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Resonance effects in distorted-wave Born approximation analyses of ( �d, p)
analyzing powers at very low energies
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In very low energy (d, p) reactions, resonance effects are explicitly taken into account for zero-range distorted-
wave Born approximation calculations by restricting the reaction amplitudes to those specified by the spin-parity
of the resonance. The application of formulas of tensor analyzing powers to 6Li( �d, p)7Li(g.s.) reactions in
resonance regions provides us a clear understanding of the characteristics of the measured analyzing powers and
aides in the determination of the spin-parity of the resonance states concerned at Ed = 90, 600, and 960 keV.
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I. Introduction. Nuclear reactions at very low energies have
been investigated with special interest in them as the source of
the production of elements in the universe. In particular, the
analyzing powers of polarized beams have attracted attention
by providing detailed information of reaction mechanisms
[1,2]. However, the method of theoretical analyses of analyzing
power data has not always been established when resonances
are concerned. For example, the compound nucleus (CN)
theory has been useful in the analysis of low energy resonance
reactions but is not suitable for application to the analyzing
powers because the final channel is disconnected from the
initial one because of the formation of the CN. On the other
hand, direct reaction theories have been useful in the analysis
of the analyzing power data but they have no definite program
to include the resonance effect when the resonance mechanism
is not clear. In the present report, we take up the distorted-wave
Born approximation (DWBA) [3] as the direct reaction theory
and examine the resonance effect in (d, p) reactions.

Recently, tensor analyzing powers T2q (q = 0, 1, 2) of po-
larized deuterons have been measured for the 6Li( �d, p)7Li(g.s.,
3/2−) reaction at Ed = 90 keV [2], which is covered by a
resonance region found in α + α scattering. According to
Ref. [4], the resonance pole is situated at 80 keV be-
low the d + 6Li threshold with spin-parity 2+ and width
800 keV. In Ref. [2], zero-range DWBA calculations that
include distortions by central and spin-orbit potentials have
been performed for the reaction but the calculations have
not succeeded in reproducing the measured analyzing powers
despite a wide search of the theoretical parameters. For
example, a parameter set that reproduces the data of T20 and
T22 gives T21 with the sign opposite to that of the measured
and vice versa. Then the problem is to examine if the above
difficulty of the DWBA is avoided when the resonance effects
are considered.

A resonance state has its own spin-parity and in resonance
reactions transition amplitudes designated by this spin-parity
will be dominated over other amplitudes. We take account
of the resonance nature of reactions by considering such
superiority of the amplitude of the resonance spin-parity. Par-
ticularly, in an ideal case where contributions of nonresonance
amplitudes are negligible, we restrict the reaction amplitudes

to those that have the resonance spin-parity. Later our interest
will focus on this ideal case. At present, the incident beam
consists of mostly S waves due to the very low energy. Thus
the total spin of the system is equal to the incident channel spin
si defined by si = sd + sA, where sd and sA are the spins of the
deuteron and the target nucleus A. That is, the resonance spin
should be one of si = |sd − sA|, . . . , sd + sA. In the following
sections, we expand the DWBA transition amplitude into terms
of the channel spin si and see the contribution of each si term
to observables, for instance, to the analyzing powers. When
the resonance spin, IR , is known, the choice si = IR provides
the contribution of the resonance to the observables. When IR

is unknown, one determines the resonance spin by examining
if the contribution of a specific si explains the experimental
data.

II. DWBA amplitude of (d, p) reactions in channel spin
representation. The transition amplitude Tf i for A(d, p)B
reactions is described in the DWBA for stripping reaction
models [3],

Tf i = 〈�(−)
f |vnp|�(+)

i 〉, (1)

where �
(+)
i (�(−)

f ) describes the incident (final) distorted wave
with the outgoing (incoming) boundary condition and vnp is
the neutron-proton interaction. These wave functions include
internal wave functions of related nuclei, for example, in �

(+)
i ,

those of the deuteron and the target A. We introduce the
channel spin function χsiνi

, where ν’s denote z components
of spins, by composing the spin functions of the deuteron and
the nucleus A,χsdνd

and χsAνA
, as

χsiνi
=

∑
νdνA

(sdsAνdνA|siνi)χsdνd
χsAνA

. (2)

Conversely,

χsdνd
χsAνA

=
∑
siνi

(sdsAνdνA|siνi)χsiνi
. (3)

Denote the plane wave of the d-A relative motion by φi .
We introduce wave distortion on φiχsiνi

to produce the
channel distorted wave ψ (+)

siνi
, where the Coulomb and central

interactions are considered as the source of the wave distortion,
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to see pure resonance effects. Such a choice of distortion
has produced reasonable cross sections at low energies. The
central interactions have some si dependencies reflecting the
superiority of the resonance amplitude but their details depend
on the resonance mechanism. At present, we utilize the si

dependence to identify the transition amplitude concerned.
Based on such considerations, from Eq. (3) we get

�
(+)
i =

∑
siνi

(sdsAνdνA|siνi)ψ
(+)
siνi

. (4)

The final channel spin function χsf νf
is given by

χsf νf
=

∑
νpνB

(spsBνpνB |sf νf )χspνp
χsBνB

. (5)

Denoting the final channel distorted wave by ψ (−)
sf νf

, where
p-B central interactions are assumed in addition to the
Coulomb interaction, the total distorted wave in the final state
�

(−)
f is given by

�
(−)
f =

∑
sf νf

(spsBνpνB |sf νf )ψ (−)
sf νf

. (6)

Using Eqs. (4) and (6), we get the transition amplitude in the
channel spin representation,

Tf i =
∑
siνi

∑
sf νf

(sdsAνdνA|siνi)(spsBνpνB |sf νf )

× 〈
ψ (−)

sf νf

∣∣vnp

∣∣ψ (+)
siνi

〉
. (7)

To calculate 〈ψ (−)
sf νf

|vnp|ψ (+)
siνi

〉, we introduce further simpli-
fications. Describing the wave function of the deuteron internal
motion by ϕd (ξ ) with the neutron-proton relative coordinate ξ ,
the usual zero-range approximation, which is widely used as
the established one, gives

vnpϕd (ξ ) = Dδ(ξ ), (8)

where D is a constant. The incident partial wave is restricted
to the S wave, because of the very low incident energy. Then

vnpψ (+)
siνi

= D√
4π

δ(ξ )Rsi
(kiρ)χsiνi

, (9)

where the incident momentum is denoted by ki , the d-A
relative coordinate by ρ, and the radial part of the distorted
wave by Rsi

(kiρ).
The wave distortion in the final state is applied to the p-B

relative motion φf and the distorted wave φ
(−)
f is given by the

partial-wave expansion,

φ
(−)
f = 4π

∑
�pmp

(i)�pY ∗
�pmp

(k̂f )Y�pmp
(ρ̂)R�p

(
A

A + 1
kf ρ

)
,

(10)

where the final momentum is denoted by kf and the radial
part of the distorted wave by R�p

( A
A+1kf ρ). The final channel

distorted wave is given by

ψ (−)
sf νf

= φ
(−)
f χsf νf

, (11)

where χsf νf
is obtained by Eq. (5) with χsBνB

, which is given
by the stripping model. The neutron is captured into an (�n, jn)

orbit around the target nucleus A. Then

χsBνB
=

∑
µn

(jnsAµnνA|sBνB)φjnµn
χsAνA

, (12)

with

φjnµn
=

∑
mn

(sn�nνnmn|jnµn)χsnνn
Y�nmn

(ρ̂)Rn(βρ), (13)

where Rn(βρ) is the radial wave function of the captured
neutron and β is calculated from the binding energy of the
neutron as usual. By the use of Eqs.(9)–(13), we get

〈
ψ (−)

sf νf

∣∣vnp

∣∣ψ (+)
siνi

〉
= i�n

√
4π (2sd + 1)(2jn + 1)

∑
J

(2J + 1)W (spsnsisA; sdJ )

×W (�njnJ sA; snsB)
∑
M

(spJνpM|siνi)

×
∑
mn

(J�nMmn|sBνB)(spsBνpνB |sf νf )Y ∗
�nmn

(k̂f )I (si),

(14)

with

I (si)=D

∫
R∗

�p=�n

(
A

A + 1
kf ρ

)
Rn(βρ)Rsi

(kiρ)ρ2dρ. (15)

Here the Racah coefficient W (spsnsisA; sdJ ) describes the
change of the order of the sum of three vectors from (sp + sn =
sd , sd + sA = si) to (sn + sA = J, sp + J = si). A similar
change is applied to the final state.

III. Cross section and tensor analyzing powers and
6Li( �d, p)7Li reaction. Denote T matrix by M. Differential
cross sections dσ/d� and the tensor analyzing powers T2q [5]
are

dσ

d�
= 1

3(2sA + 1)
Tr(M M†) (16)

and

T2q = 1

Tr(M M†)
Tr

(
Mτ 2

q M†), (17)

where τ 2
q is the spin tensor that describes the tensor polarization

of the incident deuteron. Using Eq. (14) for matrix elements
of M, we obtain by some Racah algebra manipulations, for
y ‖ �ki × �kf and z ‖ �ki ,

Tr(M M†) =
∑
si

3(2sB + 1)(2jn + 1)(2si + 1)

×
∑

J

(2J + 1)W 2

(
1

2

1

2
sisA; 1J

)

×W 2

(
�njnJ sA;

1

2
sB

)
|I (si)|2 (18)
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FIG. 1. Comparison of T2q (q = 0, 1, 2) between experimental
data and calculations at Ed = 90 keV in 6Li( �d, p)7Li(g.s.). The
data are taken from Ref. [2]. The lines describe the calculations by
Eqs. (21)–(23); the dotted ones are for IR = 1 with jn = 1

2 , the dashed
ones are for IR = 1 with jn = 3

2 , and the solid ones for IR = 2 with
jn = 1

2 or 3
2 .

and

Tr
(
Mτ 2

q M†)

=
∑
si s

′
i

3
√

2

5
(2sB + 1)(2�n + 1)(2jn + 1)

×
√

(2si + 1)(2s ′
i + 1)(�n�n00|20)

×
∑
JJ ′

(2J + 1)(2J ′ + 1)(−)sB−J ′

×W

(
1

2

1

2
sisA; 1J

)
W

(
1

2

1

2
s ′
i sA; 1J ′

)

×W

(
�njnJ sA;

1

2
sB

)
W

(
�njnJ

′sA;
1

2
sB

)

×W

(
1

2
J s ′

i2; siJ
′
)

W (J�nJ
′�n; sB2)(s ′

i ||τ 2||si)

×Re{I ∗(si)I (s ′
i)}P2q(cos θ ), (19)

where

(s ′
i ||τ 2||si) = (−)1−sA+s ′

i

√
15(2si + 1)(2s ′

i + 1)

×W (1s ′
i1si ; sA2). (20)
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FIG. 2. Comparison of T2q (q = 0, 1, 2) between experimen-
tal data and calculations at Ed = 600 keV and 960 keV in
6Li( �d, p)7Li(g.s.). The data are taken from Ref. [6]; the closed circles
(open circles) are for 600 keV (960 keV). When the data of both
energies overlap, the 600 keV data are plotted. For a description of
the lines, see the caption of Fig. 1.

The quantity P2q(cos θ ) is the associated Legendre function
and θ is the scattering angle. The results obtained above
show the general features of the reaction observables; i.e.,
the differential cross section is isotropic and the tensor
analyzing powers have a characteristic angular dependence,
T2q ∝ P2q(cos θ ), where the proportional factor depends on
the choice of distortion potential.

In the case of the ideal resonance, one can set si = s ′
i =

IR in Eqs. (18) and (19). Then in T2q,Re{I ∗(si)I (s ′
i)} of

Tr(Mτ 2
q M†) becomes |I (si)|2s ′

i=si
and is canceled by that of

Tr(M M†). Thus we get T2q independently from details of
the distortion potential. To derive explicit expressions of T2q ,
we consider the low energy 6Li( �d, p)7Li(g.s.) reaction in the
resonance region. At Ed = 90 keV, the measured cross section
of the reaction is almost isotropic [2], as predicted above,
ensuring the S-wave dominance in the incident channel. Then
the resonance spin will be one of si and si = 0, 1, 2 due to
sd = sA = 1. The neutron will be captured into a p orbit, i.e.,
�n = 1, jn = 1

2 or 3
2 . Setting sB = 3

2 , we get the analyzing
powers for IR = 0, T2q = 0, and

for IR = 1 with jn = 3

2
, T2q = 1

10
√

5
P2q(cos θ ), (21)

027604-3



BRIEF REPORTS PHYSICAL REVIEW C 79, 027604 (2009)

for IR = 1 with jn = 1

2
, T2q = − 2

7
√

5
P2q(cos θ ), (22)

for IR = 2 with jn = 3

2
or

1

2
, T2q = 14

25
√

5
P2q(cos θ ). (23)

These are displayed in Fig. 1 and compared with the exper-
imental data at Ed = 90 keV [2]. In Fig. 1, T2q calculated
for IR = 2 agrees with the data with good quality for all q,
indicating that the reaction takes place as the 2+ resonance
probably in high purity. This result is consistent with that
of the previous analyses [2], where the resonance spin-parity
is 2+ and the fraction of the 2+ configuration is about 90%
of the reaction at Ed = 90 keV, showing the neglect of the
nonresonant configurations to be a good approximation. The
previous analyses treat the analyzing powers phenomenolog-
ically and the parameters involved are determined so as to fit
the data, while at present the analyzing powers are derived
theoretically without any adjustment once the resonance spin-
parity is given. Such results provide a key for understanding
the resonance mechanism by showing the stripping model
to be favorable for the neutron transfer. In the case of no
resonance, Tr(Mτ 2

q M†) is shown to be zero by calculating
Eq. (19) explicitly, neglecting the si dependence of I (si). Thus,
in the present approximation, the observed analyzing powers
are considered to be the product of the resonance.

Earlier the tensor analyzing powers of this reaction were
measured at Ed = 600 and 960 keV [6]. These energies are in
an off-resonance region for 2+ in the conventional analyses [4].
However, an additional 2+ resonance, which is situated at
500 keV above the d + 6Li threshold with the 1670 keV
width, has been predicted by reanalyses of related cross

sections [7]. Because this new resonance covers the above
deuteron energies, it is interesting to compare the measured
analyzing powers with our calculations. The measured
analyzing powers are described in the cartesian representation.
They are related to T2q as follows,

Azz =
√

2T20, Axz = −
√

3T21, Axx − Ayy = 2
√

3T22.

(24)

Transforming the calculated T2q to the cartesians, we compare
in Fig. 2 the theoretical prediction with the data, where the
cross section factor of the analyzing power data is assumed to
be isotropic, as consistent with our theoretical cross section.
In this figure, the measured analyzing powers at both 600 and
960 keV are described by the calculated ones for the 2+
resonance assumption. This result supports the reanalyses in
Ref. [7].

Here, contributions of spin-orbit and tensor interactions,
higher partial waves in the incident channel, and transition
amplitudes of nonresonance si are neglected. Despite such
deficiencies, we have obtained finite contributions to the
analyzing powers as the resonance effect by restricting
the DWBA amplitudes to those which have the resonance
spin-parity. This restriction brings about the definite spin
dependence in the transition amplitudes and thus the analyzing
powers are obtained without other spin-dependent interactions.
The agreement with the data support the present theoretical
development. Further, extensions of the theory are required for
applications to the case where transitions by scalar interactions
like vnp are forbidden due to the spin-parity conservation.
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