)

an approximation often used in mean-field approaches.
The average potential energies of nucleons and �’s are

determined from

〈UN 〉 = 1

ρN

1

(2π )3
4

1

2

∫ kN
F

0
UN (�kN )dk3

N, (11)

and

〈U�〉 = 1

ρ�

1

(2π )3
2

1

2

∫ k�
F

0
U�(�k�)dk3

�, (12)

where the factors of 4 and 2 in Eqs. (11) and (12), respectively,
account for protons and neutrons in both spin states or �’s in
both spin states.

Finally the average potential energy per baryon is obtained
as

〈U 〉 = ρN 〈UN 〉 + ρ�〈U�〉
ρtot

, (13)

from which, together with a similar expression for the kinetic
energy, one obtains the average energy per baryon.

The N� G-matrix is obtained from the Bethe-Goldstone
equation

〈N�|GN�(E0)|N�〉 = 〈N�|V |N�〉 +
∑

Y=�,�

〈N�|V |NY 〉

× Q

E0 − E
〈NY |GN�(E0)|N�〉,

(14)

where E0 and E are the starting energy and the energy of
the intermediate NY state, respectively, and V is an energy-
independent NY potential.

For two particles with masses MN and M� and Fermi
momenta kN

F and k�
F , Pauli blocking requires

Q(�k, �P ) =
{

1 |β �P + �k| > k�
F and |α �P − �k| > kN

F

0 otherwise.
(15)

The above condition implies the restriction(
MN

M
P

)2 + k2 − (
kN
F

)2

2Pk MN

M

>cos θ >−
(

M�

M
P

)2 + k2 − (
k�
F

)2

2Pk M�

M

,

(16)

where θ is the angle between the total ( �P ) and the relative (�k)
momenta of the two particles, and M = M� + MN . Angle-
averaging is then applied in the usual way.

In the present calculation we consider a non-vanishing
density of �’s but do not allow for the presence of real
�’s in the medium [although both � and � are included
in the coupled-channel calculation of the NY G-matrix, see
Eq. (14)]. Essentially we are considering a scenario where a
small fraction of nucleons is replaced with �’s, as could be
accomplished by an experiment aimed at producing multi-�
hypernuclei. Multistrange systems, such as those produced in
heavy-ion collisions, may of course contain other hyperons on
the outset. For small � densities, though, as those we consider
here, the cascade (�) and the � hyperon are expected to
decay quickly through the strong processes N + � → � + �

and N + � → N + �. Under these conditions, a mixture of
nucleons and �’s can be considered “metastable,” in the sense
of being equilibrated over a time scale which is long relative to
strong processes [7]. (In fact, the strong reactions mentioned
above would have to be Pauli blocked in order to produce a
metastable multistrange system [24].)

We neglect the YY ′ interaction, as very little is known about
it. Furthermore, nonlocal momentum-space YY potentials,
appropriate for our DBHF framework, are not available at this
time. For these reasons, we keep the � concentration relatively
low.

B. Dirac effects on the N� potential

The relation between the nonrelativistic Brueckner ap-
proach and the relativistic framework (known as Dirac-
Brueckner-Hartree-Fock, DBHF) has been discussed for a
long time. Already in Ref. [25] it was shown how relativistic
effects tie in with virtual excitations of pair terms. Lately, these
concepts have been revisited [26] with similar conclusions.
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In short, the Dirac effect on the EoS of nucleonic matter
is an essential saturating, and strongly density dependent,
mechanism, which effectively accounts for the class of three-
body forces originating from virtual nucleon-antinucleon
excitations. When hyperon degrees of freedom are included,
for reasons of consistency, those should then be subjected to
the same correction.

We have incorporated DBHF effects in the � matter
calculation, which amounts to involving the � single-particle
Dirac wave function in the self-consistent calculation through
the � effective mass, M∗

�. Similarly to what is done for
nucleons in Ref. [21], we fit the single-particle energy for
�’s using the ansatz

e�(p) =
√

(M∗
�)2 + p2 + U�

V , (17)

where M∗
� = M� + U�

S , and U�
S and U�

V are the scalar and
vector potentials of the � baryon, which we assume to be
momentum independent. Note the single-particle energy is
the sum of the single-particle potential, for which we use the
two-parameter ansatz,

U�(p) = M∗√
(M∗

�)2 + p2
U�

S + U�
V , (18)

and the expectation value of the free energy operator in the
Dirac equation [21]. Because of the small hyperon concen-
trations considered here, the parameters of the single nucleon
potential are taken from a separate calculation of symmetric
nuclear matter [22,23] performed at densities corresponding
to the nucleon densities, ρN in Eq. (1). This amounts to saying
that, for low hyperon concentrations, the main correction
to the single nucleon potential comes from the presence of
the first term in Eq. (5). The parameters of the single �

potential are fitted, self-consistently with the N� G-matrix,
at momenta close to its Fermi surface, specifically k1 = 0.8k�

F

and k2 = k�
F .

A problem with the Jülich NY potential in conjunction with
DBHF calculations is the use of the pseudoscalar coupling for
the interactions of pseudoscalar mesons (pions and kaons)
with nucleons and hyperons. For the reasons mentioned
above (that is, the close relationship between Dirac effects
and “Z-diagram” contributions), this relativistic correction
is known to become unreasonably large when applied to a
vertex involving pseudoscalar coupling. On the other hand,
the gradient (pseudovector) coupling (also supported by
chiral symmetry arguments) largely suppresses antiparticle
contributions. To resolve this problem, one can make use of
the on-shell equivalence between the pseudoscalar and the
pseudovector coupling, which amounts to relating the coupling
constants as follows:

gps = fpv

Mi + Mj

mps

, (19)

where gps denotes the pseudoscalar coupling constant and fpv

the pseudovector one; mps,Mi , and Mj are the masses of
the pseudoscalar meson and the two baryons involved in the
vertex, respectively. This procedure can be made plausible by
writing down the appropriate one-boson-exchange amplitudes
and observing that, redefining the coupling constants as above,

we have (see Ref. [21] for the two-nucleon case)

Vpv = Vps + · · · , (20)

where the ellipsis stands for off-shell contributions. Thus,
the pseudoscalar coupling can be interpreted as pseudovector
coupling where the off-shell terms are ignored. This is what
we apply in our DBHF calculations.

In the coupled channel calculation, evaluation of GN�

involves the transition potentials VN�→N�, VN�↔N� , and
VN�→N� (all with total channel isospin equal to 1/2), plus
the corresponding exchange diagrams. Because in the present
scenario the � hyperon is not given an effective mass, Dirac
effects are applied only in VN�→N�. A diagram where not all
of the baryon lines are Dirac-modified may yield a Dirac effect
that is artificially skewed.

Finally, a comment is in place concerning meson propaga-
tors. In standard DBHF calculations [21], the so-called Thomp-
son equation (a relativistic three-dimensional reduction of the
Bethe-Salpeter equation) is used for two-baryon scattering. In
the Thompson formalism, static propagators are employed for
meson exchange, i.e.,

− 1

m2
α + (�q ′ − �q)2

, (21)

where mα denotes the mass of the exchanged meson and
�q, �q ′ are the baryon momenta in their center-of-mass frame
before and after scattering. The Jülich NY potentials are based
upon time-ordered perturbation theory [12] and use a meson
propagator given by

1

ωα(z − Ei − Ej − ωα)
(22)

with ωα = √
m2

α + (�q ′ − �q)2; Ei =
√

M2
i + �q ′2 and Ej =√

M2
j + �q2 are baryon energies; and z is the starting energy

of the two-baryon system. In order to eliminate the energy
dependence, Reuber et al. [13] replaced the original z with

z = 1
2 (M1 + M2 + M3 + M4), (23)

where the Mi’s denote the baryon masses of the four legs
in the one-meson exchange diagram. In any case, the Jülich
meson propagator involves the baryon masses. Replacement of
these free-space masses with in-medium values would create
medium effects on meson propagation which we do not wish
to include in our nuclear matter calculations. The reason for
keeping free-space masses in the meson propagator is twofold.
First, standard DBHF calculations do not include medium
effects on meson propagation as they typically use Eq. (19),
which does not depend on baryon masses. Second, medium
effects on meson propagation constitute a separate class of
effects that we are not concerned with in the present context
and are typically not perceived as part of the DBHF approach.

Having taken the steps described above, we proceed to
the DBHF calculations. The effect of such corrections on the
binding energy of a � impurity in otherwise pure nuclear
matter was reported in Ref. [19].

034301-3



F. SAMMARRUCA PHYSICAL REVIEW C 79, 034301 (2009)

FIG. 1. (Color) Energy/particle as a function of density in sym-
metric nuclear matter for various � concentrations Y�. Predictions
obtained from DBHF calculations with the NY94 potential.

III. THE EQUATION OF STATE OF NUCLEON
AND � MATTER

As stated in the Introduction, we will be showing results for
both the NY05 potential [20] and the previous version of the
Jülich NY potential, NY94, specifically the model referred to
as Ã in Ref. [13].

In Fig. 1 we show the energy per particle as a function
of density for different � concentrations as obtained from
DBHF calculations along with the NY94 potential. As more
nucleons are replaced with �’s, generally less binding energy
per particle is generated. This is due to the weaker nature
of the N� interaction relative to the NN one. Furthermore,
the � Fermi momentum grows rather quickly with ρ�, since
only two �’s can occupy each state, rather than four, which
implies a fast rise of the hyperon kinetic energy. (Although,
for small hyperon densities, there is at first some reduction
of the kinetic energy, due to the fact that �’s have larger
mass and can occupy lower energy levels.) We notice that
the saturation density remains essentially unchanged with
increasing hyperon concentrations. As density grows, though,
larger � concentrations start to yield increased attraction. One
must keep in mind that, especially at the higher densities, the
NN interaction become less and less attractive due to medium
effects, in particular repulsive Dirac effects. Thus, removing
nucleons from the system can actually amount to increased
binding.

Moving now to Fig. 2, where the NY05 potential is adopted,
we see a very different scenario. We recall that the NY05
model is considerably more attractive, yielding about 50 MeV
for the � binding energy [19,27] whereas a value close to
30 MeV was found with NY94 [13]. Naturally, we expect
these differences to reflect onto the respective EoS predictions.
Here, increasing the hyperon population yields more binding,
a trend opposite to the one seen in the previous figure. Again,
the final balance is the result of a combination of effects. The
fact that the NN component is repulsive at the higher densities,

FIG. 2. (Color) Energy/particle as a function of density in sym-
metric nuclear matter for various � concentrations Y�. Predictions
obtained from DBHF calculations with the NY05 potential.

together with the more attractive nature of the NY05 potential,
determines here a net increase in attraction with decreasing
nucleon density. However, the additional binding becomes
smaller and smaller with increasing hyperon concentration,
indicating that, at sufficiently large � densities, the net balance
may turn repulsive. Notice also that in Fig. 2 the minimum
moves toward higher densities, signifying that baryon pairs
favor a smaller interparticle distance.

To summarize, one must keep in mind that the
energy/particle is the result of a delicate balance of both
the kinetic energies and the potential energies of the two
baryon species, being weighed by the respective densities.
Thus, although the NN interaction is generally more attractive
than the N� one, the net effect of replacing nucleons with �’s
will depend sensitively on the nature of the NY interaction
that is being put into the system, as well as the “stiffness” of
the original, nucleonic, EoS.

This is further confirmed in Fig. 3, where we show pre-
dictions from conventional BHF calculations (i.e., no “Dirac”

FIG. 3. (Color) Energy/particle as a function of density in
symmetric nuclear matter for various � concentrations. Predictions
obtained from BHF calculations. The solid (dashed) lines are obtained
with the NY94 (NY05) potentials.
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effects). As in the previous figures, the red curve is the nucle-
onic EoS. The solid (dashed) curves are the predictions with
NY94 (NY05). Clearly, the effects are opposite depending on
the NY interaction. Qualitatively, the trend seen in each group
of curves (solid or dash) is approximately consistent with the
one observed previously in the corresponding (i.e., same NY

potential) DBHF predictions. However, the “crossover” of the
curves seen in Fig. 1 at about twice saturation density is due
to a large extent to the more repulsive nature of the nucleonic
EoS in the DBHF calculation (see comments above).

In conclusion, the effect of hyperons on the EoS is strongly
dependent upon the baseline (nucleonic) EoS as well as the
NY potential model. With regard to the first issue, we stress
the importance of starting from a realistic EoS, such as the one
predicted in DBHF calculations or obtained with the inclusion
of three-body forces. The second observation confirms the
conclusions of Ref. [28] concerning the large uncertainties
originating from the bare NY potentials. Unfortunately, the
existing data do not set sufficient constrains on the potentials,
as demonstrated by the fact that different potentials can fit the
available scattering data equally accurately but produce very
different scattering lengths [28].

IV. CONCLUSIONS

We have reported on Dirac-Brueckner-Hartree-Fock pre-
dictions of the energy per particle in symmetric nuclear matter
as a function of the total baryon density and (moderate) �

concentrations. Dirac effects are included on both the NN and
the N� potentials. Our DBHF scheme, which requires the use
of relativistic momentum-space nucleon-baryon potentials,

represents a fundamentally different paradigm as compared
to existing calculations.

Ultimately, the actual fraction of hyperons present in
star matter must be determined by the equations of β

stability and charge neutrality for highly asymmetric matter
containing neutrons, protons, hyperons, and leptons. Unlike
the straightforward calculation of lepton fractions in β-stable
isospin-asymmetric nucleon matter, the case of nucleons and
hyperons require a lot more effort due to their strongly
interacting nature. One needs to know the chemical potentials
of each species (neutrons, protons, various hyperons) ideally at
any densities and baryon concentrations. Those may then have
to be fit with analytic functions (not a trivial task, given the
number of dependences), so that they can be inserted into the
appropriate equations to determine the equilibrium fractions
of each baryon type. This is deferred to another paper.

We observed that the predicted energy/particle is extremely
sensitive to the chosen NY interaction. The large uncertainties
due to the model dependence discussed in this paper are
likely to impact any conclusions on the properties of strange
neutron stars, which therefore must be interpreted with caution.
These include considerations of deconfinement and possible
transition from hadronic to quark matter, which depend
sensitively on the equation of state in the hadronic phase.
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