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Arnau Rios*

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing
48823-1321 Michigan, USA

Artur Polls and Isaac Vidaña
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A systematic study of the microscopic and thermodynamical properties of pure neutron matter at finite
temperature within the self-consistent Green’s-function approach is performed. The model dependence of these
results is analyzed by both comparing the results obtained with two different microscopic interactions, the CD
Bonn and the Argonne V18 potentials, and by analyzing the results obtained with other approaches, such as the
Brueckner-Hartree-Fock approximation, the variational approach, and the virial expansion.
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I. INTRODUCTION

The interior of neutron stars is, to a very good approx-
imation, formed by pure neutron matter [1,2]. At the very
initial stages after their formation, these objects are very
hot, with temperatures as high as T ∼ 40 MeV [3]. The
equation of state (EoS) of pure neutron matter in a wide
range of densities and temperatures is therefore a crucial
ingredient for describing the structure and evolution of neutron
stars. The evaluation of both the neutron matter and the
symmetric nuclear matter EoS starting from realistic models
of the nucleon-nucleon (NN ) interaction is still a major
challenge in nuclear physics. The short-range and tensor
components of realistic NN forces induce correlations that
substantially modify the many-nucleon wave function as
compared to the free Fermi gas (FFG) Slater determinant.
This is particularly important for symmetric matter, where the
3S1-3D1 channel plays a pivotal role. In neutron matter, Pauli
effects block this tensor channel, but short-range correlations
still need to be accounted for appropriately. Several theoretical
approaches have been developed over the years to treat these
correlations in zero-temperature neutron matter, including
variational techniques within correlated basis functions [4–6],
auxiliary field [7] or quantum Monte Carlo [8] calculations
with simplified interactions, and the popular Brueckner-Bethe-
Goldstone hole-line expansion [9] in its lowest order form, the
so-called Brueckner-Hartree-Fock (BHF) approximation [10].
At finite temperatures, fewer efforts have been focused in this
direction: the well-known variational calculation of Friedman
and Pandharipande [11] and recent similar calculations [12],
as well as BHF extensions at finite temperature [13,14].
The latter approximation takes into account particle-particle
correlations by solving the Bethe-Goldstone equation, which
leads to the so-called G matrix. Nevertheless, a minimal
consistent treatment of correlations in nuclear systems requires
the inclusion not only of particle-particle (pp) intermediate

*rios@nscl.msu.edu

states but also of the hole-hole (hh) ones. The propagation of
particles and holes can be treated in the same footing by means
of the self-consistent Green’s-function (SCGF) approach [15].

The SCGF approach gives direct access to the single-
particle spectral function and therefore to all the one-body
properties of the system. Great progress in the application
of the SCGF method to nuclear matter has been achieved
in recent years, both at zero temperature [16] and finite
temperatures [17–21]. The solution of the SCGF equations is
a rather demanding numerical problem owing to the complete
treatment of off-shell energy dependencies. As a consequence,
the SCGF method has been applied to few general, ex-
tensive analysis of dense nuclear systems. The studies at
zero temperature have been mainly oriented to provide the
appropriate theoretical support for the interpretation of (e,e′p)
experiments, whereas those at finite temperature have focused
on a correlated description of dense matter to be used in the
studies of heavy-ion collision dynamics or in astrophysical
environments. It is important to note that the effects of
temperature might affect substantially different astrophysical
observables. As an example, the cooling curve of a neutron
star depends on the interior temperatures and the possible
transition to a superfluid regime [22]. Also, the gravitational
wave signature of a supernova explosion might be sensitive to
the EoS and possibly to its temperature dependence [23].

Along this line, we want to study the microscopic and
thermodynamical properties of hot pure neutron matter within
the SCGF framework. The SCGF method, as formulated here,
cannot be used below the critical temperature of the pairing
transition [24,25] and therefore all our results only apply for
the normal phase. Although this is not the first time that
the SCGF approach is used to study pure neutron matter
[17,26], it is, to our knowledge, the first time that a systematic
study of the microscopic and thermodynamical properties
of pure neutron matter at finite temperature is performed
within the SCGF approach. Moreover, we shall perform
our calculations with two different realistic nucleon-nucleon
interactions, the meson-exchange CD Bonn potential [27] and
the local Argonne V18 [28]. Together with the comparison to
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other many-body approaches, this can be used to highlight the
model dependence in hot neutron matter calculations.

Lately, the problem of neutron matter has also been growing
in interest because of its connection with the experimental
studies of ultracold fermionic systems [8,29]. Dilute strongly
interacting fermionic systems with large scattering lengths
(such as neutron matter, with a scattering length of a = −18 fm
to be compared to a Fermi momentum of kF = 1.68 fm−1 for a
density of ρ = 0.16 fm−3) lie in the so-called unitary regime.
As a consequence of the lack of any characteristic energy
scale, these systems show a universal behavior in their zero-
and finite-temperature dynamics, with scalings that are related
to the noninteracting case [30]. We shall not treat this particular
problem here, but we should mention that the SCGF method
within the ladder approximation is able to tackle the unitary
regime above the pairing phase transition. When properly
complemented with pairing effects [24,25], this method should
also be able to properly describe the pairing transition in the
unitary regime.

After a brief description of the SCGF formalism in Sec. II,
we discuss in Sec. III our results for the microscopic properties
of hot pure neutron matter. Section IV is devoted to the analysis
of the thermodynamical properties and the comparison of our
results with those obtained within other approaches. Finally,
a brief summary and our main conclusions are presented in
Sec. V.

II. SELF-CONSISTENT GREEN’S-FUNCTIONS METHOD
AT FINITE TEMPERATURE

A crucial step in the microscopic description of nuclear
many-body systems is the determination of the effective
in-medium nucleon-nucleon (NN ) interaction. The ladder
approximation to the in-medium T matrix is well suited for
strongly interacting low-density systems [31] and has the
following structure:

〈k1k2|T (�+)|k3k4〉

= 〈k1k2|V |k3k4〉 +
∫

d3k5

(2π )3

d3k6

(2π )3

×〈k1k2|V |k5k6〉G0
II(k5,k6; �+)〈k5k6|T (�+)|k3k4〉, (1)

where G0
II is the noninteracting two-particle propagator, which

is the product of two dressed single-particle propagators:

G0
II(k,k′;�+) =

∫ ∞

−∞

dω

2π

dω′

2π
A(k,ω)A(k′,ω′)

× 1 − f (ω) − f (ω′)
�+ − ω − ω′ . (2)

In this equation, f (ω) = [eβ(ω−µ) + 1]−1 is the Fermi-Dirac
distribution, A(k,ω) is the single-particle spectral function,
and the notation �± stands for � ± iη, with η infinitesimally
small. The previous equations are derived within the grand-
canonical picture, where the two external, fixed variables are
the temperature, T = 1/β, and the chemical potential, µ. G0

II
contains the effect of Pauli blocking at finite temperature,
analogous to the one that appears in zero-temperature BHF
calculations [15]. In contrast to the BHF approach, however,

the zero-temperature version of the SCGF formalism accounts
for the intermediate propagation of both pp and hh states.

The interaction of a nucleon with the remaining nucleons
in the medium is described within the Green’s functions
formalism in terms of the self-energy [32]. Its imaginary part
is related to the in-medium T matrix by

Im�(k,ω) =
∫

d3k′

(2π )3

∫ ∞

−∞

dω′

2π
〈kk′| ImT (ω + ω′

+)|kk′〉

×A(k′,ω′)[f (ω′) + b(ω + ω′)], (3)

where a Bose-Einstein factor, b(�) = [e−β(�−2µ) − 1]−1, ap-
pears because of the symmetric treatment of pp and hh
states. The real part of the self-energy is determined from
its imaginary part by a dispersion relation,

Re�(k,ω) = �HF(k) − P
∫

dω′

π

Im�(k,ω′
+)

ω − ω′ , (4)

except for the energy-independent Hartree-Fock contribution,

�HF(k) =
∫

d3k′

(2π )3
〈kk′|V |kk′〉n(k′), (5)

where the momentum distribution includes the effects of
correlations via A(k,ω):

n(k) = ν

∫ ∞

−∞

dω

2π
A(k,ω)f (ω). (6)

A value of ν = 2 accounts for the spin degeneracy of neutron
matter. Finally, one can make use of Dyson’s equation to close
this set of equations by determining the single-particle spectral
function from the real and imaginary parts of the self-energy:

A(k,ω) = −2 Im�(k,ω)[
ω − k2

2m
− Re�(k,ω)

]2 + [Im�(k,ω)]2
. (7)

For dense matter studies, instead of working in the grand-
canonical picture at fixed µ, it is more convenient to fix the
density ρ. Consequently, we supplement the previous set of
equations with the normalization condition

ρ = ν

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
A(k,ω)f (ω,µ̃), (8)

which determines a “microscopic” chemical potential µ̃. In a
thermodynamically consistent approximation (such as the lad-
der approximation), µ̃ should coincide with the macroscopic
chemical potential µ obtained from the bulk properties by
taking the derivative of the free energy density F :

µ = ∂F

∂ρ

∣∣∣∣
T

. (9)

Thermodynamically inconsistent many-body approximations,
such as BHF, lead to µ̃ �= µ [33].

Equations (1)–(8) form a closed self-consistent set of
equations in terms of the in-medium interaction, the self-
energy, and the single-particle spectral function that can be
solved iteratively. The numerical details associated with the
solution of these equations are rather involved and we refer the
reader to Refs. [19,34,35] for further details. It is important to
note that the numerical solution of the SCGF method, when
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available (see the following paragraph), accounts for the full
ladder approximation.

The bosonic factor appearing in Eq. (3) presents a pole
for � = 2µ, which is generally canceled by an associated
zero in ImT (� = 2µ). Below a certain critical temperature
Tc, and for a center-of-mass momentum P = 0 and an energy
� = 2µ, this cancellation no longer takes place. A pole
appears in the in-medium interaction, leading to an instability
that signals the onset of superfluidity according to the so-
called Thouless criterion [36,37]. This imposes a limit on
the lowest temperatures we can achieve within our numerical
calculations. All the results presented in the following are
obtained for T > Tc, thus neglecting the effect of pairing
correlations but guaranteeing the convergence of the approach.
In principle, for those densities where pairing is not present
at low temperatures, the SCGF approach could be used to
study the T = 0 system. The numerical effort involved in
these calculations, however, would be larger than in the finite
temperature case, owing to the presence of sharply peaked
structures (particularly in the spectral functions close to the
Fermi surface). These structures are softened by thermal
effects, thus allowing for a less expensive and more stable
numerical solution at finite temperature.

So far, we have discussed the determination of the mi-
croscopic properties of the system. The Green’s-function
formalism can also be used to obtain the bulk properties
of neutron matter. For the case of two-body interactions,
one can evaluate the energy per particle by means of the
Galitskii-Migdal-Koltun (GMK) sum rule [38,39],

E

A
= ν

ρ

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π

1

2

{
k2

2m
+ ω

}
A(k,ω)f (ω), (10)

from the spectral function evaluated in the SCGF approach.
To obtain the free energy, F = E − T S, and have a complete
thermodynamical description of the system, one still needs
to compute the entropy within a correlated approximation.
This can be obtained by using the Luttinger-Ward (LW)
formalism [21,40,41]. Within this approach, an expression
for the grand-canonical potential in terms of dressed single-
particle propagators can be obtained by means of a Legendre
transformation. The entropy can then be computed from the
derivative S = − ∂�

∂T
|µ, which gives a closed expression in two

terms, S = SDQ + S ′. The first corresponds to the dynamical
quasiparticle (DQ) entropy density,

SDQ

A
= ν

ρ

∫
d3k

(2π )3

∫ ∞

−∞

dω

2π
σ (ω)B(k,ω), (11)

given by the convolution of a statistical factor σ (ω) =
−f (ω) ln f (ω) − [1 − f (ω)] ln[1 − f (ω)] and a spectral
function B(k,ω), which is

B(k,ω) =
[

1 − ∂Re�(k,ω)

∂ω

]
A(k,ω)

− 2
∂ ReG(k,ω)

∂ω
Im�(k,ω) (12)

and can be computed from the single-particle quantities
obtained in the SCGF approach. This B spectral function ac-
counts for the effect of the dynamical (i.e., interaction-induced)

correlations that fragment the quasiparticle peak [21]. In this
paper, we will consider that the second term, S ′, is negligible
because of constraints in phase space for relatively low
temperature [41]. This approach leads to thermodynamically
consistent results for neutron matter as well as for symmetric
nuclear matter [21,35].

To assess the dependence of our results on the many-body
approximation employed in the description of neutron matter,
we shall compare the SCGF calculations to a finite-temperature
generalization of the BHF method. A finite-temperature
extension of the BHF approach is given by the Bloch-de
Dominicis theory [42,43]. Instead of using the latter, our
calculations will rely on a simpler generalization [14,44],
which can be obtained from the SCGF equations by assuming
that the spectral function has no width and all its strength is
concentrated at the BHF quasiparticle energy:

A(k,ω) = (2π )δ [ω − εBHF(k)] . (13)

In addition, one eliminates the bosonic factor of Eq. (1) and
modifies the in-medium two-body propagator to include only
intermediate particle-particle propagation:

G0
II(k,k′;�+) = [1 − f (ω)][1 − f (ω′)]

�+ − εBHF(k) − εBHF(k′)
. (14)

The set of equations thus obtained mimics the zero-
temperature BHF formalism with the replacement of the step-
function momentum distributions at T = 0 by Fermi-Dirac
distributions at T �= 0. This guarantees that in the T → 0
limit the results will coincide with those of the BHF approach.
One can prove that this extension coincides with the Bloch-de
Dominicis results at low temperatures [43].

A few other approaches exist that can be used to study
neutron matter at finite temperatures starting from realistic
NN potentials. The benchmark variational calculations of
Friedman and Pandharipande (hereafter FP) [11] relied on
a frozen correlation approximation (i.e., using as a starting
point the Jastrow-like correlation functions obtained at zero
temperatures). This is of course an additional approximation,
possibly only suitable for low enough temperatures and
large densities, where matter can be considered degenerate.
The variational approach has only recently been extended
to finite temperatures to include appropriately thermal cor-
relations [45]. Alternatively, the case of low densities and
high temperatures can be studied by means of the model-
independent virial expansion [46,47]. In this approximation,
the thermodynamical properties are expanded in terms of the
fugacity, z = eβµ. The first term in this expansion leads to
the thermodynamics of a classical free gas, and the first-order
correction is given in terms of a virial coefficient that can be
computed from the experimental NN interaction phase shifts
in free space. Since neutron matter is not expected to cluster
at low densities, this approximation will hold for extremely
dilute and hot matter. Recently, another method has been
proposed to study neutron matter at nonzero temperatures
by making use of renormalized low-momentum two- and
three-nucleon interactions whose short-range components
have been properly eliminated [48]. The thermal properties
of neutron matter have been computed up to second order in
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finite-temperature many-body perturbation theory, including
contributions from normal and anomalous diagrams.

III. MICROSCOPIC PROPERTIES OF NEUTRON MATTER

In this section we will discuss the microscopic single-
particle properties of neutron matter as obtained from the
SCGF approach. To address the model dependence of our
calculations, we will show results using two different realistic
nucleon-nucleon interactions, namely, the CD Bonn [27] and
the Argonne V18 potentials [28]. Partial waves up to J = 8
have been considered, with the Born approximation for J � 5
in both SCGF and BHF calculations. Because of the lack of
three-body forces, our calculations should not be taken as
quantitative predictions for neutron matter properties in the
regime of normal nuclear densities (ρ > 0.08 fm−3). Recent
calculations have shown the importance of three-body forces
in a correlated many-body description of dense matter in this
density regime [49]. Consequently, the aim of our calculations
is to discuss the importance of short-range correlations in
determining the properties of neutron matter as well as
to emphasize the substantial model dependence of realistic
calculations of dense nuclear systems.

We start by showing in Fig. 1 the density and temperature
dependence of the neutron spectral function in dense neutron
matter. Because of the similarity of the results for the two
interactions, we will only consider the results obtained with
the Argonne V18 potential. The spectral function for densities
ranging from ρ = 0.04 fm−3 to ρ = 0.32 fm−3 at a fixed
temperature of T = 5 MeV is shown in the left panels for
three momenta: k = 0 (top panel), k = kF (middle panel),
and k = 2kF (bottom panel), where kF corresponds to the
Fermi momentum associated with each density. The right
panels show the results for a fixed density, ρ = 0.16 fm−3, and

temperatures from T = 5 to 20 MeV. The qualitative features
of these figures are already well known (see, e.g., Ref. [34]).
There is an important quasiparticle peak, which contains
roughly 70%–80% of the total strength for all momenta. The
position of this peak changes with momenta and it is described
by the self-consistent equation

εqp(k) = h̄2k2

2m
+ Re�[k,εqp(k)], (15)

which defines the quasiparticle spectrum for neutrons in the
medium. With increasing density, the quasiparticle peak at
zero momentum shifts to lower energies with respect to the
chemical potential. It turns out that neutrons at low momenta
are more bound at higher densities. The situation is the opposite
for high momenta (k ∼ 2kF ), where the peak shifts to higher
energies when density increases. At the Fermi surface, k = kF ,
the quasiparticle peak is approximately centered around ω ∼ µ

and its width decreases as ρ increases. At zero temperature and
in the absence of pairing correlations, the spectral function
would actually have a delta-like quasiparticle peak. The effect
of density is particularly large in the low- and high-energy tails
of the spectral function. For both large removal (ω � µ) and
large addition (ω 	 µ) energies, the strength increases with
density. These off-shell components of the spectral function
are populated mainly by the action of the short-range core
of the nuclear interaction and therefore it is reasonable that
they increase when the mean separation between neutrons
decreases. In other words, the high-energy strength of the
spectral function is a good measure of the correlations induced
by density effects.

The influence of temperature on the spectral function is less
pronounced. Both the position of the quasiparticle peak and
the strength at low and high energies are almost unaffected
by changes in temperature. The only region that is slightly
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FIG. 1. (Color online) Density (left panels)
and temperature (right panels) dependence of the
spectral function,A(k,ω), as a function of energy
for three different momenta: k = 0 (upper), k =
kF (middle), and k = 2kF (lower), with kF the
Fermi momenta associated with each density.
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FIG. 2. (Color online) Real part of the on-
shell self-energy for the SCGF and BHF approx-
imations at T = 5 MeV (solid lines) and T =
20 MeV (dashed lines). The three panels corre-
spond to densities 0.08 fm−3 (left), 0.16 fm−3

(middle), and 0.24 fm−3 (right). The arrows
show the associated Fermi momenta.

modified corresponds to the range of energies ω ∼ µ, which is
particularly sensitive to variations in phase space [50]. It seems
fair to say that the structure of the spectral function is mainly
determined by the in-medium renormalization associated with
the density, whereas temperature effects play a minor role. This
is no longer the case close to and below Tc, where a relatively
small decrease in temperature can lead to the appearance of
superfluidity and thus to an important change in the properties
of the spectral function. In particular, the onset of pairing
results in a double quasiparticle peak structure close to the
Fermi surface [24,25].

To learn more about the effect of hh propagation on the
microscopic properties of neutron matter, one can compare
the quasiparticle peak described by Eq. (15) with the single-
particle spectrum obtained within the BHF approach. The first
includes both pp and hh effects, whereas the second only
accounts for pp states. In Fig. 2 we compare the real part of
the on-shell self-energy, Re�[k,εqp(k)], for both approaches at
densities of ρ = 0.08, 0.16, and 0.24 fm−3 (left, middle, and
right panels, respectively) and temperatures T = 5 MeV (solid
lines) and T = 20 MeV (dashed lines). The results displayed
have been obtained with Argonne V18, but similar conclusions
are reached with CD Bonn. For all cases, the SCGF spectra are
more repulsive than the BHF ones at all momenta. The effect
of hh propagation on the on-shell self-energy is therefore of
a repulsive nature. This effect is larger at low momenta, in
accordance with the idea that the dressing induced by hh states
is irrelevant for high-momentum particle states. The repulsive
effect of SCGF with respect to BHF increases with density
and the differences can be as large as 25 MeV for k = 0 at
ρ = 0.24 fm−3.

The temperature behavior of the quasiparticle spectra shows
some interesting features. On the one hand, the BHF single-
particle spectrum becomes more repulsive with increasing
temperature at all momenta. This is usually attributed to the
presence of thermal Fermi-Dirac factors in the self-energy.
The repulsive high relative momentum components of the
interaction are not accessible at zero temperature and they
only become available once the thermal distribution populates
high-momentum single-particle states. The overall effect is
then repulsive. The same reasoning applies to particle states

in the SCGF case, which also become more repulsive with
increasing temperature. Hole states, on the other hand, become
more attractive with increasing temperature. This behavior
can be presumably attributed to the fact that hole states are
renormalized in the SCGF, which results in a quenching of
the attractive long-range components of the NN interaction
in the zero-temperature case. The inclusion of thermal effects
leads to a somewhat weaker renormalization that increases the
attractive component of the spectrum for k < kF . A similar
effect has been observed in the extended BHF (where the
repulsive contribution of holes is taken into account by the M2

rearrangement term in the self-energy [51]) as well as in SCGF
calculations of symmetric nuclear matter [35].

Among the one-body properties of interest for correlated
many-body systems, the momentum distribution of Eq. (6)
is particularly sensitive to corrections induced by the NN

interaction. At zero temperature, for instance, the momentum
distribution of the FFG is just a step function, with complete
population below kF and empty states above. In contrast,
the correlated momentum distribution at T = 0 displays a
substantial depletion of hole states and a nonzero population
of high-momentum states. Unfortunately, the FFG at finite
temperature also shows these features, since all the states
become partially populated owing to the thermal distribution
of states. In the interacting case, the correlated momentum
distribution will be influenced by two types of effects. On
the one hand, part of the depletion has to be associated
to the NN interaction, since the depletion is not zero at
T = 0. This contribution is modulated to a certain extent at
finite temperature, but it can be highlighted in certain regions
of the density-temperature diagram. We will refer to these as
“dynamical effects” in the following. On the other hand, the
momentum distribution is also affected by genuine “thermal
effects” that are not be present in the zero-temperature case. To
appropriately disentangle these two effects, extensive studies
of the temperature and density dependence of the momentum
distribution are needed.

This analysis is presented in Fig. 3, where the density
(top panels) and temperature (bottom panels) dependence of
the momentum distribution is shown for both CD Bonn (left
panels) and Argonne V18 (right panels) potentials. Interesting
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FIG. 3. (Color online) Density (top panels)
and temperature (lower panels) dependence of the
momentum distribution. The results are obtained
with the CD Bonn (left panels) and Argonne V18
(right panels) interactions.

analogies between the density and temperature dependence
are observed: Decreasing temperature has a somewhat similar
effect to increasing density. This is in stark contrast to the effect
of density and temperature on the spectral function, which, as
already mentioned, are rather different. In the case of the mo-
mentum distribution, these dependencies can be interpreted in
terms of degeneracy arguments: For both the low-temperature
and the high-density case, the system is reaching a degenerate
limit, where thermal effects are unimportant and the depletion
is essentially governed by dynamical effects. This will be
the range that is interesting for understanding the influence
of short-range correlations on the system. The opposite limit
(low densities and high temperatures) leads to a momentum
distribution that is controlled by thermal effects.

Some particular details, however, differ depending on how
the degenerate limit is approached. On the one hand, fixing the
density and progressively decreasing the temperature leads
to a monotonic increase (decrease) of n(k) below (above)

the Fermi surface. In particular, n(k = 0) saturates to a
value different from 1 when T → 0. For ρ = 0.16 fm−3 at
the lowest temperature available (T = 4 MeV), one finds
n(0) = 0.974 for CD Bonn and n(0) = 0.959 for Argonne
V18. The differences in the short-range components of the two
interactions explain the differences in n(0): Argonne V18 has a
harder short-range core compared to CD Bonn and thus leads,
in general, to lower occupations for k < kF at high densities.
On the other hand, fixing the temperature and increasing the
density, one finds a different scenario, where n(0) is no longer
a monotonic function. This behavior is observed in detail in
Fig. 4, where the occupation of the lowest momentum state,
n(0), is shown as a function of density for several temperatures.
The density dependence of n(0) indeed has features that can
be attributed to both thermal and dynamical effects. For all
temperatures, there is a steep decrease of n(0) when ρ → 0.
The FFG n(0), shown by the double-dotted dashed line,
has a similar behavior, which can be explained in terms of
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the system approaching the classical limit (βµ → −∞). In
the noninteracting case, dynamical correlations are absent
and therefore thermal effects are responsible for the strong
decrease of n(0) at low densities. The analogous behavior in
the correlated n(0) is basically driven by thermal correlations.
The high-density behavior of n(0), however, is totally different
from that of a FFG. Whereas the latter always equals 1
above ρ ∼ 0.08 fm−3 at T = 5 MeV, the correlated n(0) at
this temperature tends to have values that are about 10%
lower. One actually observes a decrease in n(0) as density
increases in this low-temperature range. This dependence can
be understood in terms of dynamical correlations: An increase
in density results in a decrease of the mean distance between
particles and, as a consequence, the importance of short-range
effects is incremented at higher densities. As a consequence,
the depletion increases with density, as observed. Again, this
effect depends on the particular short-range structure of the
NN force, which explains the differences observed between
the left and right panels. Finally, let us note once again
that the temperature dependence of n(0) is monotonic: Large
temperatures lead to low values of n(0) at all densities. The
changes induced by temperature on n(0) are, however, density
dependent and, as expected from degeneracy arguments, they
are almost negligible at high densities.

IV. THERMODYNAMICAL PROPERTIES OF NEUTRON
MATTER

The SCGF approach, complemented with the LW formal-
ism, can be used to obtain the thermodynamical properties
of neutron matter including the effect of correlations. In this
section we shall analyze these properties and compare the
SCGF results with those of other approaches, such as the
variational calculation of FP, the finite temperature extension
of BHF, and the virial expansion.

The energy per particle, obtained from the GMK sum rule
of Eq. (10), is shown in Fig. 5 as a function of density
for two temperatures, T = 10 and T = 20 MeV. CD Bonn
(Argonne V18) results are displayed in the left (right) panel.
The SCGF results (circles) are compared with those obtained
with the finite-temperature generalization of the BHF approach
(triangles) and those of the variational calculation of FP

(crosses). Note that the results for the energy per particle are
not quoted in the original FP publication and these have been
obtained from the free energy and the entropy. At low densities,
we also compare our results with the model-independent
virial approximation for fugacities up to z = 0.5 [47]. These
correspond to densities of ρ = 0.0035, 0.0098, 0.0181, and
0.0279 fm−3 at temperatures of T = 5, 10, 15, and 20 MeV,
respectively.

Comparing the SCGF and BHF approaches for a single NN

interaction, one finds that the inclusion of hh correlations leads
to a more repulsive energy per particle for almost all densities.
As expected from phase-space considerations, this repulsive
effect is more important at higher densities. Moreover, the
repulsion induced by hh propagation is more important for
Argonne V18 than for CD Bonn. As mentioned previously,
the Argonne V18 interaction has a strong short-range core and
therefore the hh renormalization on top of the pp propagation
will still have an important effect. In particular, at a temperature
of T = 10 MeV, the inclusion of hh propagation leads to a
1.6 MeV (4.0 MeV) increase of the energy per particle at
ρ = 0.16 fm−3 (0.32 fm−3). In contrast, the weaker short-
range structure of CD Bonn is already well treated with pp
correlations and the inclusion of the hh component has a
smaller effect, of only 0.6 MeV (1.5 MeV). These results are in
agreement with the zero-temperature calculations of the Ghent
group, which showed almost no difference between SCGF
and BHF at ρ = 0.16 fm−3 for the Reid93 interaction [26].
However, these findings seem to disagree with those of the
Krakow group [52], which suggest differences between the
SCGF bulk energies and continuous choice BHF calculations
of about 5 MeV in the same conditions. Note, however, that
those results were obtained with a simpler separable NN

interaction and that different numerical procedures were used
in the solution of the SCGF equations. The recent calculation
of Ref. [48] leads to more repulsive results than ours at low
densities, even when three-body effects are not considered.
At ρ = 0.12 fm−3 and T = 10 MeV, an energy of E/A ∼
19 MeV was obtained (see Fig. 5 in Ref. [48]) for a Vlow k

evolved from the AV18 interaction with no three-body forces.
This has to be compared to our SCGF results with AV18, which
yield E/A = 15.8 MeV in the same conditions.

The differences in energy between the many-body ap-
proaches for a given potential that we have just discussed
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FIG. 5. (Color online) Energy per particle as
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FIG. 6. (Color online) Entropy per parti-
cle as a function of density for different ap-
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and BHF results are computed with the CD
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interactions. The inset in the right panel spans the
low-density regime for Argonne V18, including
the virial results (solid line).

are a consequence of differences in the treatment of dynamical
and thermal correlations. In contrast, the differences within
the same many-body approach for two NN interactions are a
reflection of the structure of each potential and, in particular, of
their short-range behavior. In general, the results with Argonne
V18 for both the SCGF and the BHF approaches are more
repulsive than those of CD Bonn. In the SCGF approach at
T = 10 MeV and 0.16 fm−3, for instance, E/A = 18.0 MeV
for Argonne V18, whereas E/A = 16.9 MeV for CD Bonn.
This difference increases with density and, for ρ = 0.32 fm−3,
it becomes as large as 6.4 MeV. In contrast, the differences
in energy per particle between the two potentials for the
BHF approximation are rather small. For T = 10 MeV and
at ρ = 0.16 fm−3, they are less than 0.5 MeV, whereas at
ρ = 0.32 fm−3 they are just about ∼3 MeV. This indicates
that the inclusion of hh correlations in the energy per particle
increases the dependence of the results on the short-range
structure of the potential. Let us also note that the difference
in the energy per particle owing to the use of different NN

potentials is somewhat larger than that associated with the
use of different many-body approaches, particularly in the
high-density regime.

At low densities, short-range effects are weakened and the
SCGF data agree with the virial expansion independently of
the NN interaction. This is particularly well observed in the
inset of Fig. 5. This agreement provides for the first time, to
the best of our knowledge, a model-independent verification
of the numerics of the SCGF approach. Let us also note the
relatively large differences between the FP and the SCGF
results below 0.08 fm−3 in all cases. In addition, we would
like to stress that the various approximations reach the correct
classical limit, E/A → 3T/2 for ρ → 0, but the way this limit
is reached depends on the approach under consideration. In all
cases, the energy per particle shows a well-defined minimum.
This is a consequence of the competition between thermal
effects, which are dominant at low densities and tend to make
the energy more repulsive, and interaction effects, which are
attractive and important at intermediate densities.

Remarkably, our SCGF results for Argonne V18 agree
well with those of FP at high densities. Both calculations are
based on local NN potentials that have different structures.
We have performed some preliminary SCGF calculations with
the Urbana V14 interaction that indicate that the energy per

particle is ∼3 MeV more repulsive than the SCGF energy
with Argonne V18 at ρ = 0.16 fm−3 and T = 10 MeV. The
discrepancy increases to ∼10 MeV at 0.32 fm−3. Overall,
this seems to indicate that the agreement between the FP
calculations with the Urbana V14 force and our SCGF with
Argonne V18 is a coincidence, which might have been caused
by a cancellation between the differences induced by the two
underlying interactions and those associated to the different
many-body approaches.

The discrepancies are substantially smaller in the case
of the entropy per particle, shown as a function of density
for two temperatures, T = 10 and T = 20 MeV, in Fig. 6.
In particular, the changes arising from the use of different
potentials (left and right panels) are smaller than those arising
from the use of different many-body methods. At T = 10 MeV,
the different approximations (DQ entropy from SCGF results,
BHF entropy, FP, and FFG) give similar results. The deviations
above 0.16 fm−3 are at most of 0.15 Boltzmann units, which
would have a maximum impact on the free energy per particle
of T δS/A ∼ 1.5 MeV. At higher temperatures (T = 20 MeV),
the differences among approaches are somewhat larger, of at
most 0.25 units.

Dynamical effects on the entropy per particle come from
two major sources [21]. On the one hand, there are beyond-
mean-field effects that fragment the quasiparticle peak and are
extremely important in the calculation of the energy. These
are almost negligible for the entropy [21,35], as confirmed
by the extremely narrow quasiparticle peak of the B spectral
function, which explains partially the good agreement between
SCGF and BHF entropies. On the other hand, in the mean-field
approximation as well as in BHF, the entropy is affected by
the shift of the quasiparticle peak. In those approaches, the
entropy is obtained by using the quasiparticle approximation
to the entropy,

SBHF

A
= ν

ρ

∫
d3k

(2π )3
σ [εBHF(k)] . (16)

Although, as observed in Fig. 2, the quasiparticle energies
of the two approaches are quite different, the change in
chemical potential between BHF and SCGF shifts the entropy
to values very close to those of SDQ. The similarity between
the two entropies had already been observed for symmetric
matter [21]. All in all, these results support the idea that
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FIG. 7. (Color online) Free energy per par-
ticle as a function of density for different tem-
peratures and different approximations: SCGF
(circles) and FP (crosses). SCGF results are
computed with the CD Bonn (left panel) and
Argonne V18 (right panel) interactions. The inset
in the right panel spans the low-density regime
for Argonne V18, including the virial results
(solid line).

the entropy is mainly determined by thermal correlations and
rather unaffected by dynamical correlations.

Compared to the FP entropy, we find that both SCGF and
BHF methods predict slightly larger entropies at large densities
for both temperatures and interactions. A similar effect was
observed in Ref. [48] and attributed to an anomalously low
effective mass in variational calculations. The restriction to a
quadratic spectrum in variational approaches is a limitation,
especially in view of the clearly nonquadratic momentum
dependencies of the BHF and SCGF quasiparticle spectra (see
Fig. 2). The entropies in the latter approaches go beyond such
approximation and, in the SCGF case, they even go beyond
the assumption of a single quasiparticle peak. In any case,
close to the degenerate limit, all the calculated entropies have
a Fermi-liquid-like behavior given by

S

A
= asT (17)

(see Fig. 10), where the parameter as = π2m∗
h̄2k2

F

is given in terms

of the effective mass m∗, calculated at the Fermi surface at
zero temperature. The discrepancy between the SDQ and the
FP entropies at large densities (close to the degenerate limit)
suggests that the effective mass in the DQ entropy is larger
than that of the variational entropy. Indeed, the m∗ in the
DQ density of states is the product of the m∗

k and the m∗
ω

effective masses [53]. The latter is associated to the energy
dependence of the self-energy and is believed to be absent in
the variational approach. Since m∗

ω is strongly peaked around
the Fermi surface, it leads to larger values of the total effective
mass and therefore increases the DQ entropy at large densities
with respect to the variational one.

In this direction, it is important to note that, in all cases, the
entropy at high densities is smaller than that predicted by the
FFG approximation. This is in accordance with the idea that,
in this regime, the entropy is dominated by the effective mass,
which is always smaller than one and therefore leads to lower
entropies. Finally, let us stress that, as expected, the interaction
has little influence in the entropy near the classical regime. At
low densities, all the approximations to the entropy converge
to similar values and no differences are observed between the
FFG and the virial entropies (see inset of Fig. 6).

The free energy obtained from the GMK sum rule comple-
mented with the dynamical quasiparticle entropy is shown in

Fig. 7 as a function of density for several temperatures. Let
us first note that the calculations yield well-behaved results
in a large range of densities and temperatures for both CD
Bonn (left panel) and Argonne V18 (right panel). In particular,
the low-density high-temperature regime agrees well with
the virial results. This agreement is directly related to the
similarity of the DQ and the virial entropies since, in this
regime, the entropy overcomes the energy contribution in F/A.
Comparing the two panels, one observes that for densities
higher than 0.08 fm−3 the Argonne results are more repulsive
than the CD Bonn ones. In addition, the Argonne SCGF and the
FP results are quite close to each other for all densities, with
differences (mostly coming from the entropy) smaller than
3 MeV for the highest density considered here. In general, one
can say that, for low densities, F/A is well determined and
all the approaches agree well with each other regardless of
the potential. Above ∼0.08 fm−3, however, differences appear
owing to the sensitivity of the many-body approach to the
short-range structure of each NN interaction. Let us also note
that the results of Ref. [48] within the two-body case are about
5–10 MeV more repulsive than ours.

Once more, we would like to stress the fact that the
SCGF approach, complemented with the LW formalism, yields
thermodynamically consistent results. To this end, we show in
Fig. 8 the microscopic chemical potential µ̃, together with
the macroscopic one, µ, as a function of density for two
temperatures, T = 10 and 20 MeV. The left panels correspond
to SCGF results for both the CD Bonn potential (upper
panel) and the Argonne V18 interaction (lower panel). For
the two temperatures, there is a good agreement between the
microscopic chemical potential, obtained from the normal-
ization condition of Eq. (8), and the macroscopic chemical
potential, coming from the numerical derivative of the free
energy density, Eq. (9). For the latter, a centered two-point
formula has been used. Let us stress that this agreement
confirms a posteriori the good behavior of the dynamical
quasiparticle entropy as a function of the density and also the
negligible role of the S ′ term. The approximations involved in
the calculation of SDQ do not spoil the consistency of the ladder
approximation. Results for µ̃ and µ within the BHF approach
are presented in the right panels. Both chemical potentials
agree at low (ρ < 0.08 fm−3) densities for both temperatures.
Above this density, however, discrepancies appear because of
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the upper (lower) panels correspond to the CD
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the increasing importance of the rearrangement contribution
to the self-energy [51]. At 0.16 fm−3, the difference is
∼4–5 MeV for both potentials and temperatures, and it be-
comes as large as 15–20 MeV at 0.30 fm−3. These differences
show the lack of consistency of the BHF approach at finite
temperature, even though the effect is smaller than in nuclear
matter [21].

The EoS of neutron matter is shown for different tem-
peratures in Fig. 9. For the SCGF approach this quantity is
computed from the thermodynamical relation p = ρ(µ̃ − F

A
),

with µ̃ the microscopic chemical potential obtained from
Eq. (8). Note that in thermodynamically inconsistent ap-
proaches the pressure has to be computed from numerical
derivatives of the free energy with respect to the density.
Once again, a remarkable agreement with FP is found for the
Argonne V18 results, whereas the CD Bonn interaction leads to
a softer EoS. In the low-density regime, both results agree well
with the virial expansion. The effect of temperature decreases
as density increases and eventually the curves for different

temperatures seem to collapse to a single (density-dependent)
value, as expected from degeneracy arguments.

So far, we have plotted all our results as functions of
density. To get a more accurate insight into the temperature
dependence of the different thermodynamical properties of
the system, we show in Fig. 10 the energy (left panel), entropy
(middle panel), and free energy (right panel) per particle as
a function of temperature for a fixed density, ρ = 0.16 fm−3.
The results correspond to the Argonne V18 interaction. The
agreement between the SCGF and the FP energy per particle
is confirmed for all temperatures (with the FP results having
been interpolated to this particular density). The SCGF results
are about 2 MeV more repulsive than the BHF ones and
this repulsive effect is almost temperature independent. The
entropy, as expected, is well determined by all the approaches
and only some small differences can be observed at large
temperatures. These small differences, however, are translated
into slight disagreements between the FP and SCGF results in
the free energy per particle. As observed in the right panel, the
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properties as a function of temperature for a fixed
density of ρ = 0.16 fm−3. The SCGF (circles),
BHF (triangles), and variational (crosses) results
are displayed. The dotted lines correspond to fits
based on the Sommerfeld expansion.

SCGF results are about 0.5 MeV more attractive than the FP
ones. The BHF results are about 1 MeV more bound than the
SCGF ones. Again, the differences between the approaches are
rather temperature independent. This suggests that the effect of
dynamical correlations on the macroscopic properties is rather
insensitive to thermal effects.

It would be interesting to study the effect that sophisticated
many-body calculations have on the temperature dependence
of the different thermodynamical properties. This would
provide a reliable test for the usually assumed quadratic
(linear) temperature dependencies for the energy (entropy).
A detailed study of these dependencies would however
need reliable extrapolations to the low-temperature regime,
which in our present approach is not possible owing to
the presence of pairing effects. A thorough analysis of this
low-temperature regime will be discussed elsewhere. At the
moment, using the present data, we have parametrized the
different thermodynamical quantities in terms of simple fits to
study the quality of the commonly used approximations.

The energy per particle of the FFG is well fitted by a
quadratic temperature dependence, e ∼ e0 + aeT

2, inspired
by the Sommerfeld expansion [54]. This expansion is only
valid for T

ε(kF ) � 1 (i.e., for temperatures close to zero). In
the fits to the SCGF results, however, we have to use the
available data between T = 4 and 8 MeV. Fitting a quadratic
dependence for the energy per particle of the FFG in this
temperature range yields a deviation from the exact result,
ae = π2m

2h̄2k2
F

= 0.0422 MeV−1, of only 5%. Assuming that this

procedure is also valid for the SCGF energies per particle,
we find ae = 0.0339 MeV−1. This 20% difference seems too
large to be explained simply in terms of the effective mass,
which in this regime is m∗ ∼ 0.9m. The naive replacement
ae = π2m∗

2h̄2k2
F

, for instance, does not agree with the previous

value. The more accurate prediction π2m∗
2h̄2k2

F

m∗+m
2m

[55], although

closer, is also somewhat too large to coincide with the fit to
the SCGF data. Alternatively, one could have tried to obtain an
analytic expression for ae from the low-temperature expansion
of the GMK sum rule formula, but this is difficult because of
the nontrivial temperature dependence of A(k,ω). Let us also
stress that the quadratic thermal dependence of the energy
per particle comes essentially from the kinetic energy term.
The potential energy is rather temperature independent and

decreases by less than 2 MeV when going from T = 20 to
4 MeV.

According to Fermi liquid theory, the behavior of the
entropy at low temperatures should be linear with T . For
the FFG, a fit of Eq. (17) in the T = 4 to 8 MeV regime
gives a very accurate value of as = 2ae = 0.0844 MeV−1.
A similar one-parameter fit to the SCGF yields a slope of
as ∼ 0.0772 MeV−1, in agreement with the Fermi liquid
prediction for an effective mass of m∗ ∼ 0.92m. This coincides
with the value we obtain for the effective mass at k = kF

at low temperatures. The entropy however shows a clear
deviation from this linear behavior above 12 MeV. In addition,
the FFG prediction as = 2ae is partially violated. Finally, a
quadratic fit to the SCGF data for the free energy per particle,
f = f0 + af T 2, leads to af = −0.0428 MeV−1. This is a
somewhat low value, rather close to the FFG prediction. In
contrast, the FFG relation ae = −af is not well fulfilled.
Moreover, the nonlinear behavior of the entropy for T >

12 MeV leads to a nonquadratic behavior of F/A above this
temperature. A consistency check of these low-temperature
fits is the relation ae − as ∼ af as well as the fact that the
zero-temperature extrapolation of E/A, e0 = 14.51, and of
F/A, f0 = 14.49 MeV, do coincide. Note, however, that the
accuracy of the fits depends on the exact position and the
number of points considered at low temperatures and these
are the most sensitive to numerical uncertainties within our
approach. Finally, we would like to stress that the convergence
of our results down to T = 4 MeV implies that Tc < 4 MeV.

V. CONCLUSIONS

We have presented the first systematic study of hot neutron
matter within the self-consistent Green’s-function formalism
in the ladder approximation for two realistic NN interactions,
the CD Bonn and the Argonne V18 potentials. The calculations
cover a wide range of densities and temperatures and show the
adequateness of this method in accounting for correlations
in the microscopic properties of dense, hot hadronic matter.
The effect of short-range correlations in the thermodynam-
ical properties is correctly described by the Luttinger-Ward
formalism.

At the microscopic level, short-range effects are particularly
important on the spectral functions and are manifested in its
low- and high-energy tails. Our results indicate that both the
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location of the quasiparticle peak and the amount of strength in
the energy tails change substantially with density. In contrast,
thermal effects are very small and only affect the region
around the chemical potential. The momentum dependence of
the real part of the on-shell self-energy in the SCGF approach
has been compared to the single-particle spectrum in BHF-like
descriptions. The propagation of hh pairs in the intermediate
states has a repulsive effect with respect to BHF results. This
difference grows with density and is larger for momenta below
the Fermi momentum, with maximum differences of ∼25 MeV
in the range of densities explored here. In the hole-momentum
region, in addition, BHF and SCGF approaches show different
thermal behaviors, with the latter becoming more attractive as
temperature increases.

A careful study of the momentum distribution of the system
has also been performed and the important interplay between
thermal and dynamical correlations has been highlighted.
These effects are well exemplified by n(0), which is custom-
arily used as a measure of correlation effects. For a given
temperature and decreasing density, the system approaches the
classical limit and the depletion of the momentum distribution
increases. For larger densities, closer to the degenerate limit,
dynamical correlations play a more important role and n(0)
decreases with increasing density. In general, correlation
effects, as measured by the depletion, are larger for Argonne
V18 than for CD Bonn.

In general, the SCGF energy per particle is more repulsive
than the BHF one, independently of the interaction. The
magnitude of these differences is governed by the density and
by the particular structure of the NN interaction, and it is
at most of 5 MeV for the range of densities explored (up to
0.32 fm−3). The sensitivity to the NN interaction within the
SCGF approach appears to be larger than this, with differences
of up to 6 MeV in the same range. In contrast, BHF results are
relatively potential independent. In any case, in the low-density
regime the energies for both approaches compare very well
with the virial expansion. In addition, there is a very good
agreement between the SCGF results for Argonne V18 and
those of FP for Urbana V14 above a density of 0.08 fm−3.
This is possibly due to a cancellation between the potential
and the many-body dependence of the energy per particle in
this regime.

The entropy has been computed within the dynamical
quasiparticle approximation, which takes into account the
effects of correlations in the width of the quasiparticle peak.

The discrepancies among different approximations to the
entropy are rather small, thus revealing that the entropy is not
affected by correlations. In general, all the approaches lead to
somewhat lower values than those predicted by the FFG. The
free energy for the Argonne V18 and CD Bonn interactions
shows substantial differences at large densities owing to the
different structures of the potential. The free energy obtained
from the GMK energy and the DQ entropy leads to a thermo-
dynamically consistent result, with a good agreement between
the microscopic and the macroscopic chemical potentials.
The differences for the BHF approach can be as large as
20 MeV, although in general they are less important than for
the nuclear matter case. The EoS, which has been computed
over a wide range of densities and temperatures, also shows
a similar potential dependence. In the low-density regime,
however, all the thermodynamical quantities show a very good
agreement with the virial expansion. The stability of our results
in this regime shows the robustness of the numerical techniques
involved in the calculations.

The temperature dependence of the energy, the entropy, and
the free energy has also been explored. A quadratic dependence
is compatible for the energy per particle at ρ = 0.16 fm−3

for the SCGF and BHF approaches. The entropy is only
proportional to the temperature below T ∼ 10 MeV, which
in turn translates into a nonquadratic temperature dependence
of the free energy above this temperature. Moreover, the
differences in energy and free energy between BHF and SCGF
approaches remain constant with temperature, indicating that
the effect of temperature on dynamical correlations is rather
small. In addition, the convergence of the results down to
T = 4 MeV indicate that no superfluidity appears above this
temperature. In conclusion, the calculations performed show
the potential of the SCGF method for describing accurately
the properties of dense and hot matter. The inclusion of
pairing effects and three-body forces within this formalism
will improve the predictions for the microscopic and the bulk
properties and will provide a very complete description of
neutron star matter.
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[18] P. Bożek, Phys. Rev. C 65, 054306 (2002).
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