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Solving three-body scattering problems in the momentum lattice representation
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A brief description of the novel approach toward solving few-body scattering problems in a finite-dimensional
functional space of the L2 type is presented. The method is based on the complete few-body continuum
discretization in the basis of stationary wave packets. This basis, being transformed to the momentum
representation, leads to the cell-lattice-like discretization of the momentum space. So the initial scattering
problem can be formulated on the multidimensional momentum lattice, which makes it possible to reduce the
solution of any scattering problem above the breakup threshold (where the integral kernels include, in general,
some complicated moving singularities) to convenient simple matrix equations that can be solved on the real
energy axis. The phase shifts and inelasticity parameters for the three-body nd elastic scattering with MT I-III
NN potential both below and above the three-body breakup threshold calculated with the proposed wave-packet
technique are in a very good agreement with the previous accurate benchmark calculation results.
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I. MOTIVATION FOR THE WORK

The strictly proved integral equations for the solution of
few-body scattering problems were developed many years
ago by Faddeev and Yakubovsky [1,2]. After these pioneer
works a lot of investigations of few-body quantum physics
along these lines were carried out for the next few decades.
Despite great progress in this field [3–9], the practical
solution of few-nucleon scattering problems with realistic
2N and 3N interactions, especially above the three-body
breakup threshold, remains a rather cumbersome computa-
tional problem that needs very powerful computer resources.
Moreover, the practical solution of multidimensional four-
nucleon Faddeev–Yakubovsky equations with realistic NN

and 3N interactions is so problematic that even now 4N

systems above the three-body threshold can be practically
treated only with simple pairwise local interactions [6,9]. The
reason of this is the very laborious numerical routines in the
coordinate space and the complicated moving singularities
in multidimensional kernels of the integral momentum-space
equations.

At the same time, several efficient methods for the accurate
approximation of few-body continuum wave functions in
various L2 bases have been developed [10–18]. These are the
“moment T -matrix method” [10], the J -matrix approach [11–
13], “the harmonic oscillator representation” [14], the Lorentz
integral transform method [15], the continuum-discretized
coupled-channel method (CDCC) [16–18], etc. However, most
of them can be used for special cases of the few-body scattering
only, e.g., for the so-called truly few-body scattering when
there are no bound states in any two-body subsystems [14]
or for the composite particle scattering off heavy target when
stripping channels can be neglected [16–18]. In other cases one

*pomeran@nucl-th.sinp.msu.ru
†kukulin@nucl-th.sinp.msu.ru
‡rubtsova-olga@yandex.ru

can describe the processes when few-body wave functions in
the initial channel are of the bound-state type and the L2 basis
is used to approximate the final-state few-body continuum
only [15], or one treats a three-body scattering at small energies
below the three-body threshold only [13]. So that, with the
above L2-type methods no precise calculations for the basic
three-body nd scattering case above the breakup threshold
have been carried out to date.1

Thus, it would be very convenient to have at our disposal
a sufficiently universal method for general continuum dis-
cretization in different two- and few-body scattering problems
(in nuclear physics, atomic physics, hadronic physics, etc.),
which operates with L2 functions only and nonsingular matrix
equations both below and above the breakup thresholds.

A few years ago the present authors developed a new
approach to solving few-body scattering problems based on the
discretization of the continuous spectrum of the total Hamil-
tonian [20–24]. The method uses stationary wave packets,
which are L2-type functions, instead of the exact scattering
wave functions. In these works an original wave-packet
formalism has been developed that allows one to construct
finite-dimensional (f.-d.) approximations for basic scattering-
theory operators and find the scattering observables using such
approximations. The approach has recently been tested for
the elastic scattering and breakup of composite projectiles
scattered off heavy targets (neglecting the stripping processes),
and perfect agreement with the conventional CDCC results
has been found [23,24]. In the present article we extend our
wave-packet approach much further, toward solving a general
three-body scattering problem on the basis of the projected
Faddeev equations, and illustrate the new technique using the

1The realistic three-nucleon calculations for, e.g., nd (or pd)
scattering below and above the three-body breakup threshold have
been carried out with either the variational method [19] using the
Schrödinger equation approach or the Faddeev equations in the
momentum [8] or in the configuration space [5].
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example of quartet and doublet nd scattering below and above
the three-nucleon breakup threshold.2

II. FORMULATION OF THE APPROACH

Here we describe the three-body wave-packet discretization
procedure for elastic nd scattering. The elastic amplitude X for
the quartet case can be found from a single integral Faddeev
equation [25]

X = −Pv1 − Pv1G1X, (1)

where v1 is the triplet NN interaction potential, G1 = (E −
H1)−1 is the three-body resolvent of the channel Hamiltonian
H1 = H0 + v1, and P is the permutation operator. We empha-
size here that this form of Faddeev equation (i.e., with kernel
PviGi instead of the more standard form P tiG0) is much more
convenient for the wave-packet approach because of the fact
that the channel three-body resolvent Gi in our approach can
be calculated in a simple analytical form and has a diagonal
matrix representation [see Eqs. (6)–(8)].

To solve the three-nucleon scattering equation [Eq. (1)], let
us introduce the finite basis {|Si〉}Ni=1 such that the projector �N
onto the f.-d. basis subspace can (in some not rigorous sense)
approximate the unit operator �N = ∑N

i=1 |Si〉〈Si | → 1. Then
one can define the N -dimensional approximation for any
operator A as its projection onto the respective basis sub-
space: �NA�N = ∑

ij |Si〉Aij 〈Sj |, with corresponding matrix
elements Aij ≡ 〈Si |A|Sj 〉. Using such matrix approximations
for the scattering operators, the initial integral equation can
be reduced to the respective matrix equation. We denote
the matrices of projected operators with corresponding bold
letters. So, one finds the matrix equation instead of the integral
equation (1):

X = −Pv1 − Pv1G1X. (2)

Thus, it looks like it would be possible to find some
approximate solutions of the initial integral equation using
some appropriate L2 bases through the simple matrix algebra.
However, not every L2 basis is suitable for this purpose. The
integral kernel of the Faddeev equation includes the fixed-pole
singularities and also the complicated moving singularities
above the three-body breakup threshold. Only these singulari-
ties correspond to the proper boundary conditions in coordinate
space and provide the correct physical solution of the Faddeev
equations, but a construction of the appropriate basis for the
projection of such kernels is a highly nontrivial problem.
Another key problem here is the calculation of matrix elements
for v1, P , and especially G1 operators in the chosen basis,
which can appear, in general, to be a rather cumbersome
task. The appropriate stationary wave-packet basis helps to
overcome all the above difficulties and formulate the matrix
equations whose solutions can really approximate with high
accuracy the solutions of the initial integral equations. Such a

2As far as the present authors are aware, the present work gives the
first precise fully L2 approximated solution for the Faddeev equation
above the three-body threshold.

basis will be demonstrated to provide a convenient analytical
diagonal representation for the three-body channel resolvent
matrix G1 and, on the other hand, this basis covers a sufficiently
wide functional L2 space to provide well converged results.

The channel Hamiltonian H1 is the direct sum of two
subHamiltonians corresponding to the system motion along
two independent Jacoby coordinates:

H1 ≡ h1 ⊕ h0, (3)

where subHamiltonian h1 defines the NN subsystem motion
(including interaction v1) and subHamiltonian h0 corresponds
to the free motion of the third nucleon relative to the NN

subsystem center of mass. Now let’s define two sets of
momentum bins [pi−1, pi]Mi=1 and [qj−1, qj ]Nj=1 corresponding
to the continuum discretizations for subHamiltonians h1 and
h0. The (two-body) stationary wave-packet bases (WPB) are
defined as integrals of the exact continuum wave functions
|ψp〉 and |ψ0q〉 of the subHamiltonians h1 and h0 over the
respective momentum bins:

|zi〉 = 1√
bi

∫ pi

pi−1

dp|ψp〉, |yj 〉 = 1√
dj

∫ pj

qj−1

dq|ψ0q〉, (4)

where bi ≡ pi − pi−1 and dj ≡ qj − qj−1 are bin widths.
Now, the three-body WPB states |Sij 〉 are defined just as
products of the two-body wave-packet states |zi〉 (including
the bound state wave function |z0〉) and |yj 〉 along two Jacobi
coordinates:

|Sij 〉 ≡ |zi, yj 〉. (5)

We omit here partial wave indices for the sake of simplicity.
The properties of the wave-packet sets |zi〉 and |yj 〉 have been
investigated in detail in Refs. [20–23]. In particular, the very
useful property of such a packet basis is that the matrices
for the projected resolvents of the subHamiltonians g1(E) =
(E + i0 − h1)−1 and g0 = (E + i0 − h0)−1 are diagonal and
defined by a simple analytical expression depending only
on the spectrum discretization parameters. This property of
WPB allows us to construct the f.-d. analytical diagonal
representation for the channel resolvent G1(E), which is a
convolution of the two-body resolvents g1 and g0.

Indeed, the exact three-body channel resolvent can be
written [21] as a sum of two terms, G1(E) = GBC

1 (E) + GCC
2 ,

where the bound-continuum part has the form

GBC
1 (E) =

∫ ∞

0
dq

|z0, ψ0q〉〈z0, ψ0q |
E + i0 − ε0 − 3q2

4m

, (6)

and ε0 is the binding energy for the (single) np bound state.
The continuum-continuum part takes the form

GCC
1 (E) =

∫ ∞

0
dp

∫ ∞

0
dq

|ψp,ψ0q〉〈ψp,ψ0q |
E + i0 − p2

m
− 3q2

4m

. (7)

Now let’s construct a projection of the exact channel resolvent
onto the three-body WPB. The following analytical formulas
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for the diagonal f.-d. projection of G1 can then be obtained:

GBC
1 =

∑
j

GBC
0j |z0, yj 〉〈z0, yj |,

(8)
GCC

1 =
∑
i �=0,j

GCC
ij |zi, yj 〉〈zi, yj |,

where the matrix elements GBC
oj and GCC

ij in Eq. (8) are defined
as integrals over the respective momentum bins:

GBC
0j = 1

dj

∫ qj

qj−1

dq

E + i0 − ε0 − 3q2

4m

, (9a)

GCC
ij = 1

didj

∫ pi

pi−1

∫ qj

qj−1

dpdq

E + i0 − p2

m
− 3q2

4m

. (9b)

These matrix elements depend, in general, on the spectrum
partition parameters (i.e., pi and qj values). However, we
found when the wave-packet expansions of the three-body
amplitude is convergent the final result turns out to be
independent of the particular spectral partition parameters. The
integrals in Eqs. (9a) and (9b) are analytically tractable, which
gives a simple analytical f.-d. representation for the three-body
channel resolvent G1. Such an analytical representation is a
main feature of the wave-packet approach because it allows one
to drastically simplify the solution of the general three-body
scattering problem.

Now the key question arises: how to construct practically
the above wave-packet basis. The free packets |yn〉 correspond-
ing to the free motion of the third nucleon relative to the NN

subsystem c.m. take in the momentum representation the form
of simple step-like functions:

〈q|yj 〉 = θ (q − qj−1) − θ (q − qj )√
dj

, (10)

where θ (q) is the Heaviside function.
The scattering wave packets |zi〉 describing the scattering in

the NN two-body subsystem can be very well approximated
by pseudostates |z̃i〉 obtained from the diagonalization of the
subHamiltonian h1 in some appropriate L2 basis [20]. In the
present work we use for this diagonalization a free wave-packet
basis |xk〉 corresponding to the free NN motion. Thus, we
solve the two-body variational problem directly on the free
WPB and as a result obtain a set of variational functions

|z̃i〉 =
M∑

k=0

Oik|xk〉, i = 0, . . . , M, (11)

the first of which (for the problem in question) is the wave
function of the bound state (deuteron) while the others are very
good approximations for the exact scattering packets until very
large distances.

In Fig. 1 the coordinate-space behavior of some from the
first 50 variational functions (including the deuteron) is shown.
It is clear that the free-packet basis allows one to approximate
the respective scattering wave functions up to a very far
asymptotic region (in Fig. 1 the functions z̃i(r) are given at
r < 80 fm, but actually they coincide with exact scattering
wave packets up to r ∼ 1000 fm). This long-range behavior
of the basis functions plays a crucial role in the three-body
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FIG. 1. (Color online) Bound state (solid curve) and several
interaction wave packets (different dashed lines) for the MT III
potential constructed from the free momentum packets in the
coordinate space.

scattering, especially above the breakup threshold, because
it provides a proper overlapping between basis functions in
different Jacoby coordinate sets. It should be mentioned that
in our previous calculations [21] we used a Gaussian basis
to approximate the interaction packets in the whole space
and so the wrong long-range behavior of the basis functions
did not allow us to obtain well converged results above the
breakup threshold (while for the smaller energies the Gaussian
approximation worked quite well).3

In addition, the momentum lattice basis is very convenient
to find the matrix elements of the permutation operator P .
Using approximation (11) for the scattering packets |zi〉, these
matrix elements can be expressed in the form

Pij,i ′j ′ = 〈ziyj |P |zi ′yj ′ 〉 ≈
∑
kk′

OikO
∗
i ′k′P

0
kj,k′j ′ , (12)

where P 0
kj,k′j ′ ≡ 〈xkyj |P |xk′yj ′ 〉 is the permutation matrix

element taken on the two-dimensional free wave packets (for
a two-dimensional lattice) and the Oik are the superposition
coefficients given in Eq. (11). Using further hyperspherical
momentum coordinates, the calculation of P 0

kj,k′j ′ can be
reduced to a one-dimensional numerical integration over hy-
permomentum p2 + q2. The technique of this calculation will
be given in detail elsewhere. It should be stressed here that this
is one of the key points for the whole of our approach. In fact,
to solve two-dimensional Faddeev equations by conventional
methods [4] one needs (because of the appearance of the
permutation operator P in the integral kernel) to use very
time-consuming two- and three-dimensional interpolations
(many thousands or even millions of such interpolations) at
each iteration step to find the solution in the initial Jacoby

3It should be noted the free packet basis (i.e., the step-like functions
in the momentum space) is, of course, not optimal for calculation of
bound states. For example, in our case only 20 Gaussian functions
are necessary to obtain Eb = −2.225 MeV for the deuteron binding
energy and ca. 100 step-like functions are required to reach the same
precise bound energy value. However, very good approximation of
scattering wave functions in two-body subsystems is the decisive
factor here.
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FIG. 2. (Color online) The energy dependence of the real phase
shift for S-wave quartet nd scattering calculated by means of
the momentum-packet discretized Faddeev equation at different
dimensions M × N of the lattice basis: 100 × 100 (dashed curve),
200 × 200 (solid curve). Results of the direct Faddeev equation
solution from Refs. [7] and [8] are marked as �.

set from the “rotated” (by the permutation P ) Jacoby sets.
So, such numerous multidimensional interpolations at each
iteration step take a big portion of computational time in
practical solutions of three-body integral equations. When
solving the four-body Yakubovsky equations, the dimension
and the number of interpolations at each iteration step get even
higher. Thus, the present wave-packet approach allows one to
avoid completely such multidimensional interpolations and to
simplify enormously the solution process.

After solving the matrix equation, Eq. (2), the on-shell
elastic amplitude Ael(E) in wave-packet approximation can
be found as a diagonal (on-shell) matrix element of the X

matrix [which is a solution of the matrix equation (2)]:

Ael(E) ≈ 2m

3q0

X0n0,0n0

dn0

, (13)

where index n0 denotes the singular q bin to which the on-shell

momentum q0 =
√

4
3m(E − ε0) belongs: q0 ∈ (qn0−1, qn0 ). It

should be stressed here that the breakup amplitude can be
found from the same matrix X but using its nondiagonal matrix
elements. Thus, to find both the elastic and breakup amplitudes
one needs to solve one linear equation, only for single
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FIG. 3. (Color online) The same as in Fig. 2 but for the inelasticity
parameter η.
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FIG. 4. (Color online) The energy dependence of the real phase
shift for the S-wave doublet nd scattering calculated by means
of the momentum-packet discretized Faddeev equation at different
dimensions M × N of the lattice basis: (50 + 50) × 50 (dashed
curve), (80 + 80) × 80 (dotted curve), and (100 + 100) × 100 (solid
curve). Results of the direct Faddeev equation solution from Refs. [7]
and [8] are marked as �.

column Xmn,0n0 , rather than to do a full matrix inversion in
Eq. (2).

III. NUMERICAL RESULTS

To illustrate the accuracy and effectiveness of the proposed
wave-packet technique we calculated the real phase shifts and
inelasticity parameters for the three-body elastic nd scattering
in the quartet and doublet S-wave channels with the model
Malfliet-Tjon NN potential MT-III. In the case of doublet
scattering one has a system of two matrix equations instead
of one matrix equation (2) where two amplitudes correspond
to two possible spin states (triplet and singlet) in the NN

subsystem.
The results of these calculations are shown in Figs. 2 and

3 for the spin-quartet channel, in Figs. 4 and 5 for the spin-
doublet channel, and in Table I.

To check the accuracy of the method we have compared
carefully our results with the previous benchmark calculation
results from Ref. [7] (below the deuteron breakup threshold)
and Refs. [8] and [26] (above the deuteron breakup threshold).
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FIG. 5. (Color online) The same as in Fig. 4 but for the inelasticity
parameter η.
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TABLE I. The convergence the nd scattering results for MT III potential obtained from the momentum-packet discretized
Faddeev equations when increasing the basis dimension N × N in comparison with results of exact benchmark Faddeev
calculations [26] (Bochum and LA/Iowa).

Doublet Quartet

Ec.m. 9.4 MeV 28 MeV 9.4 MeV 28 MeV

N Re(δ), deg η Re(δ), deg η Re(δ), deg η Re(δ), deg η

64 104.30 0.4740 43.88 0.5235 70.89 0.9984 42.19 0.9199
96 104.82 0.4715 42.28 0.5130 70.15 0.9864 39.70 0.9174
128 105.05 0.4690 41.98 0.5075 69.85 0.9823 38.95 0.9086
192 105.25 0.4683 41.73 0.5039 69.55 0.9797 38.43 0.9045
256 105.33 0.4672 41.63 0.5032 69.40 0.9790 38.21 0.9034

Fully convergeda 105.54 0.4649 41.37 0.5020 68.94 0.9788 37.65 0.9029

Bochum 105.50 0.4649 41.37 0.5022 68.96 0.9782 37.71 0.9033
LA/Iowa 105.48 0.4648 41.34 0.5024 68.95 0.9782 37.71 0.9033

aThe values obtained by means of extrapolation N → ∞.

The exact parameters of the NN potential are taken from
Ref. [8].

As can be seen from Figs. 2 to 5 the wave-packet
discretization technique for the three-body continuum works
successfully for the general three-body scattering problem
both below and above breakup threshold. A more detailed
comparison with the results of benchmark calculations for the
same scattering energies is presented in Table I, where we
compare our results with those found by two groups, viz., the
Bochum and Los-Alamos/Iowa groups [26], which employed
completely different approaches. From Table I, it can be seen
that with the present wave-packet approach one can reach, in
general, the numerical accuracy similar to accurate benchmark
results [26] in the calculation of three-body observables for
both doublet and quartet channels.

Thus, for the first time we have solved the three-body
scattering problem above the breakup threshold using only
f.-d. approximation of the L2-type for the Faddeev kernel. The
use of the momentum-lattice basis allowed us to achieve a good
convergence and accuracy this way. It worth to noting here that
all calculations above the three-body breakup threshold were
carried out with a standard personal computer.

IV. CONCLUSION

Let’s briefly outline here the most important points of this
study. For the first time the three-body scattering problem in
the Faddeev framework above the breakup threshold has been
successfully solved in the three-body L2-basis representation
using the lattice approximation scheme (which is the technique
of three-body continuum discretization). The success and
advantages of the lattice approach are related to the following
distinctive features.

(i) Due to matrix representation for the pairwise potentials
there is no difference between the local and the nonlocal
type of the interaction and therefore the approach is
applicable for any complicated interactions, in partic-
ular, for modern NN interactions based on effective
Lagrangians and chiral perturbation theory.

(ii) The explicit analytical f.-d. approximation for the three-
body channel resolvent G1 allows to reduce the initial
integral Faddeev equation to the matrix one that can be
solved directly on the real energy axis.

(iii) The scattering wave packets (corresponding to the NN

interaction) can be approximated by pseudostates of the
two-body NN subHamiltonian matrix in the free wave-
packet basis, which allows one to avoid completely
calculation of the off-shell two-body t matrix and obtain
explicitly matrix elements of the permutation operator
P that include overlapping between wave-packet basis
states of the different three-body channel Hamiltonians.

(iv) This convenient closed form for the matrix elements of
the permutation operator P in the WPB also makes it
possible to avoid completely very time-consuming mul-
tidimensional interpolations of the iterated kernels that
usually assist in conventional techniques of the Faddeev
equation numerical integration in the momentum space.

(v) The very long-range type of wave-packet functions
(nonvanishing at distances ∼1000 fm) allow one to
approximate properly the overlapping between basis
states in different Jacoby coordinate sets. This leads
to the proper asymptotic behavior of the solutions
along different Jacoby coordinates, which could not be
provided by means of conventionally used short-range
type L2 bases.

In addition, this long-range behavior of the wave-packet
basis functions looks also very promising for the proper
incorporation of the long-range Coulomb interaction in the
treatment of few-nucleon scattering with charged particles.
Our further investigations are aimed at this purpose.
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