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Influence of the σ -ω meson interaction on neutron star matter
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Relativistic mean field theory with nonlinear scalar self-interaction and isoscalar scalar-vector cross-interaction
is used to study the properties of neutron star matter in β equilibrium with and without hyperons. The influence
of σ -ω meson cross-interaction on the properties of neutron star matter and the mass-radius relation of neutron
stars is examined with attractive and repulsive � potential, respectively. The calculated result indicates that the
cross-interaction softens the equation of state (EOS) of nuclear (hadronic) matter and reduces the maximum
mass of neutron stars. It also decreases the densities for hyperonization to occur and lowers the center density
of neutron stars. The increase of the cross-interaction strength enhances the softening effect of hyperons on the
EOS. Meanwhile the repulsive � potential stiffens slightly the EOS and influences obviously the composition of
neutron star matter.
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I. INTRODUCTION

A quantized field theoretical description based on hadronic
degrees of freedom, referred to as quantum hadrodynamics
(QHD), was introduced by Walecka in 1974 [1]. It is a
successful approach to describing the properties of nuclei
and nuclear matter with the relativistic mean-field (RMF)
approximation. For the original QHD, also known as the σ -ω
model, a simple parameter set was used to model the nuclear
force by exchanging the neutral (isoscalar) scalar sigma (σ )
mesons and (isoscalar) vector omega (ω) mesons. These
mesons have been found to be most important in describing
the properties of nuclei and nuclear matter [2]. The prevalent
models in the RMF framework also include the nonlinear
self-coupling of σ mesons that is essential to reproduce the
properties of nuclei quantitatively and give a reasonable value
for the incompressibility of nuclear matter [3–6]. Moreover,
the channel via ρ-meson exchange was introduced to describe
the asymmetric nuclear matter [7]. In addition, the vector
self-coupling ω4 of ω mesons has been added to improve the
description of finite nuclei [8], for instance, the shell effects
in nuclei [9]. Applied to neutron star matter, it weakens the
repulsive vector meson contribution, softens the equation of
state (EOS) at high density and, in turn, induces neutron stars
with relatively smaller maximum mass [10]. Compared with
ω4, the vector self-coupling ρ4 of ρ mesons produces relatively
minor changes in neutron star mass [11].

In recent years, great success has been achieved by
considering the variations of meson coupling [12–15] or
even density-dependent meson coupling [16–19]. There has
also been progress in the effective field theoretical approach
with higher order terms being included [20–22]. Moreover,
meson-meson cross-interactions have also been studied to
describe finite nuclei and nuclear matter [11,23–25]. In
Ref. [25], the coupling between σ and ρ mesons was
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considered. It showed that such a coupling reduces the neutron
skin to a more reasonable value relevant to neutron star mass.
In Ref. [11], the vector ω-ρ cross-interaction was investigated
to parametrize the nuclear matter property calculated by
Dirac-Brueckner-Hartree-Fock theory, and it seemed to be a
useful degree of freedom for describing asymmetric nuclear
matter [23]. It was also shown that this cross-interaction
softens the EOS of nuclear matter with a lowering of the
hyperonization, enhances simultaneously the hyperon-induced
decrease of the electron chemical potential, and, in turn, shifts
the critical baryon density for the kaon condensation to take
place to higher one.

Although the RMF theory has had great success in nuclear
physics, nucleon-meson interactions or meson-meson inter-
actions have not yet had a unified form in different models.
It is not known which interaction terms the nature favors,
therefore new interactions deserve to be studied with the
development of nuclear experiment. Recently, an effective
model with the coupling of σ and ω mesons in RMF theory,
dubbed SIG-OM [26], has been proposed. The properties of
finite nuclei and nuclear matter were investigated in this model,
showing that an excellent description of binding energies and
charge radii of nuclei over a large range of isospin could be
achieved. However the composition of baryons considered in
Ref. [26] is only protons and neutrons. To discuss the property
of neutron stars, one usually should take into account not only
nucleons but also hyperons. The main aim of this article is then
to extend this model to include all baryon octets and study the
influence of the cross-interaction on the properties of nuclear
matter and neutron stars.

With the progress of astronomical observation and nuclear
experiment, astrophysics phenomena and nuclear physics are
combined more and more tightly. Because the density in the
core of a neutron star is several times the nuclear saturation
density, the classical view of neutron star matter composed
of protons, neutrons, and electrons is insufficient and more
realistic compositions are needed. At high density, hyperons,
kaon condensation, and quarks may appear and much attention
has been paid to these issues (see, for example, Refs. [27–51]).
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As for hyperons, experimental effort has resulted in some
significant data. The recent Nagara event [52] has provided
an identification of 6

��He production with precise �� binding
energy value B�� = 7.25 ± 1.19+0.18

−0.11 MeV. This suggested
that the effective �� interaction should be considerably
weaker (�B�� ∼ 1 MeV) than that deduced from earlier
measurement (�B�� ∼ 5 MeV). However, we still lack
accurate knowledge about �-N interaction, even though there
have been some hints of a high-density repulsion of �-N
interaction as indicated by the extrapolated atomic data [53],
the absence of bound �− hypernuclear states [54], and the ex-
perimental data of (π−,K+) on a series of targets [55]. As for
hyperon-meson coupling constants, they are usually derived
from the SU(6) quark model or constrained by reasonable
hyperon potentials. The meson-nucleon coupling constants
are generally determined by fitting the properties of nuclear
matter at saturation density or ground-state properties of finite
nuclei. On the other hand, the astronomical observation, for
example, the masses and radii of neutron stars, can also provide
constraints on the EOS determined by nuclear data. In this
article, we then take both the attractive and the repulsive forms
of � potential in our calculation and examine the effect of
the � potential on the properties of astronuclear matter and
neutron stars.

This article is organized as follows. In Sec. II, we describe
the effective Lagrangian with the additional cross-interaction
term σ 2ω2 and give the relevant formulas in the RMF theory.
In Sec. III, the calculated results of some properties of nuclear
(hadronic) matter and neutron stars are given and compared
with those without the cross-interaction term. Finally, a
summary is given in Sec. IV.

II. THE MODEL

To describe the properties of hadronic matter, the RFM
theory is usually implemented, in which baryons interact via
the exchange of mesons. The baryons considered here include
nucleons (p and n) and hyperons (�,�, and 	) investigated
for the first time by Glendenning [56]. The exchanged mesons
include the isoscalar scalar meson (σ ), the isoscalar vector
meson (ω), the isovector vector meson (ρ), and the cross-
interaction term σ 2ω2 introduced in Ref. [26]. For neutron
star matter in β equilibrium, the effective Lagrangian can be
written as

L =
∑
B


̄B[iγµ∂µ − mB + gσBσ − gωBγµωµ

− gρBγµ�t · �ρµ]
B + 1

2

(
∂µσ∂µσ − m2

σ σ 2
)

− 1

3
bm(gσσ )3 − 1

4
c(gσσ )4 + 1

2
m2

ωωµωµ

− 1

4
FµνF

µν + 1

2
m2

ρ �ρµ · �ρ µ − 1

4
�Gµν

�Gµν

+
∑

�


̄�(iγµ∂µ − m�)
� − 1

2
gσωσ 2ω2, (1)

where the symbol B includes the entire baryon octet
(p, n,�,�+, �0, �−, 	0, 	−) and � represents e− and µ−;
the last term is the cross-interaction between σ and ω mesons.
The antisymmetric tensors of vector mesons take the forms

Fµν = ∂µων − ∂νωµ, �Gµν ≡ ∂µ �ρν − ∂ν �ρµ.

Other parameters in the Lagrangian are mB denoting the
baryon free mass; m standing for the (mean) bare mass of pro-
ton and neutron; mσ ,mω, and mρ being masses assigned to the
corresponding meson, respectively; and gσB, gωB, gρB, b, c,

and gσω referring to the meson-baryon or meson-meson
coupling constants.

With the mean field approximation by which the operators
of meson fields are replaced by their expectation values, we
obtain the meson field equations as

gσσ = fσ

[ ∑
B

xσBρS
B − bm(gσσ )2 − c(gσσ )3 − gσω

gσ

σω2

]
,

(2)

gωω = fω

[ ∑
B

xωBρB − gσω

gω

σ 2ω

]
, (3)

gρρ = fρ

∑
B

xρBt3BρB, (4)

where new forms of the coupling constants are adopted with
the following definitions,

fi =
(

gi

mi

)2

, xiB = giB

gi

, (i = σ, ω, ρ),

and ρB and ρS
B are baryon density and scalar density,

respectively, with

ρB = 2

(2π )3

∫ kB
f

0
d3k, (5)

ρS
B = 2

(2π )3

∫ kB
f

0
d3k

m∗
B√

k2 + m∗2
B

. (6)

In the last two equations, kB
f is the Fermi momentum and m∗

B

is the effective mass of baryon B, which can be related to the
scalar meson field as m∗

B = mB − gσBσ . With the requirement
of translational invariance and rotational symmetry of static,
homogenous, infinite nuclear matter, only zero components—
ω0 and ρ0—of the vector fields survive, and they are still
denoted as ω and ρ in the above meson equations.

For the neutron star matter with baryons and charged
leptons, the β equilibrium conditions are guaranteed with
the following relations of chemical potentials for different
particles,

µp = µ�+ = µn − µe, (7)

µ� = µ�0 = µ	0 = µn, (8)

µ�− = µ	− = µn + µe, (9)

µµ = µe, (10)

and the charge neutrality condition is fulfilled by

np + n�+ = ne + nµ− + n�− + n	− , (11)
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where ni is the number density of species i. The chemical
potentials of baryons and leptons are expressed by

µB =
√

kB2

F + m∗2

B + gωBω + gρBt3Bρ, (12)

µ� =
√

k�2

F + m∗2

� . (13)

The total pressure and energy density of neutron star matter
are given as

p =
∑
i=B,�

1

3

2

(2π )3
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4
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With the obtained EOS, the mass-radius relation and other
relevant quantities of neutron star can be derived by solving
the Tolman-Oppenheimer-Volkoff (TOV) equation [57,58],

dp

dr
= [p(r) + ε(r)][M(r) + 4πr3p(r)]

r[r − 2M(r)]
, (16)

with

M(r) = 4π

∫ R

0
ε(r)r2dr. (17)

It is evident that the meson field equations involve six
parameters, fσ , fω, fρ , b, c, and gσω, which can be determined
by fitting the bulk properties of nuclear matter at the saturation
density. The properties of the nuclear matter at satura-
tion density are usually taken as ρ0 = 0.153 fm−3, E/A =
−16.3 MeV, aasym = 32.5 MeV, K = 240 MeV, and m∗ =
0.78 m (see, for example, Refs. [59,60]). We fixed the
parameters with the same values except for K = 265 MeV
(which has also been commonly used; see, for instance,
Ref. [61]) being implemented here. As for the cross-coupling
constant, gσω = 35.7 was obtained by fitting the properties
of finite nuclei [26]. To investigate the effect of the cross-
interaction between σ and ω mesons on the properties of
nuclear matter and neutron stars, we deal with it more loosely
in this article, taking several values around 35.7. The detail
of the method of fitting the model parameters can be found in
Ref. [60]. Because the cross-interaction term enters the meson
equations, the contribution from it should be considered when
one fits the bulk properties of nuclear matter. The fitted results
of these parameters are listed in Table I.

TABLE I. Parameters used in our calculations for several values
of gσω by fitting the saturation properties of nuclear matter:
ρ0 = 0.153 fm−3, E/A = −16.3 MeV, aasym = 32.5 MeV, K =
265 MeV, and m∗ = 0.78 m.

fσ fω fρ b c

gσω = 0 9.60167 4.82864 4.79412 0.00654 0.00390
gσω = 20 8.54825 4.82864 4.79412 0.00036 0.01799
gσω = 40 7.49479 4.82864 4.79412 −0.00757 0.03596

For the meson-hyperon couplings, we take those in the
SU(6) quark model for the vector coupling constants,

gρ� = 0,

gρ� = 2gρ	 = 2gρN,

gω� = gω� = 2gω	 = 2
3gωN .

The scalar couplings are usually fixed by fitting hyperon
potentials with UN

Y = xωY V − xσY S, where S = gσσ and
V = gωω are the values of the scalar and vector field strengths
at saturation density [59,62]. The �-N interaction has been
well studied and UN

� = −28 MeV was obtained with bound
� hypernuclear states (see, for instance, Ref. [63]). One of the
unsettled issues in hypernuclear physics is the �-N interaction
in nuclear matter. An attractive potential was generally used
in the past for � to be bounded in nuclear matter [31,64].
However, a detailed scan for � hypernuclear states turned out
to give negative results [54,55]. The study of �− atoms also
showed strong evidence for a sizable repulsive potential in
the nuclear core at ρ = ρ0 [65–67]. A recent review again
confirmed the repulsive nature of the �− potential with a new
geometric analysis of the �− atom data [68]. Therefore, for
the �-N interaction, we consider two cases: UN

� = −30 MeV,
as used in Refs. [31,62,64], and UN

� = 30 MeV, as used in
Refs. [63,69]. Besides, the 	 − N interaction in nuclear matter
is attractive with the potential UN

	 = −18 MeV [63,69]. We
take then such a value in our calculation.

III. NUMERICAL RESULT AND DISCUSSION

A. The effects on the most simple neutron star

Before taking into account the neutron star matter with
hyperons, we first investigate the most simple neutron star
whose baryon composition includes only neutrons and protons.
For the description of such simple neutron stars, the discussion
in the last section still works with the exclusion of hyperons
�,�, and 	 from the Lagrangian and the meson field
equations. The relevant parameters by fitting the saturation
nuclear matter properties are listed in Table I for different
values of gσω. With these parameters, we calculate the EOS
of the nuclear matter and the mass-radius relations of neutron
stars for the cases with and without the cross-interaction. The
obtained results of the EOS and the mass-radius relation are
illustrated in the curve set marked Part A of Figs. 1 and 2,
respectively. The curve set marked Part A in Fig. 1 indicates
that the σ -ω interaction term softens the equation of state of the
matter whose baryon composition consists of only nucleons.
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FIG. 1. (Color online) The equations of state of the neutron star
matter in the cases without and with the σ -ω meson cross-interaction
and �-N interaction UN

� = 30 MeV. The curve set marked Part A are
for the matter whose-baryon composition consists of only nucleons;
the curve set marked Part B are for the one including the whole baryon
octet (p, n,�, �−, �0, �+, 	0, 	−).

Figure 2 shows evidently that, for gσω = 0, gσω = 20, and
gσω = 40, the calculated maximum masses of neutron stars
without hyperons are 2.05 M�, 1.97 M�, and 1.94 M�,
respectively. These results are consistent with Fig. 1, because
the stiffer EOS produces the larger maximum neutron star
mass. We also calculated the maximum masses of neutron
stars for the parameter set with m∗ = 0.7 m, and Mmax =
2.35 M�, 2.21 M�, and 2.18 M� were obtained for gσω =
0, gσω = 20, and gσω = 40, respectively. It is apparent that
the maximum masses of the neutron stars without the cross-
interaction are larger than those with the cross-interaction,
and the larger the gσω is the smaller the maximum mass is.
This manifests in the σ -ω cross-interaction playing the role of
softening the EOS of the neutron star matter. Moreover, Fig. 2
also shows that the smaller effective mass of the nucleon gives

FIG. 2. (Color online) Calculated mass-radius relations of neu-
tron stars not including hyperons in the cases without and with the
σ -ω meson cross-interaction.

FIG. 3. (Color online) Calculated results of the relative pop-
ulations of neutron stars not including hyperons as functions of
the total nucleon density in the cases without and with the σ -ω
cross-interaction (The upper panel is for gσω = 0 and the lower panel
is for gσω = 40).

a bigger difference in the mass-radius relations of neutron stars
for different cross-interaction constants.

To show the distribution of the compositions in the interiors
of the neutron stars, we display the variation behavior of the
relative populations of different species with respect to the
baryon density and the radius of the neutron star in Figs. 3
and 4, respectively. These figures show that the σ -ω meson
cross-interaction hardly influences the relative populations at
the low density region of the neutron star without hyperons

FIG. 4. (Color online) Calculated results of the relative popula-
tions of the neutron stars not including hyperons as functions of the
radius of the neutron star in the cases without and with the σ -ω
cross-interaction (The upper panel is for gσω = 0 and the lower panel
is for gσω = 40).
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but slightly decreases that of the charged particles (protons,
electrons, and muons) in the high density region (close to the
center of the neutron star).

B. The effects on neutron stars including hyperons

In this section, we study the influence of the σ -ω cross-
interaction on neutron stars with the inclusion of hyperons.
It is known that the appearance of hyperon degrees of
freedom has a significant effect on the global properties of
hadron matter and neutron stars, lowering the total pressure
of the system and softening the equation of state, because
it suppresses the overall Fermi energy and momentum of
baryons and leptons. We take UN

� = −28 MeV and UN
	 =

−18 MeV to determine the scalar coupling constants gσ�, gσ	.
As for the � hyperon, we consider the attractive potential
UN

� = −30 MeV and the repulsive potential UN
� = 30 MeV,

respectively. To supplement Table I, the relevant scalar cou-
pling constants xσ� = 0.60367, xσ	 = 0.32314, and xσ� =
0.61432 (0.29483) are derived for the attractive (repulsive) �

potential. The calculated results of the EOS of the neutron star
matter including hyperons for the repulsive � potential UN

� =
30 MeV are displayed in the curve set marked Part B of
Fig. 1 (The results for UN

� = −30 MeV in the case of
including hyperons are not plotted here, because they are only
slightly softer than that of UN

� = 30 MeV). And the obtained
mass-radius relations of neutron stars including hyperons with
different � potentials are illustrated in Fig. 5. The curve set
marked Part B of Fig. 1 shows that the appearance of hyperons
softens the EOS definitely and the σ -ω cross-interaction
softens the EOS further. Figure 5 demonstrates clearly that,
no matter whether the � potential is attractive or repulsive,
the σ -ω meson cross-interaction suppresses the maximum
masses of neutron stars, which is similar to the result of
neutron stars not including hyperons. However, for the two
different � potentials, it is hard to distinguish the difference

FIG. 5. (Color online) Calculated mass-radius relation of neutron
stars in the cases without or with the σ -ω meson cross-interaction for
UN

� = −30 MeV (upper panel) and UN
� = 30 MeV (lower panel),

respectively.

TABLE II. Calculated results of the maximum masses of
neutron stars including hyperons with different parameter sets
(The upper row is the result with UN

� = −30 MeV, and the lower
row is that with UN

� = 30 MeV).

gσω = 0 gσω = 20 gσω = 40

Mmax(M�) 1.60 1.51 1.45
Mmax(M�) 1.61 1.52 1.46

of mass-radius relations with the same gσω from the figure. For
clarity, we list the calculated results of the maximum masses
of the neutron stars with hyperons in Table II for different
parameter sets. Table II shows that the maximum masses of
neutron stars with repulsive � potential are slightly larger
than those with attractive � potential for the same gσω. In
addition, comparing the obtained maximum masses of neutron
stars including hyperons with the maximum masses of those
not including hyperons, one can learn that the emergence of
hyperons suppresses the maximum masses by about 22, 23, and
25% for the three values of the σ -ω meson cross-interaction,
respectively. It indicates that the σ -ω meson cross-interaction
decreases the maximum masses of neutron stars generally,
and the increase of the cross-interaction strength further
enhances the softening effect of hyperons on the EOS. For
the consideration of the sensitivity of the parameter set, we
also calculated the maximum masses of neutron stars with
m∗ = 0.7 m, and obtained the maximum masses of the neutron
stars as 1.71 M�, 1.56 M�, and 1.50 M� for UN

� = −30 MeV
and 1.74 M�, 1.57 M�, and 1.51 M� for UN

� = 30 MeV.
The calculated results of the variation behavior of the

relative populations of all compositions with respect to the
total baryon density are demonstrated in Figs. 6 and 7 for

FIG. 6. (Color online) Calculated variation behavior of the
relative populations of the compositions of neutron stars including
hyperons in the case of attractive � potential with respect to the total
baryon density (the upper panel is for gσω = 0 and the lower panel
is for gσω = 40; ρc denotes the baryon density at the center of the
neutron star).
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FIG. 7. (Color online) Calculated variation behavior of the
relative populations of the compositions of neutron stars including
hyperons in the case of repulsive � potential with respect to the total
baryon density (the upper panel is for gσω = 0 and the lower panel
is for gσω = 40; ρc stands for the baryon density at the center of the
neutron star).

the attractive and repulsive � potentials, respectively. Figure 6
shows that, for the attractive � potential UN

� = −30 MeV,
hyperons �− and � appear at 2 ∼ 3ρ0. In the case with the σ -ω
meson cross-interaction, the relative population of �− hyperon
is suppressed when the baryon density is larger than 3ρ0.
The figure also indicates that the 	− hyperons with negative
charge, too, appear at a lower baryon density. Besides, 	0

hyperons emerge also at a density lower than that without the
cross-interaction, but the appearance of �0 hyperons is delayed
to a higher density. As for leptons, their relative populations
increase with the ascent of the density in the low density region.
Then they decrease with the increase of the baryon density and
disappear at some critical densities. The critical densities for
the leptons to disappear in the case with the cross-interaction
are lower than those without the cross-interaction. Figure 7
presents the relative populations with the repulsive � potential.
Compared with Fig. 6 for the attractive � potential, the
main difference is that � hyperons do not appear up to the
maximum density considered here, 10ρ0, beyond the central
density of neutron star. Besides attributing to the repulsive �

potential, the absence of � hyperons in the dense neutron star
matter can also be elucidated by investigating finite systems
of strange hadronic matter [62,69]. As pointed out in Ref.
[49], one can construct a system with arbitrary nucleons and
hyperons forming a big multi-hypernucleus. The system is
stable with the forbiddance by Pauli principle of such reactions
as � + � ↔ 	 + N and � + N → � + N . The first reaction
releases an energy of Q ≈ 25 MeV and the second reaction
an energy of Q ≈ 80 MeV, so that � hyperons can be hardly
stabilized in hypernuclear systems. Because � hyperons do not
appear in the reasonable range of baryon density for neutron
star matter, 	− hyperons emerge at the relatively lower baryon

density region to keep the charge neutrality of the whole
system.

Furthermore, comparing the role of the σ 2ω2 term with
that of the ω2ρ2 interaction given in Ref. [23], we notice
that, although they both soften the equation of state, the
contribution of the σ 2ω2 cross-interaction to the composition
distribution of neutron star matter is different from that of
the ω2ρ2 interaction. For the cross-interaction term ω2ρ2 with
attractive � potential, the onset density of �− hyperons is
slightly lowered but the onset of � hyperons is shifted to
higher density, resulting in a difference of their onset densities
being more than 1.5ρ0. However, with the σ 2ω2 interaction,
the onset densities of �− and � are slightly affected and their
difference is still small. Besides, for attractive � potential, the
richness of the � hyperon is suppressed with the inclusion of
the ω2ρ2 interaction, but that of the �− hyperon is suppressed
with the σ 2ω2 interaction. For the σ 2ρ2 interaction, previous
calculation [25] showed that the neutron star has a smaller
radius than that without such an interaction for the same
neutron star mass M = 1.4 M�. This indicates that such a
cross-coupling also plays the role of softening the equation
of state. In addition, vector self-coupling ω4 of ω mesons and
ρ4 of ρ mesons have been considered in Ref. [11]. Generally,
the ω4 term can soften the EOS at high density and give a
major modification in the high-density behavior, but the ρ4

term produces relatively minor changes in neutron star mass.
Finally, to describe the neutron star structure more com-

pletely, we demonstrate the variation behavior of the relative
populations of all baryons and leptons against the radius of the
neutron star in Fig. 8 for attractive � potential and in Fig. 9
for repulsive � potential, respectively. It is evident from the
two figures that, although hyperons �0 and �+ can appear
in very high density nuclear matter (as shown in Fig. 6) for

FIG. 8. (Color online) Calculated variation behavior of the
relative populations of the compositions of neutron stars including
hyperons in the case of attractive � potential with respect to the
radius (the upper panel is for gσω = 0 and the lower panel is for
gσω = 40).
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FIG. 9. (Color online) Calculated variation behavior of the
relative populations of the compositions of neutron stars including
hyperons in the case of repulsive � potential with respect to the
radius (the upper panel is for gσω = 0 and the lower panel is for
gσω = 40).

attractive � potential, they do not appear in the interior of
neutron star because the central density is not high enough to
reach the threshold of their production. It is the same for 	0

hyperons in the case with repulsive � potential. Moreover, the
hyperons �,	−(�,�−, 	0,−) exist in a smaller region (from
the center of the star) with the σ -ω meson cross-interaction
for repulsive (attractive) � potential than those without the
cross-interaction.

IV. SUMMARY

The RMF theory has achieved great success in describing
finite nuclei and (astro)nuclear matter, but baryon-meson and
meson-meson interactions have not yet had a unified form
in different models. Many forms of interactions have been
constructed to fit nuclear data, and it is hard to determine
which form of interaction is the important one before carrying
out concrete calculations. On the other hand, more accurate
observations will combine the astronomical physics with
nuclear physics more and more tightly. The progress on one
aspect will affect the other. Based on these considerations,
in this article we investigate the properties of neutron stars
with the σ -ω meson cross-interaction. The calculation shows
that this cross-interaction softens the EOS of the nuclear
(hadronic) matter and results in smaller maximum masses

of neutron stars. Moreover, increasing the cross-interaction
strength can enhance the softening effect of hyperons on the
EOS. In addition to the cross-interaction, we emphasize that
the hyperon potential has great influence on the properties,
especially the compositions, of neutron stars. For the attractive
potential UN

� = −30 MeV, our calculation shows that almost
all the hyperons can possibly appear in neutron star matter.
With the cross-interaction, the 	− and 	0 hyperons appear
at lower baryon densities than that of the case without the
cross-interaction, but the appearance of �0 hyperons is delayed
to a higher density. At the same time the critical densities for the
leptons to disappear are lower than those of the case without the
cross-interaction. For the repulsive potential UN

� = 30 MeV,
a distinct feature is that � hyperons do not appear up to the
maximal density considered here, 10ρ0, beyond the central
density of neutron stars. Hence, hypernuclear physics serves
as a key ingredient for the composition of dense neutron star
matter.

The ever reported heaviest neutron star PSR J0751+1807
with mass about (2.1 ± 0.2) M� [70,71] has been revised
down to (1.26 ± 0.14) M� [72]. Therefore the observed
maximum mass of neutron stars is consistent with the current
calculation with the inclusion of hyperons. However, for more
complex consideration, the interactions by exchanging σ ∗, φ,
and δ mesons should be taken into account, and the boson
condensates also play a very important role in describing
the neutron star matter. All these factors have not yet been
taken into account here for giving prominence to the cross-
interaction in this article. With the consideration of kaon
condensation and δ-meson channel interaction, it’s possible
to modify the maximum masses of neutron stars by adjusting
kaon optical potential UK or other parameters. Moreover, The
three-body force [73–75] has not received sufficient attention
but has been known for quite some time to be repulsive in
nature. It may stiffen the equation of state of neutron star
matter and gives a large modification to the structure of neutron
stars. In addition, the hadron quark phase transition at high
(energy) density is also important for further study of neutron
star properties. Related investigations are under way.
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